Record & Play: A Structural Fixed Point Iteration for
Sequential Circuit Verification”

Dominik Stoffel Wolfgang Kunz
Institute of Computer Science Il
University of Potsdam
14415 Potsdam, Germany

Abstract also be formulated based on structural concepts. This results in
a "structural” FSM traversal that leads to a natural way of ex-

This paper proposes a technique for sequential logigoiting similarities between designs but does not rely on the
equivalence checking by a structural fixed point iterationequivalence of state variables.

Verification is performed by expanding the circuit into an it-
erative circuit array and by proving equivalence of each time& General Idea
frame by well-known combinational verification techniques.)) o)
These exploit structural similarity between designs by local Our approach is based on modelling the finite state machine
circuit transformations. Starting from the initial state, for each(FSM) by an iterative circuit array. Each combinational block
time frame the performed circuit transformations are storedmplements the transition functia{s, x) and output function
(‘recorded”) in an instruction queue. In subsequent time\(s x) of the FSM. The vectas denotes the present state vari-
frames the instruction queue is re-used ("played") and updateables anck denotes the primary inputs of the circuit. The next
when necessary. At some point the instruction queue does state variables are denotedEach block in the circuit array
need to be modified any more and is valid in all subsequenlescribes the behaviour of the machine for a certain time inter-
time frames. Thus, a fixed point is reached and machineal [t, t+1] and is simply referred to &isne frame .
equivalence is proved by induction. Experimental results show Most techniques for sequential equivalence checking con-
the %reat promise of this approach to verify circuits after re-sider a specific product machine [7]. This product machine is
synthesis and retiming. obtained by connecting the corresponding Inputs to a common
fanout stem and attaching an XOR gate to the outputs. If the
) machines are equivalent the product machine produces a se-
1 Introduction quence of zeros for all valid input sequences. In our approach
. . . we consider the iterative circuit array of the product machine
This paper addresses the problem of logic equivalencg,own in Figure 1. The XOR tree for the outputs is like in a
checking for s%/nchronous sequential circuits. Only Completel¥ombinationamiter[1] and is omitted in Figure 1
specified machines are considered. Equivalence of two finite "y order to anchor the combinational comparison on a com-
state machines with known initial state can be established Byon pasis for both circuits without making any assumptions on
proving the equivalence of the initial state: AendB denote e equivalence of state variables as in [8, 9], we start our pro-

two completely specified finite state machines with initial state initi i ir-
S, ANy, respectively. The finite state machifesndB are %ﬁﬁlgre at the initial state that we assume is known for both cir

called equivalent if and only if for every possible input sequence™ " X X»
the same output sequence is produced if both machines are in ;_| [f
their respective initial state. In this paper we assume that either
the initial state (or a set of initial states) is known for each ma-
chine, or an initializing sequence is given to bring the circuit ' =
into a well-defined state after power-up. We do not consider the ' ‘ B,

problem ofsafe replaceabilitys raised by [14]. .\
"merge frontier"
| I

Conventionally the ﬁroblem of logic equivalence checking

for sequential circuits has been approached by a fixed point j

iteration based on BDD-based image computations [5]. This is .

referred to as "symbolic' FSM traversal and has been de- !

velopped further, e.g., in [3, 4, 6, 15, 16]. In particular, van Eijk o

[6] describes a BDD-based method exploiting functional de- L H ‘
-/

pendencies between state variables which is related to the fon FaflSan £
method presented here.

Since BDD-based FSM traversal often suffers from state
explosion for large designs, Huang et al. [8, 9] explored struc-
tural techniques based on seguential ATPG. Their approach to
equivalence checking is based on the assumption that practical
designs under comparison often contain a lot of equivalent st
variables. The procedure in [8, 9] starts with a set of candida
Bairs for equivalent state variables and performs an inductiott-

ased filtering process to eliminate the wrong candidates. It
assumed that simple relationships exist between state variab.
that can be obtained by simulation. This is promising for cir
cuits with very similar encodings but may fail in other casesI
Therefore, we take a different approach. Our work is based
the observation that a fixed point iteration for FSM traversal ca

Ao

A, A,

Figure 1: Time frame merging by sharing of logic

Consider Figure 1. The verification procedure is based on

rforming logic transformations identified by implications as

scribed in [10, 11]. As we preedtime frame by time frame,

e combinational logic of one machine is "merged" with the
binational Io(?ic of the other machine. We speak of the

erge frontier" denoting a set of gates that identifies a border

ine between the circuitry that is shared between the two ma-
ines and the separate circuitry for each machine. This is
hematically shown in Figure 1.

Note that the iterative circuit array is a concatenation of
identical combinational blocks. Therefore, many transforma-
"Part of this research was performed while both authors were on sabbaticati@ins that allow us to merge the logic of some time frame of

the Mentor Graphics Boston Research Laboratories

0-89791-993-9/97 $10.00 00 1997 |IEEE

machineA with the logic of some time frame of machiBee- in this and subsequent time frames. This optimization is per-
main valid also in the next time frame. The only reason whjormed in a controlled way by an instruction queue in order to
some transformation at timemight no longer be valid at time detect a fixed point. For each time frame we store a set of in-
t+1 is that certaircontrollability don't care conditionf7] have structionsQ, that keeps exact records of all transformations
been used at timethat are not valid at timer1. However, performed in that time frame. Routimecord&play() has the
similarly as the image computations of the conventional verifitask to select one of the previous instruction queues and to de-
cation approach [5] identify all reachable states after a finiteermine for the selected queue whether or not the recorded cir-
number of iterations, all different don't care sets at the nodes @uit transformations are still valid in the current time frame. If
the circuit array have been examined after a finite number dfis is not the case another instruction queue is tried. Trying a
time frames. large number of instruction queues can be time consuming,
Therefore, it is our goal to identiz a set of circuit transfor-therefore the user-defined paramgiemaxis used to restrict
mations between the nodes of mac d machin® that is the search to the lagt maxinstruction queues. If no instruction
valid in all time frames. The basic instrument to find such a sefueue is found that can be playecccassfully, new circuit
is aninstruction queue @hat contains a set of instructions for transformations are identified and stored in the instruction
circuit transformations at some tirheThe instruction queue is queue. In our example, no previous instruction queue exists.
processed in &rst-in-first-out manner. Circuit transformations The circuit is optimized as shown in the right part of Figure 4
at timet are stored irQ, in the order in which they have been and the performed transformations are storeQoirFor reasons
performed. This is operation is calleg¢ord'. In the next time of simplicity, in our example, node substitutions are considered
frame att+1, we try to make maximum use of the instructionsas the only possible type of circuit transformations.
recorded previously and for each recorded circuit transformation
we check whether or not it is still valid at tirel. Only if it is
invalid it is removed from the instruction queue, otherwise the
transformation is performed also &tl. This process of re-
using the stored instructions is referred to glay". If the cir-
cuit transformations in the instruction queue are not sufficient to
establish the equivalence of the output signals at ttthexddi-

START
t:=0;
t_induction := OO ;
p_max := user defined;
stub_levels := user defined;

tional transformations are identified and recorded. e hew time frame:
_ Byrecordingandplayingthe instruction queue is improved Si= 2,y
in each time frame. Finally, an instruction queue is created that for contant s vaniabies in 5

| forward imply constant values;
eliminate constant nodes and deter-

| worked := record&play(); |

mark all gates belonging to
time frames before t;

t_induction := t + period;

Ad

primary outputs
attime tare equivalent 2

remains valid also in the next time frame and which complet

the task of proving the equivalence for the circuit outputs. No minG Gonstant state varables in zs

it remains to be shown that this instruction queue is also valid -

in all future time frames. To permit this in uctioncattin% v
rocedure is applied to the circuit array. The cut must be se-

ected such that the don't care conditions needed for the valid éy

of the circuit transformations are still present in the select

part of the circuit array. Most don't care conditions that allow u

to merge logic between the two machines by local transforma-

tions are induced by the previous merging steps. Therefore, it|is

usually sufficient to keep only a few levels of logic in front of

the merge frontier and to cut off all circuitry starting from th

beginning of the circuit array up to a few levels before th

merge frontier. If an instruction queue can be played a sufficient

number of times, it is guaranteed that the combinational strug-

ture in the circuit array repeats periodically. Then we say that

our procedure has reached a "structural fixed point". This is|a

simplified summary of the proposed method. It is described in

more detail in the following section.

sequential backward
justification to generate
distinguishing sequence

3 The record & play procedure

Figure 2 shows the proposed algorithm for FSM equivat
lence CheCking. Routiﬂecord&play() is giVen in Table 1. The retime registers of last time frame
different steps of the algorithm are illustrated by means of g e e oty e
example depicted in Figure 3 to Figure 9. :

The variablestub_levelsandp_maxmust be defined by the
user as will be discussed later. At the beginning of each itera- _
tion a new time frame is attached to the current circuit array.
Initially, the circuit array is empty. Whenever a new time frame
is attached we assign constant values of the state variables| to
the corresponding nodes in the circuit array and simplify th ﬁt_induction=t_|nducnon+penud|
logic accordingly. Initialle:, the constant values are given by th
initial state. Note that these constant values may propagate [to cut off alllogic n the transitive fanin
E)hehnext %tate variables. Consider ;hle exampf)lg]in FiI ure 3. For M o stub_levels or more;

oth machines we are given an initial state of O for all registers. ; ; ; ; ; ;
This leads to the situat?on shown in the left part of Figur% 4. A Floure 2: sequential equivalence checking algorithm
constant value of O has propagated to the next state vector and it

is j; = 0. This value will be propagated further when the nex ; : e L
time frame is attached. fent time frame are equivalent. If this is not the case, the circuits

After the time frame has been attached the algorithm OptEre not equivalent and a backward justification process like in
mizes the logic to facilitate equivalence checking at the outputs

>

WD

Next, it is checked whether the primary outputs in the cur-

conventional sequential ATPG tools is invoked to calculate ahe corresponding fanout stems represent the nodes of the

distinguishing sequence.

with present state variables s and next state variabteslzas t,
t_induction, period and p_max of Figure 2 as global variables */

record&play()
{

if (t_induction < o) /* trying induction */
PLAY = {Ql—period};
else /* check old queues to find fixed point */
PLAY :={Q;|i O{t1,t-2, .., t-p_max} and s; = s};

worked := NO;
for (each Q; O PLAY)
{ worked := YES;
Qi :=0;
for (each instruction a; 0 Q;)
{ verify whether or not circuit transformation a; is valid
in current time frame;
if (valid)
{ execute q; (perform circuit transformation);
Q= Q. O {a}; /* put in queue */

else worked := NO;

}

if (worked = YES)

{ period:=t-i;
break;

}

else reverse all transformations made for Q;;

}
if (worked = NO)
{ Q=0
for (each node in circuit array)
{ identify implication based circuit transformation, a;
if (a reduces literal count of circuit array)
{ perform transformation q;
Q. := QO {a}; /* putin queue */

}

return (worked);

}

/* routine operates on a global data structure for the current miter a|

Table 1: Routinerecord&play()

) \
d

Frak
i

merge frontier. The detailed description of this procedure must
be omitted here for reasons of brevity. The cut through the cir-

ray CUit array is located in the transitive fanin of the merge frontier.

In principle,false negativesan occur as a result of this cutting
process. However, in practice we can always avoid false nega-
tives by leaving a sufficient number of logic levels in front o
the merge frontier. This number of logic levels is called
stub_levelsn Figure 2 and is a user-defined parameter. Typical
values are between 0 and 5.

Consider again the right portion of Figure 4. We only con-
sider the registers that are not assigned a constant value and are
still physically present in the circuit array. These are the regis-
ters atk; andi;. Note thatk; stems from machine A andfrom
machine B. They are located in fanout branches of the same
fanout stem, hena® belongs to the merge frontier, which here
does not have any other nodes. In the example, we assume
stub_levels= 0. Hence the circuit array can be cut at siggal
and a new time frame is attached. The result is shown in the left

ortion of Figure 5. The newly introduced variable at the cut
ine is calleds.

agbo

agbo
Qo= {(substitute g, by e}

I— =0

Figure 4: Circuit array in first iteration

ab;

ab, C
Cy @ &
— & 10

Ja= X
) >
Yo

ir=x

>

Q1 = {(substitute d, by c;)}

Figure 5: Circuit array in second iteration before (left) and
after (right) merging

by agh,

Figure 3: Circuit examples with initial states = S5=0

The algorithm now determines whether previously proc-

essed portions of the circuit array can be cut off. Note that our
algorithm only performs local transformations in the circuit
array. For this reason it does usually not affect the quality of the
performed circuit transformations if we cut off previously proc-
essed circuitry in a sufficiently large distance from the currently
active area. A heuristic procedure basedretiming [12] de-
termines the "merge frontier". This is accomplished by moving
the registers at the end of the last time frame backwards until
they are located in fanout branches such that different branches
of the same fanout stem feed registers of different machines.

4‘>%D—|‘[Fkgzx
ja=x

D D>
Yea Ya.2
L d,

g2
91 i3=x

Figure 6: Circuit array in third iteration before merging

[

a;b;

a,b,

C1

%W

N
1

S

)
Y81

Q, = {(substitute g, by f)), (substitute d, by c,)}

i=x

I3
D>
Yo.2

>
Lgp

i3= X

Figure 7: Circuit array in third iteration after merging

a,b,

azhz

L

aghs

C3

o) -

C2
> e]
o1 f3

L ds

92
L~

.

4'>%D—|‘[F e
ja=x
yA‘Bij

Ye,3

Figure 8: Circuit array in fourth iteration before merging

a3bs

After a new time frame has been appended it is alw
checked whether a previous instruction queue can be played.

C2
1 ez
iDT fs

Ml

k=X

>
Y82

Q,worked

I=x

D>
Y3

iz=x
93
>

Figure 9: Circuit array in fourth iteration after merging

given by the definition of s&?LAYin routinerecord&play() an

instruction queue can only be played if it was recorded with the™ | ot
same constant values at the state variables as are given in g et

be v?lid in the current time frame so that the circuit of Figure 9
results.

If an instruction queue has been played successfully the al-
gorithm enters the induction mode. This is done by setting vari-
ablet_inductionto t + period where period is the number of
cycles since the successful instruction queue has been recorded.
In most practical cases, this is the most recently recorded in-
struction queue so thaeriod = 1. Furthermore, to ensure the
correctness of the induction all gates belonging to time frames
prior to the current time frame are marked. The algorithm con-
tinues the iteration and in each new time frame the instruction
queue recorded at tinte periodis played. This is done until all
queues of a period have been played. Remember that we have
marked all gates of previous time frames when we started the
induction mode. We continue to play the instruction queues
until all marked gates have disappeared as a result of the cut-
ting procedure. At this point, it is guaranteed that the combina-
tional structures generated in the circuit array will repeat peri-
odically and hence, structural fixed pointof the iteration is
reached.

Note that our method is not restricted to a unique initial
state. If a set of initial states is used additional circuitry must be
attached in front of the first time frame that encodes the given
set of initial states. This is similar to the notion of ieb cir-
cuit to be described in the next section. If an initializing se-
quence is given the above iteration has to be slightly modified.
Instead of assigning an initial state at the state variables, the
values of the initializing sequence are assigned to the primary
inputs for each iteration. During the application of the initializ-
inf? sequence the equivalence check at the outputs is switched
off unless the designer wants to check the equivalence of the
machines also during the initializing process [14].

4 Discussion of Theoretical Issues

For a better understanding of ttrezord&play procedure we
now consider a more general formulation of a structural fixed
point iteration. We consider a FSM = (I, S, 6, S, O, A) where
| is the input alphabegis the set of stateg,: Sx | - Sis the
next-state functiong is the initial stateQ is the output alpha-
bet andA : Sx | - O is the output function. For simplicity we
restrict our discussion to a single initial state, however, a set of
initial states can be treated in a similar way. To examine the
nature of the proposed fixed point iteration we can ignore the
output behavior of the machine, i.e., we only consider the corre-
spondindfinite state transition structureSTH = (I, S §, §).

We consider the iterative circuit array of the FST expanded
from time O to time. At time O the circuit array is initialized,
i.e., the initial state is assigned to the state variables. The upper

aYSart of Figure 10 shows the time frame for tim&he transition

ction &s, ¥ is implemented by combinational circuitry de-
notedA. i
t) denote the set of states reachable at state vargbles

t+1) denote the set of states reachable at the next state

current time frame. In our example, no instruction queue can %riablesa. Figure 10 shows a decomposition ®fnto func-
played. New transformations are recorde@iras shown in the ions 3, and .. The combinational circuitA' with output

right portion of Figure 5. As a result of the optimization it isvectorg of lengthk implements functior3,(s, X). The circuit

not result in any removal of logic.

A new time frame is attacged as %hc()jwn ri1n Figur? 6 and ghe g
new instruction queue must be recorded. The transformatio it must hold th J =
lead to the circuit array shown in Figure 7. We determine a ner\ﬂ,iv%n_l%irgust old thati(%S X)) = s X).

merge frontier suggesting a cut at sighalThe next iteration

leads to the circuit array of Figure 8. Just like in the previou
time frame no constant values exist at the state variables an

is determined irrecord&play() that the instruction queu®,

can be played. Actually, all recorded transformations turn out tQtiing o

trivial to determine the equivalence of the primary outputsiapelled STUB implements functiongi(c,) and is calledstub
Next, a merge frontier is determined as shown in the right pogi,cuit. The stub P B

tion of Figure 5. Assumingtub_levels= 0 we can cut the cir-
cuit array at the stems of these fanout systems. Here, this d

unctiong; is defined to be a function that
maps the set of all combinations of value assignments at the

Qffiablesc, to exactly those combinations of value assignments

at z that corrg(spond to the reachable st&fesl), i.e., we de-
a : {0, 1}* - St+1). Furthermore, for a valid decomposi-

decomposition has an important property: if we cut
through the circuit array at the variablgsand only maintain
e circuit array starting fro8TUB , the set of reachable states
f'the variableg, or at any state variables of later times does
not chan#e. By the above decomposition in combination with
all logic in front of the stub circuit we loose func-
tional information telling us under what conditions at the inputs

in previous time frames we can reach certain states attime off. As explained, this does not affect the set of reachable states
However, by definition of this decomgosition we do not looseat the state variables of all future time frames. Note an impor-
the information what states are reachable at tideor later. tant difference to the conventional FSM traversal. In each itera-
Therefore, this decomposition and cut can be considered #isn we only take into account the number of states reachable
structural analogy to thexistential abstractioroperation used exactly at timet but not the set of all states reachable at any
in the image computations for the conventional BDD-basetime O, 1, .t. This must be considered when detecting the fixed
fixed point iteration. point. The fixed point is reached when there is a sequ&tice

St + 1), ...9t + p) of sets of states reachable at tinet+ 1, ...

t + p that repeats with a period of lengihThis is detected by
X 4 determining that the decomposition steps to produce the stub
A ——2Z, circuit are the same as the steps performécthe frames ear-
i lier. In our practical implementation an instruction queue is
- implements & used for this purpose. Since we are dealing witmite state
machine the sets of states reachable at a given time must repeat
@dewmpose with a finite period and it follows that the fixed point iteration
77777777777777777777 of Figure 11 reaches a fixed point for any completely specified,
wiine deterministic FST after a finite number of steps.
e |
- < 3
‘ A STUB ([*—%4
n 51_:_/' X X ! STUBo: set of constant signals
implements &y implements g ! corresponding to initial state
) implements & ' i
Figure 10: Existential abstraction - in a structural way > aitath fine frame to STUB,,
The question arises how this decomposition can be com- l
puted. One possibility is to choode= 4. In this case the stub decompose circuit array such
function g; has to be determined such that all combinations of that STUB, is created

values that can occur in the circuit arraycatre mapped to
identical values ag, and the combinations of value assign-
ments that can not occur@tare mapped to valueszthat can
occur in the circuit array. A synthesis procedure for the a stub
circuit can be formulated based on the AND/OR reasoning
graphs of [10, 17]. Assume that the unreachable states at a time
t are represented by a list of cubes. As an example for such a
cube, assume that; (= 1,2, = 1,23 = 0,z = X) denotes some
unreachable states for the next state variables atttirkso
assume that the cube list is prime. Therefore, if value assign-
mentsz; = 1 andz, = 1 are made it can l@plied thatz; must

is there a p, p>0, such
that for eachi=0, 1, ... p-1 the
decomposition steps producing
STUB:i are the same as
for STUBp-i ?

yes

be 1 to obtain a reachable state. Hence, in the given circuit ar- cut off circuitry in front ‘ [reaghedfixedpoim,
ray, z;z, must be an implicant faz. Implicants that consist of OfSTUB. . L
literals belonging to arbitrary nodes in a Boolean network can Figure 11: Structural fixed point iteration

be calculated using the method described in [10, 17]. Therefore,

the stub circuit can be constructed as follows. For each next Fortunatelyp is very small for most practical circuits. This
state variable at timecalculate all prime implicants that exist is confirmed by our experimental results as well as a theoretical
in terms of the other next state variables at tirmard add them analysis. This analysis must be omitted for reasons of brevity
to the cover of the current next state variable. This introducdsut can be summarized as follows: suppose we are given a ma-
redundancy in the circuit but does not change its function. lohineM that is strongly connected [7]. We conside cles

fact, the combinational circuit implementing the added impliin the state transition graph M LetP = {py, p», ..pg} be a set
cants represents a stub circuit according to the above defirf integer numbers such that each number corresponds to the
tions. We can now cut off all other logic without affecting thelength of a cycle in the state transition graptiVofThen, the
number of reachable stategat periodp in our procedure is given by tigeeatest common divi-

In practice, approximate solutions must be considered. Irsor for all numbers inP. This explains why a period of 1 is
stead of onl?/ calculating implicants for the state variables wsufficient for most practical cases. If the machine is not strongly
perform implication-based transformationsadit nodes in the connected the same result applies for strengly connected
network. Our heuristic to "merge" as much logic as possibleomponen{SCC) of the machine.
between the different E:Jarts of the product machine is the at- Since therecord&play procedure of the previous section
tempt to compress all information about the reachability obnly calculates an approximate solution to the above decompo-
states (and internal don't cares) into a relatively small area sition problem the resulting stub circuit represents a superset of
the circuit array near the next state variable of the last tirTfS(t?, i.e., we may consider more states than are actually reach-
frame. If we did not put any restrictions on the recursion depthble. As discussed earlier, this can lead to false negatives.
and computed all implicants at the next state variables wedowever, since a complete symbolic state traversal is impossi-
would always succeed in finding a decomipos with the ble for most large desgns usually the same information about
above properties. unreachable states and local don't cares that has been used by

Based on this combinational decomposition we can formuhe synthesis tool can also be compressed into the stub circuit
late the fixed point iteration shown in Figure 11. In each iteradsing local transformations.
tion the above described decomposition is performed to create On the other hand, the fact that we may consider more states
the stub circuit. Then all logic in front of the stub circuit is cutthan are actually reachable can have a very beneficial effect.

With an approximate decomposition we may reach a fixed poirgnd retimed. Therefore we compare our techniques only with
much faster than with the exact solution. the conventional verification approach by symbolic FSM tra-
Note that the methods [8, 9] can be useful as a presersal. The results forerify_fsmin SIS are shown in the left
processing phase to our approach. If equivalent state variableslumn of Table 2. The results show the feasibility and great
can be determined then the corresponding substitutions can patential of this approach to verify circuits after synthesis and
added to the instruction (weue fovery time frame so that a retiming. With our technique the verification could be com-

c

fixed point is reached much faster. pleted within acceptable CPlime for several cases where the
) conventional approach fails. In all cases the fixed point was
5 Experimental Results reached wittp_max= 1.

A prototype of the described approach has been incorp ;
rated into tﬁe HANNIBAL [10] tpac age. We evaluated the%onclusmn
techniques by verifying circuits of the ISCAS89 benchmark set
against the optimized and retimed circuits. The circuits werg
optimized by kerneling (usindx in SIS). After optimization
retiming is performed (usingetimein SIS). The resulting cir-
cuits were verified against the original ones. For the origin
circuits we assumed an initial state of O for all registers.

Based on a combinational decomposition procedure we
ave introduced a method for structural FSM traversal. Our
approach is ﬁromising in applications where the designs under
omparison have been modified by a sequence of local trans-

rmations. This is the case after most industrial synthesis pro-
cedures and retiming. Future work will examine whether the
proposed fixed point iteration is useful to verify typical engi-

Circuit record&play verify_fsm neering changes at the RTL level, like modifying the pipelining
(HANNIBAL) (SI1S) of the circuit.
Name #regis- || #iterations CPU-time CPU-time
ters til fixed point _(h:min:sec) (h:min:sec) References

5208 8 15 0:00: 08 0:00:03 [1] Brand D.: “Verification of Large Synthesized DesignBtpc. Int. Conf.
5298 14 10 0: 00: 09 0: 00: 03 on Computer-Aided Circuit DesiiCCAD), Santa Clara, pfa34-537,
5344 15 9 0:00: 11 0: 00 06 2 Nov. 1993. based alooritms oan r

00" 00" 2] Bryant R.: “Graph-based algorithms for Boolean function manipulation

$349 15 9 Oj 00: 11 Oj OO: 06 IEEE Transactions on Computerl. 35, pp. 677-691, August 1986.

s382 21 16 0:00: 17 0: 00: 38 ;] T -~)
—— — [3] Cabodi G., Camurati P., Quer S.: "Improved Reachability Analysis of
$386 6 9 0: 00: 48 0:00: 01 Large Finite State MachinesProc. Int. Conf. on Computer-Aided De-

5420 16 27 0: 00: 43 0:27:19 sign (ICCAD), pp. 354-360, 1996.
s444 21 16 0:00: 18 0: 00: 28 [4] Cho H. et al.: "A Structural Approach for State Space Decomposition for
s510 6 12 0:00: 35 0: 00: 02 Approximate Reachability AnalysisProc. |IEEE Int. Conf. on Com-

— — puter Designpp. 236-239, 1994.
s526 21 21 0: 00: 35 0:00: 12 g
> oL 32 bl [5] Coudert O., Berthet C., and Madre J.Ch.: "Verification of Synchronous

635 3 37 0:01:3 unaple Sequential Machines Based on Symbolic Executioni’eirture Notes in
s641 19 9 0:00: 12 0: 00: 08 Computer Scien¢evol. 407, (Automatic Verification Mabds for Finite
5713 19 9 0: 00: 12 0: 00: 09 State Systems, International Workshop, Grenoble, France), Springer-
$820 5 17 0:36:50 | __0:00:04 Verlag, June 1989.

830 5 16 0. 26: 37 000 04 [6] van Eijk C.AJ., and Jess J.A.G.: "Exploiting Functional Dependencies in
S Sk s Finite State Machine Verification"Proc. European Design & Test
s838 32 51 0:08: 13 unable Conf, pp. 9-14, 1996.
s953 29 11 0:01:09 0:00:12 [7] Hachtel G., and Somenzi F.ogic Synthesis and Mécation Algo-
51196 18 6 0: 00: 40 0: 00: 08 rithms, Kluwer Academic Publishers, Boston 1996.

1238 18 6 0: 00: 46 0: 00: 08 [8] Huang S.Y., Cheng K.T., Chen K.C., and Glaser U.: "An ATPG-based
S o Framework for Ver?fying Sequential Equivalendefoc. Int. Test Con-
51423 74 14 0:03:31 unable ference 1996,

51512 57 16 0: 04: 09 >30h [9] Huang S.Y., Cheng K.T., Chen K.C., and Glaser U.: "On Verifying the

s3271 116 19 0:21:17 unable Correctness of Retimed Circuit®roc. Great Lakes Symposium on

$3330 132 9 0:11:33 unable VLS], 1996.

s3384 183 17 0:31: 24 unable [10]Kunz W., and Stoffel D.: "Reasoning in Boolean Networks - Logic Syn-

ap- thesis and Verification Using Testing Techniqu&dtiwer Academic

54863 104 8 0: 36: 52 unable Publishers Boston 1997.

5378 179 36 0: 55 23 unable [11]Kunz W., Stoffel D., and Menon P.: “Multi-Level Logic Optimization

$6669 239 11 0:47:15 unable and Equivalence Checking by Implication Analysi€EE Transaction
. R . . on Computer-Aided DesigrvVol.16, no.3, pp. 266-281, March 1997.

Table 2: Ver|f|cat|0n Of Optlmlzed and ret|med circuits [12] Leiserson C.E., and Saxe J.B.: "Re[iming Synchronous CircuAfgb-

m))) rithmica, vol. 6., pp. 5-35, 1991.

A difficulty in our experimental evaluation comes from the[13]McMillan K.L.: "Symbolic Model Checking”Kluwer Academic Pub-
fact that for larger circuits SIS cannot compute the initial state lishers 1993.
after retiming, because it uses symbolic FSM traversal for thig4]Pixiey C., Singhal V., Aziz A., and Brayton R.K.: "Multi-level Synthesis
task. Therefore, we developped a simple retiming algorithm that for Replaceability", Proc. Int. Conf. on Computer-Aided Design
moves all registers as far as possible into forward direction. The (CCAD), pp. 442-449, 1994, _ _
new initial state can simply be calculated by forward implicall51QuerS. et al; lincremental Re-encoding for Symhbolic Traversal of Prod-
tion of the old initial state. We applied our own retiming, Ut Machines’Proc. European Design Automation COHf996.
metrfsod to those circuitg v%her(ie1 SIS dig notme\llle any reg(ijster[é.e] Ravi K., and ngr’:]‘gﬂtzér_FA'idg'o'lggeg%rggyABfa;ga{’gﬂléga%ﬁbc'
In this way, we ensured that the encoding for all optimized cir .~ ' A ; _
cuts differs drasticaly from the encoding of the unopiimized: RO D and Kunz w; "ANDIOR Reasoning Graphe f Determining
original circuits and no simple relationships exist between state and South Patic Design Automation Conferen¢aSP-DAC), pp. 529
variables. - 538, Japan, 1997.

Table 2 shows our experimental results for a SUN Ultra |
workstation. In [8, 9] a different notion of equivalence is used
and no results are shown for circuits that are both optimized

