Available online at www.ijpab.com

ISSN: 2320 – 7051

Int. J. Pure App. Biosci. 3 (1): 247-256 (2015)

Research Article

INTERNATIONAL JOURNAL OF PURE & APPLIED BIOSCIENCE

Ichthyofauna Diversity of River Kaljani in Cooch Behar District of West Bengal, India

Arpita Dey¹, Ruksa Nur¹, Debapriya Sarkar² and Sudip Barat¹*

¹Aquaculture and Limnology Research Unit, Department of Zoology, University of North Bengal, Darjeeling, Siliguri - 734 013, West Bengal, India

²Fishery Unit, Uttar Banga Krishi Viswavidyalaya, Pundibari-736165, Cooch Behar, West Bengal, India *Corresponding Author E-mail: sudipbarat@rediffmail.com

ABSTRACT

The present study was conducted to generate a primary database on ichthyofauna diversity of river Kaljani flowing through Cooch Behar district of West Bengal, India. 138 indigenous fish species belonging to 31 families were identified. The family Cyprinidae represented the largest diversity accommodating 20 genera and 50 species. Amongst all the fishes 58 species have ornamental value and 55 species the food value. Ornamental fishes are dominant over the food fishes and carnivorous fishes are dominant over the omnivorous and herbivorous fishes. According to IUCN (International Union for Conservation of Nature) and CAMP (Conservation Assessment and Management Plan) the conservation status of the fishes are listed as, 1(0.72%) species as Critically Endangered,13(9.42%) species as Endangered 41(29.71%) species as Vulnerable, 35 (25.36%) species as at Lower Risk Near Threatened, 41(29.71%) species as Lower Risk Least Concerned,4 (2.89%)species as Data Deficient and 3(2.17%) species as Not Evaluated. It is concluded, that anthropogenic pressure arising out of agriculture run offs, indiscriminatory use of fishing with new fishing technologies and widespread habitation of people have contributed to the vulnerability of the fish diversity.

Keywords: Ichthyofauna diversity, Kaljani river, Cooch Behar, Ornamental fish, Conservation status.

INTRODUCTION

Cooch Behar district being situated near the state of Assam, and lying between 25° 57'47" to 26° 36'2" North latitude and between 89° 54'35" to 88°47'44" East longitude, is unique in its topography and climatic characteristics. It has a total water stretch of approximately 6121 ha including hill stream rivers, beels and others aquaculture resources and fishes are invariable living components of these water bodies. These organisms are important food resources and good indicators of the ecological health of the waters they inhabit. The diversity within the fresh water ecosystem has a great importance in terms of the livelihood and the economic importance of the people living around it. Accordingly the relation between the biodiversity and human well-being is inter-related and is being promoted increasingly through the concept of ecosystem services provided by the species. Biodiversity is essential for stabilization of ecosystem, protection of overall environmental quality for understanding intrinsic worth of all species on the Earth ¹. The Cooch Behar district shows close similarities with the North Eastern States of India, particularly Assam, in terms of its richness and magnificent biodiversity. The North Eastern region of India is considered to be one of the major hotspots of freshwater fish biodiversity in the world². Earlier studies report 230 fish species from the North Eastern India by Sinha³ and 422 species reported from North East India by Goswami *et al.*, ⁴ Kar *et al.*, ⁵ also reported 69 species from North Eastern India.

A great number of species have been reported from most of the North Eastern states but in Cooch Behar district no such report on fish biodiversity has been reported. Among all the rivers flowing through the district of Cooch Behar, Kaljani is the richest in fresh water fish biodiversity. This river which is about 96 Km long originates from Gabaur Bachhra forest, lying in the borders of Bhutan and West Bengal, and outfalls into Shiltorsa in Cooch Behar. Few workers have studied on fish diversity of Northern region of West Bengal^{6,7,8,9,10,11}. The existing literatures do not give specific distribution of fish fauna in different water bodies of the Cooch Behar district. The present study, therefore, is aimed at to update the ichthyofaunal diversity in the river Kaljani and to get a database on the distribution of fish species in the Cooch Behar district.

MATERIALS AND METHODS

The study was conducted in river Kaljani in Coochbehar district covering an area of about 9 Km in the lower reaches of the river, that is, from Amlaguri to Chhat Bhelakopa. The work was surveyed over a period of two years (August 2012 to August 2014). The sampling areas were divided into 4 sites namely, Amlaguri (26 °34' N latitude and 89 °58' E longitude), Chhatoa (26° 32' N latitude and 89° 58' E longitude), Jaigir Chilakhana (26^o 31' N latitude and 89^o 58' E longitude), and Chhat Bhelakopa (26^o 29' N latitude and 89⁰ 58' E longitude). Distance among the sample sites was 3 Km. Fishes were collected from different sites with the help of fishermen using different types of nets namely, gill nets, cast nets, dip nets, drag nets and other locally designed fishing gears like Katal fishing gear. In Katal fishing technique, some area of the river is temporarily fenced off by bamboo and *Eichhornia* or *Pistia* sp. After a few days, these areas are covered by nets and the fishes are caught by cast net. This method is applied throughout the year except monsoon. The harvested fishes are then preserved in 10 % formaldehyde solution¹². Fish photographs were taken from fresh samples by camera (Nikon, Coolpix L24) and were identified following their general body form, morphometric and meristic characteristics according to Talwar and Jhingran¹³, Jayaram¹², and Vishwanath et al.¹⁴ Conservation status of fish is given as per Conservation Assessment and Management Plan¹⁵ (CAMP) and International Union for Conservation of Nature¹⁶ (IUCN).

RESULTS AND DISCUSSION

About 138 fish species were recorded in the present study which belonged to 31 families (Table-1). As seen from Fig.2, the most dominant fish families contributing to the study was Cyprinidae: 50 species and Sisoridae: 14 species. The less dominant family than Cyprinidae was Bagridae contributing 11 species and Cobitidae: 8 species. The families Belontiidae, Channidae, and Schilbeidae contributed to 6 species. Mastacembelidae represented 4 species and Balitoridae, Badidae and Siluridae represented 3 species. Ambassidae, Amblycipitidae, Clupeidae and Notopteridae contributed 2 species. Other families Anabantidae, Anguillidae, Aplocheilidae, Belonidae, Chacidae, Clariidae, Engraulididae, Gobiidae, Heteropneustidae, Mugilidae, Nandidae, Ophichthidae, Pangasiidae, Synbranchidae, Syngnathidae and Tetradontidae all contributed 1 species each. Among the 138 species, 55 species had food value, 58 species ornamental value and 25 species both ornamental and food value (Table-1). Bhattacharya et al. 17 reported 52 indigenous ornamental fish species occurring in the North East. Mahapatra et al.²⁴ reported 190 fish species from West Bengal. Ponniah 18 reported that fish species of North East India showed 250 potential ornamental fish species. In case of West Bengal, the survey and enlistment of indigenous ornamental fishes is fragmentary represented by a few works ^{19, 20, 21, 22}. Therefore, in the present study an attempt has been made to explore the available indigenous ornamental fish fauna of West Bengal. Ornamental fishes were dominant over the food fishes. All the three types of feeding habit of fishes like carnivorous, omnivorous and herbivorous were available in this region. About 97 species of fishes are carnivorous, 28 species are omnivorous and 13 species are herbivorous fish (Table-1). Similar findings were reported from tropical rivers of India^{22,8}. The evaluation of conservation status of the fishes and the results of the present study revealed that 25.36% of the fishes belonged to lower risk near threatened (LRnt), 29.71% vulnerable (VU), 29.71% lower risk least concern (LRlc) 2.17% not evaluated (NE),

9.42% endangered (EN), 0.72% critically endangered (CEN) and 2.89% data deficient (DD) category) in Fig-1. Month wise availability of fish species were high in the months of November (2012) to April (2013) and September (2013). Chhat Bhelakopa (Site -4) had the richest diversity than the other sites. *Pangasius pangasius* is a critically endangered species, found in this region. *Hilsa toli* was also found at Chhat Bhelakopa (Site-4) only during monsoon.

Fig. 1: Sector diagram showing the percentage of conservation status of fishes in river Kaljani recorded during the period 2012-14

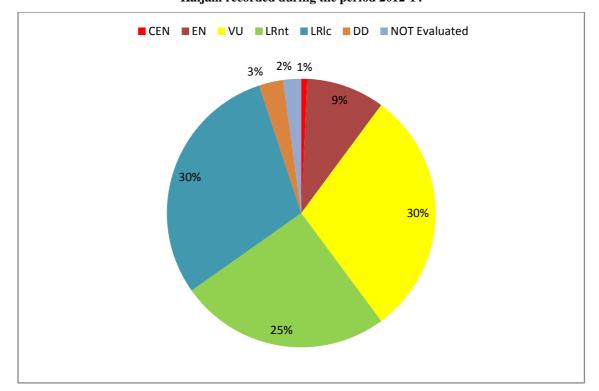


Fig. 2: Bar diagram showing the family wise distribution of fishes in the river Kaljani

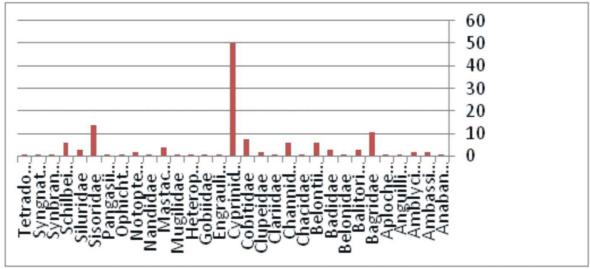


Table 1: Ichthyofauna Diversity of River Kaljani in Cooch Behar District of West Bengal

S No.	Scientific name of fishes	Family	Conservation		Kalja	jani		Economic	Food
			Status	Site- 1	Site-2	Site-3	Site-4	importance	habit
1	Anabas testudineus(Bloch)	Anabantidae	VU	√	√	√	✓	Fd	С
2	Pseudambassis ranga (Hamilton-Buchanan)	Ambassidae	LRnt	✓	✓	✓	✓	Or	С
3	Chanda nama (Hamilton-Buchanan)	Ambassidae	LRnt	✓	✓	✓	✓	Or	С
4	Amblyceps mangois (Hamilton-Buchanan)	Amblycipitidae	EN	√	-	-	-	Or	С
5	Amblyceps tuberculatum (Linthoingambi and Vishwanath)	Amblycipitidae	LRlc	√	√	√	√	Or	С
6	Anguilla bengalensis(Gray)	Anguillidae	EN	✓	✓	✓	✓	Fd	О
7	Aplocheilus panchax (Hamilton)	Aplocheilidae	LRlc	✓	✓	-	✓	Or	О
8	Mystus bleekeri(Day)	Bagridae	VU	√	√	√	√	Fd/Or	С
9	Mystus carcio(Hamilton)	Bagridae	LRlc	✓	✓	✓	✓	Fd/Or	С
10	Mystus cavasius(Hamilton)	Bagridae	LRnt	√	√	√	√	Fd/Or	О
11	Mystus tengara(Hamilton)	Bagridae	LRlc	√	✓	✓	✓	Fd/Or	С
12	Mystus gulio(Hamilton)	Bagridae	LRlc	✓	✓	✓	✓	Fd/Or	С
13	Mystus vittatus(Bloch)	Bagridae	VU	√	√	√	√	Fd/Or	С
14	Sperata aor (Hamilton)	Bagridae	VU	✓	✓	✓	✓	Fd	С
15	Sperata seenghala(Sykes)	Bagridae	VU	✓	✓	✓	✓	Fd	С
16	Batasio affinis(Blyth)	Bagridae	LRnt	✓	✓	✓	✓	Fd/Or	С
17	Rita rita(Hamilton -Buchanan)	Bagridae	VU	✓	✓	✓	✓	Fd/Or	С
18	Balitora brucei(Gray)	Balitoridae	VU	✓	✓	✓	✓	Or	О
19	Schistura fasciata (Lokeshwar and Vishwanath)	Balitoridae	NE	✓	✓	✓	✓	Or	С
20	Schistura tirapensis(Kottelat)	Balitoridae	LRlc	✓	✓	✓	✓	Or	С
21	Xenentodon cancila (Hamilton)	Belonidae	LRlc	✓	✓	✓	✓	Or	С
22	Badis assamensis (Ahl)	Badidae	DD	✓	✓	-	✓	Or	С
23	Badis badis (Hamilton)	Badidae	LRlc	✓	✓	✓	✓	Or	С
24	Badis bengalensis (Hamilton)	Badidae	LRlc	✓	✓	✓	✓	Or	С

25	Ctenops nobilis (McClelland)	Belontiidae	LRnt	✓	✓	✓	✓	Or	О
26	Colisa fasciatus (Schneider)	Belontiidae	LRnt	✓	✓	✓	✓	Or	С
27	Colisa labiosus (Day)	Belontiidae	LRlc	✓	✓	✓	✓	Or	C
28	Colisa lalia (Hamilton -Buchanan)	Belontiidae	LRlc	✓	-	✓	✓	Or	C
29	Colisa sota(Hamilton-Buchanan)	Belontiidae	LRlc	✓	✓	✓	✓	Or	С
30	Colisa chuna(Hamilton)	Belontiidae	LRnt	✓	✓	✓	✓	Or	C
31	Chaca chaca(Hamilton-Buchanan)	Chacidae	EN	✓	✓	✓	✓	Or	C
32	Channa striata (Bloch)	Channidae	LRlc	✓	✓	✓	✓	Fd	С
33	Channa bleheri (Vierke)	Channidae	LRnt	✓	✓	✓	✓	Fd/Or	C
34	Channa gachua (Hamilton)	Channidae	LRlc	✓	✓	✓	✓	Fd/Or	С
35	Channa marulius (Hamilton)	Channidae	LRnt	✓	✓	✓	✓	Fd	С
36	Channa punctatus (Bloach)	Channidae	LRlc	✓	✓	✓	✓	Fd	С
37	Channa barca(Hamilton)	Channidae	DD	✓	✓	✓	✓	Fd/Or	С
38	Clarius batrachus (Linnaeaus)	Clariidae	VU	✓	✓	✓	✓	Fd	С
39	Gudusia chapra(Hamilton-Buchanan)	Clupeidae	EN	✓	✓	✓	✓	Fd	0
40	Tenualosa toli(Valenciennes)	Clupeidae	VU	-	-	-	✓	Fd	С
41	Botia Dario(Hamilton)	Cobitidae	VU	✓	✓	✓	✓	Fd/Or	С
42	Botia rostrata(Gunther)	Cobitidae	VU	✓	✓	-	✓	Or	С
43	Botia lohachata (Chaudhuri)	Cobitidae	EN	✓	-	✓	✓	Or	С
44	Pangio pangio(Hamilton)	Cobitidae	VU	✓	✓	✓	✓	Fd	С
45	Cantophrys gongota (Hamilton)	Cobitidae	VU	✓	✓	✓	✓	Or	С
46	Lepidocephalichthys arunachalensis(Datta and	Cobitidae	EN	✓	✓	✓	✓	Or	С
	Barman)								
47	Lepidocephalichthys berdmorei (Blyth)	Cobitidae	LRlc	✓	✓	✓	✓	Or	C
48	Lepidocephalichthys manipurensis (Arunkumar)	Cobitidae	LRlc	✓	✓	✓	✓	Or	С
49	Oreichthys casuatis(Hamilton-Buchanan)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
50	Oreichthys crenuchoides (Schäfer)	Cyprinidae	DD	✓	✓	✓	✓	Or	С
51	Chagunius chagunius(Hamilton)	Cyprinidae	EN	✓	✓	✓	✓	Fd/Or	О
52	Osteobrama belangeri (Valencienes)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	С
53	Osteobrama cotio(Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	С
54	Tor putitora(Hamilton)	Cyprinidae	EN	✓	✓	✓	✓	Fd	О

55	Tor tor(Hamilton)	Cyprinidae	EN	✓	✓	✓	✓	Fd	О
56	Amblypharyngodon mola (Hamilton-Buchanan)	Cyprinidae	LRlc	✓	✓	✓	✓	Fd/Or	Н
57	Cirrhinus reba(Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	О
58	Crossocheilus burmanicus(Hora)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
59	Garra kempi (Hora)	Cyprinidae	LRlc	✓	✓	✓	✓	Fd	Н
60	Garra gotyla (Gray)	Cyprinidae	VU	✓	✓	✓	✓	Fd	Н
61	Garra lamta(Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Fd	Н
62	Barilius barila(Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
63	Barilius tileo (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
64	Barilius vagra (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	О
65	Barilius dogarsinghi (Hora)	Cyprinidae	EN	✓	✓	✓	✓	Fd	0
66	Barilius ngawa (Vishwanath and Manojkumar)	Cyprinidae	LRlc	✓	✓	✓	✓	Fd	0
67	Barilius bendelisis (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
68	Barilius barna (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
69	Aspidopario morar (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd/Or	С
70	Devario devario(Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Or	С
71	Devario assamensis (Barman)	Cyprinidae	VU	✓	✓	✓	✓	Or	С
72	Rasbora daniconius (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
73	Rasbora rasbora (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
74	Raiamas bola (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd/Or	С
75	Salmophasia bacaila (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd/Or	С
76	Psilorhynchus sucatio (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	О
77	Psilorhynchus balitora(Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Or	0
78	Psilorhynchus homaloptera (Hora and Mukherji)	Cyprinidae	VU	✓	✓	✓	✓	Fd	0
79	Psilorhynchus brucei (Gray)	Cyprinidae	LRnt	✓	✓	✓	✓	Or	0
80	Schizothorax labialus (McClelland and Griffith)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd/Or	С
81	Labeo rohita (Hamilton -Buchanan)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	Н
82	Labeo calbasu (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Fd	Н
83	Labeo gonius (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	Н
84	Labeo dyocheilus (McClelland)	Cyprinidae	VU	✓	✓	✓	✓	Fd	Н
85	Labeo bata (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	Н

86	Labeo boga (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	Н
87	Labeo pangusia (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	Н
88	Catla catla (Hamilton-Buchanan)	Cyprinidae	VU	✓	✓	✓	✓	Fd	Н
89	Cirrhinus mrigala (Hamilton-Buchanan)	Cyprinidae	LRnt	✓	✓	✓	✓	Fd	0
90	Puntius chola (Hamilton-Buchanan)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
91	Puntius conchonius (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
92	Puntius phutunio (Hamilton)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
93	Puntius sarana (Hamilton)	Cyprinidae	VU	✓	✓	✓	✓	Fd	С
94	Puntius sophore (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Or	С
95	Puntius stolickanus (Day)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	С
96	Puntius terio (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Or	С
97	Puntius ticto (Hamilton)	Cyprinidae	LRnt	✓	✓	✓	✓	Or	С
98	Esomus danricus(Hamilton-Buchanan)	Cyprinidae	LRlc	✓	✓	✓	✓	Or	0
99	Setipinna phasa (Hamilton- Buchanan)	Engraulididae	LRnt	✓	✓	✓	✓	Fd	С
100	Glossogobius giuris (Hamilton-Buchanan)	Gobiidae	LRnt	✓	✓	✓	✓	Fd	С
101	Heteropneustes fossilis (Bloch)	Heteropneustidae	VU	✓	✓	✓	✓	Fd	О
102	Rhinomugil corsula (Hamilton)	Mugilidae	VU	✓	✓	✓	✓	Fd/Or	Н
103	Macrognathus aral (Bloch and Schneider)	Mastacembelidae	LRnt	✓	✓	✓	✓	Fd/Or	С
104	Macrognathus morehensis (Arunkumar and Tombi)	Mastacembelidae	LRlc	√	✓	√	√	Fd/Or	С
105	Macrognathus pancalus (Hamilton)	Mastacembelidae	LRnt	✓	✓	✓	✓	Fd/Or	С
106	Mastacembelus armatus (Lacepede)	Mastacembelidae	LRlc	✓	✓	✓	✓	Fd/Or	С
107	Nandus nandus (Hamilton-Buchanan)	Nandidae	LRnt	✓	✓	✓	✓	Or	С
108	Notopterus notopterus(Pallas)	Notopteridae	EN	✓	✓	✓	✓	Fd	0
109	Notopterus chitala (Hamilton- Buchanan)	Notopteridae	EN	✓	✓	✓	✓	Fd	С
110	Olyra longicaudata (McClelland)	Bargridae	LRnt	✓	✓	✓	✓	Or	С
111	Pisodonophis chilkensis (Chaudhuri)	Ophichthidae	LRnt	✓	✓	✓	✓	Or	С
112	Pangasius pangasius (Hamilton-Buchanan)	Pangasiidae	CNE	✓	✓	✓	✓	Fd	С
113	Bagarius bagarius (Hamilton)	Sisoridae	VU	✓	✓	✓	✓	Fd	С
114	Gagata cenia (Hamilton)	Sisoridae	LRnt	✓	✓	✓	✓	Fd/Or	С
115	Gagata dolichonema (He)	Sisoridae	LRlc	✓	✓	✓	✓	Fd/Or	C
116	Hara hara (Hamilton)	Sisoridae	LRlc	✓	✓	✓	✓	Or	C
117	Hara Jerdoni (Day)	Sisoridae	LRlc	✓	✓	✓	✓	Or	C

118	Hara horai (Misra)	Sisoridae	NE	✓	✓	✓	✓	Or	С
119	Conta conta (Hamilton-Buchanan)	Sisoridae	NE	✓	✓	✓	✓	Or	С
120	Conta pectinata (Ng)	Sisoridae	LRlc	✓	✓	✓	✓	Or	С
121	Sisor barakensis (Vishwanath and Darshan)	Sisoridae	VU	✓	✓	✓	✓	Or	С
122	Sisor rhabdophorus (Hamilton)	Sisoridae	LRlc	✓	✓	✓	✓	Or	С
123	Sisor chennuah (Ng and Lahkar)	Sisoridae	DD	✓	✓	✓	✓	Or	С
124	Glyptothorax indicus (Talwar)	Sisoridae	LRlc	✓	✓	✓	✓	Or	С
125	Glyptothorax cavia (Hamilton)	Sisoridae	LRlc	✓	✓	✓	✓	Or	С
126	Glyptothorax telchitta (Hamilton)	Sisoridae	LRlc	✓	✓	✓	✓	Or	С
127	Ompok pabda (Hamilton)	Siluridae	VU	✓	✓	✓	✓	Fd	С
128	Ompok pabo (Hamilton)	Siluridae	EN	✓	✓	✓	✓	Fd	С
129	Wallago attu (Schneider)	Siluridae	VU	✓	✓	✓	✓	Fd	С
130	Neotropius atherinoides (Bloach)	Schilbeidae	LRlc	✓	✓	✓	✓	Fd	С
131	Ailia coila (Hamilton)	Schilbeidae	VU	✓	✓	✓	✓	Fd	С
132	Clupisoma garua (Hamilton)	Schilbeidae	VU	✓	✓	✓	✓	Fd	С
133	Clupisoma Montana (Hora)	Schilbeidae	VU	✓	✓	✓	✓	Fd	С
134	Eutropiichthys murius (Hamilton)	Schilbeidae	LRnt	✓	✓	✓	✓	Fd	С
135	Eutropiichthys vacha (Hamilton)	Schilbeidae	VU	✓	✓	✓	✓	Fd	С
136	Amphipnous cuchia (Hamilton-Buchanan)	Synbranchidae	VU	✓	✓	✓	✓	Fd	С
137	Microphis deocata (Hamilton-Buchanan)	Syngnathidae	LRnt	✓	✓	✓	-	Or	О
138	Tetradon cutcutia (Hamilton-Buchanan)	Tetradontidae	LRnt	✓	✓	✓	✓	Or	О

O= Omnivorous, C= Carnivorous, H=Herbivorus, Fd=Food fish, Or= Ornamental fish.

According to IUCN¹⁶ and CAMP¹⁵ DD= Data deficient, NE= Not evaluated, VU= Vulnerable, EN= Endangered, CNE= Critically endangered, LRnt=Lower risk near threatened, LRlc=lower risk least concern.

CONCLUSION

The present investigation thus helps to understand the ichthyofauna diversity in different reaches of river Kaljani. The highest demandable ornamental species like *Pseudambassis ranga, Chanda nama, Ctenops nobilis, Colisa lalia, Badis badis, Botia dario, Botia rostrata, Botia lohachata, Oreichthys casuatis, Oreichthys crenuchoides, Osteobrama cotio, Danio devario, Hara hara and Microphis deocata are present. The area is very rich in ornamental fish than food fish. Swain²³ reported that about almost 85 % of the exportable ornamental fish are contributed by the North Eastern states. About 55.07 % population of fish species are threatened in the river Kaljani. In addition, introduction of exotic fishes, as a part of aquaculture for commercial gains, has also resulted in loss of indigenous ichthyofaunal diversity ⁵. The fishing activities were intensified with the introduction of modern fishing gears and techniques which declined the fish population. Fish sanctuary needs to be established to preserve fish stocks and indigenous brood fishes. Thus, awareness programmes amongst the fishers, strict ban on illegal monsoon fishing and usage of proper mesh size nets should be involved. Besides, the protection of breeding grounds from agricultural run-offs and indiscriminate fishing of commercially important fish species should be established which would ultimately protect and conserve the precious fish species diversity of the river Kaljani.*

Acknowledgement

The authors thank the Department of Biotechnology (DBT), Government of India, for providing the infrastructural fund.

REFERENCES

- 1. Vijaykumar, K. Vijaylaxmi, C. and Parveen, Z. Ichthyofaunal diversity of Kagina River in Gulbarga district of Karnataka. *The Ecoscan.* **2** (2): 161 163 (2008)
- 2. Kottelat, M. and Whitten, T. Freshwater Biodiversity in Asia with special reference to Fish: World Bank Technical Paper No. 343. Washington, DC: The World Bank. 59 pp (1996)
- 3. Sinha, M. Fish genetic resources of the North Eastern Region of India. *Journal of Inland Fisheries Society of India*, **26**: 1-19(1994)
- 4. Goswami, U.C. Basistha, S.K. Bora, D. Shyamkumar, K. Saikia, B. and Changsan K. Fish diversity of North East India, inclusive of the Himalayan and In Burma biodiversity hotspots zones: A checklist on their taxonomic status, economic importance, geographical distribution, present status and prevailing threats. *International Journal of Biodiversity and Conservation*, **4(15)**: 592-613 (2012)
- 5. Kar, D. Nagarathna, A.V. Ramachandra, T.V. and Dey. S.C. Fish diversity and conservation aspects in an aquatic ecosystem in North Eastern India. *Zoo's Print Journal.* **21(7)**: 2308-2315 (2006)
- 6. Barat, S. Jha, P.and Lepcha, R.F. Bionomics and Cultural prospects of Katli, *Neolissocheilus hexagonolepis* (McClelland) in Darjeeling district of West Bengal. In: Coldwater fisheries Research and Development in North-East Region of India (Eds.B.Tyagi, Shyam Sunder and M.Mohan) NRCCWF, Bhimtal. Vikrant Computers Haldwani, 66-69 (2005)
- 7. Mukherjee, M. Lepcha, R. F. and Chakraborty, C. In: Fish and Fisheries of Himalayan and Terai Region of West Bengal with Ornamental Touch. Published by Daya P.H., pp-40-45 (2011)
- 8. Acharjee, M.L. and Barat, S. Ichthyofaunal Diversity of Teesta River in Darjeeling Himalaya of West Bengal, India. *Asian Journal of Experimental Biological Sciences*, **4(1)**: 112-122 (2013)
- 9. Acharjee, M.L. and Barat, S. Loaches of Darjeeling Himalaya and adjoining areas of West Bengal: their prospects as Ornamental fish and constraints. *International Journal of Pure and Applied Bioscience*, **2(3)**: 258-264 (2014)
- 10. Acharjee, M.L. and Barat, S. Seasonal Dynamics of Ichthyofaunal Diversity in a Hill stream of the Darjeeling Himalaya, West Bengal, India. *Journal of Threatened Taxa*, **6(14)**: 6635-6648 (2014)
- 11. Patra, A. M. Catfish (Teleostei: Siluriformes) diversity in Karala River of Jalpaiguri District, West Bengal, India. *Journal of Threatened Taxa* (2011)
- 12. Jayaram, K C. The Freshwater Fishes of Indian Region. New Delhi: Narendra Publishing House(1999)

- 13. Talwar, P.K. and. Jhingran, A.G. Inland Fishes of India and Adjacent Countries. New Delhi: Oxford and IBH Co., Private Limited. 1158 pp (1991)
- 14. Vishwanath, W. Mahanta, P.C. Anganthoibi, N. and Sarma, D. Coldwater Fishes of India-An Atlas. Directorate of Coldwater Fisheries Research (ICAR), Bhimtal, Uttarakhand, India (2011)
- 15. CAMP, Conservation Assessment and Management Plan Workshops, (Ed) Sanjay Molur and Sally Walker. Published by Zoo Outreach organization. National Bureau of Fish Genetics Resources. Lucknow, India (1998)
- 16. IUCN Red List of Threatened Species [http://www.iucnredlist.org/apps/redlist/search]. Version 2010.
- 17. Bhattacharya, B.K. Sugunan, V.V. and Choudhury, M. Ichthyofaunistic resources of Assam with a note on their sustainable utilization. In: Integration of Fish-Biodiversity Conservation and Development of Fisheries in North-Eastern Region through Community participation. Proc. Nat. Workshop, December, 12-13, 2001, NBFGR, Lucknow (2003)
- 18. Ponniah, A.G. and Sarkar, U.K. Evaluation of North East Indian Fishes for their Potential as Cultivable, Sport and Ornamental Fishes along with their Conservation and Endemic Status. NBFGR, Lucknow (2006)
- 19. Shaw, G.E. and Shebbeare, E.O. The Fishes of Northern Bengal. *J. Royal Asiatic. Society of Bengal. Science*, **3**: 1-128 (1937)
- 20. Jha, P. Mandal, A. and Barat, S. Mahananda Reservoir, W.B.: Its Ichthyofauna, Fishery and Socio-Economic Profile of Fish Production. *Fishing Chimes.* **24(6)**: 14-17 (2004)
- 21. Basu, A. Dutta, D. and Banerjee, S. Indigenous ornamental fishes of West Bengal. Recent Research in Science and Technology, **4(11)**: 12-21(2012)
- 22. Das, S. K. and Chakrabarty, D. The use of fish community structure as a measure of ecological degradation: a case study in two rivers of India. *Bio Syst.* **90**:188-196 (2007)
- 23. Swain, S.K. Indigenous Ornamental Fish and Their Export Potential. Originally Published as a research article in 8th Indian Fisheries Forum Souvenier Article, Nov (2008)
- 24. Mahapatra, B.K. Sarkar, U.K. and Lakra, W.S. A Review on Status, Potentials, Threats and Challenges of the Fish Biodiversity of West Bengal. *Biodiversity, Bioprospecting and Development*. http://dx.doi.org/10.4172/2376-0214.1000140 (2015)