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Abstract 

 
The more simple technique is used to obtain the analytical expression of the 
entropy for the hard-core fluid in a general case. 
 
Keywords: Entropy, hard-core fluid 
 

In the previous articles [1, 2] was shown how the entropy, S, of an 
equilibrium square-well (SW) system can be found by integrating the following  
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thermodynamic relation (hereafter, all thermodynamic quantities are taken per 
atom): 
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where T is the absolute temperature, TkK B2
3

=  - kinetic energy, U - potential 

energy, ρ  - mean atomic density, Bk  - Boltzmann constant.  
Here, we show a more simple way to obtain the entropy of an arbitrary 

system in a general case at three conditions:  
1. The pair-interaction approximation for the potential energy: 
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where )(rϕ  is the pair interatomic potential, )(rg  - pair correlation function. 
2. The hard-core (HC) model for the pair potential:  
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If 0)( =rφ , we have the hard-sphere (HS) fluid. 
3. The following expression for the Fourier transform of the direct 

correlation function in the HC model, )(HC rc :  
)()()( IHCHC qqcqc βφ−= ,       (4) 

where )(IHC qc  is the Fourier transform of the inside-hard-core (IHC) part of the 
)(HC rc .  

Eq. (4) is true for example in the framework of the mean spherical 
approximation (MSA) [3] or the random phase approximation (RPA) [4]. 

From Eq. (4), the structure factor, )(HC qa , is 
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where 1
B )( −= Tkβ . 

The difference between entropy of the HS fluid, HSS , and the entropy of the 
HC fluid, HCS , can be found from eq.(1):  
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For cases of RPA [1] and MSA [2] Eq. (7) was being calculated by the 
straightforward way. 

The more simple way to calculate HCSΔ  is to perform integrating by parts 
and to change the variable T on β : 
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The integration constant is being obtained from the condition that HSHC SS =  at 
)()( HSHC qaqa = : 
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Eq. (8) can be simplified and the final expression is 
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Eq.(10) can be used if the expression for )(HC qa is known. In the future, the 
method introduced here will be extended to binary mixtures.  
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