
Record & Play: A Structural Fixed Point Iteration for
Sequential Circuit Verification *

Dominik Stoffel Wolfgang Kunz
Institute of Computer Science III

University of Potsdam
14415 Potsdam, Germany

Abstract

This paper proposes a technique for sequential logic
equivalence checking by a structural fixed point iteration.
Verification is performed by expanding the circuit into an it-
erative circuit array and by proving equivalence of each time
frame by well-known combinational verification techniques.
These exploit structural similarity between designs by local
circuit transformations. Starting from the initial state, for each
time frame the performed circuit transformations are stored
("recorded") in an instruction queue. In subsequent time
frames the instruction queue is re-used ("played") and updated
when necessary. At some point the instruction queue does not
need to be modified any more and is valid in all subsequent
time frames. Thus, a fixed point is reached and machine
equivalence is proved by induction. Experimental results show
the great promise of this approach to verify circuits after re-
synthesis and retiming.

1 Introduction

This paper addresses the problem of logic equivalence
checking for synchronous sequential circuits. Only completely
specified machines are considered. Equivalence of two finite
state machines with known initial state can be established by
proving the equivalence of the initial state: let A and B denote
two completely specified finite state machines with initial states
S0,A and S0,B, respectively. The finite state machines A and B are
called equivalent if and only if for every possible input sequence
the same output sequence is produced if both machines are in
their respective initial state. In this paper we assume that either
the initial state (or a set of initial states) is known for each ma-
chine, or an initializing sequence is given to bring the circuit
into a well-defined state after power-up. We do not consider the
problem of safe replaceability as raised by [14].

Conventionally the problem of logic equivalence checking
for sequential circuits has been approached by a fixed point
iteration based on BDD-based image computations [5]. This is
referred to as "symbolic" FSM traversal and has been de-
velopped further, e.g., in [3, 4, 6, 15, 16]. In particular, van Eijk
[6] describes a BDD-based method exploiting functional de-
pendencies between state variables which is related to the
method presented here.

Since BDD-based FSM traversal often suffers from state
explosion for large designs, Huang et al. [8, 9] explored struc-
tural techniques based on sequential ATPG. Their approach to
equivalence checking is based on the assumption that practical
designs under comparison often contain a lot of equivalent state
variables. The procedure in [8, 9] starts with a set of candidate
pairs for equivalent state variables and performs an induction-
based filtering process to eliminate the wrong candidates. It is
assumed that simple relationships exist between state variables
that can be obtained by simulation. This is promising for cir-
cuits with very similar encodings but may fail in other cases.
Therefore, we take a different approach. Our work is based on
the observation that a fixed point iteration for FSM traversal can

 *Part of this research was performed while both authors were on sabbatical at

the Mentor Graphics Boston Research Laboratories

also be formulated based on structural concepts. This results in
a "structural" FSM traversal that leads to a natural way of ex-
ploiting similarities between designs but does not rely on the
equivalence of state variables.

2 General Idea

Our approach is based on modelling the finite state machine
(FSM) by an iterative circuit array. Each combinational block
implements the transition function δ(s, x) and output function
λ(s, x) of the FSM. The vector s denotes the present state vari-
ables and x denotes the primary inputs of the circuit. The next
state variables are denoted z. Each block in the circuit array
describes the behaviour of the machine for a certain time inter-
val [t, t+1] and is simply referred to as time frame.

Most techniques for sequential equivalence checking con-
sider a specific product machine [7]. This product machine is
obtained by connecting the corresponding inputs to a common
fanout stem and attaching an XOR gate to the outputs. If the
machines are equivalent the product machine produces a se-
quence of zeros for all valid input sequences. In our approach
we consider the iterative circuit array of the product machine
shown in Figure 1. The XOR tree for the outputs is like in a
combinational miter [1] and is omitted in Figure 1.

In order to anchor the combinational comparison on a com-
mon basis for both circuits without making any assumptions on
the equivalence of state variables as in [8, 9], we start our pro-
cedure at the initial state that we assume is known for both cir-
cuits.

x 0 x 1 x 2

x 1 x 2

B 0 B 1 B 2

A 0 A 1
A 2

"m e rg e fron tier"

z s z s z0,A 1,A 1 ,A 2,A 2,A

z 1,B z 2,Bs 2,B
s 1,B

Figure 1: Time frame merging by sharing of logic

Consider Figure 1. The verification procedure is based on
performing logic transformations identified by implications as
described in [10, 11]. As we proceed time frame by time frame,
the combinational logic of one machine is "merged" with the
combinational logic of the other machine. We speak of the
"merge frontier" denoting a set of gates that identifies a border
line between the circuitry that is shared between the two ma-
chines and the separate circuitry for each machine. This is
schematically shown in Figure 1.

Note that the iterative circuit array is a concatenation of
identical combinational blocks. Therefore, many transforma-
tions that allow us to merge the logic of some time frame of

0-89791-993-9/97 $10.00 1997 IEEE

machine A with the logic of some time frame of machine B re-
main valid also in the next time frame. The only reason why
some transformation at time t might no longer be valid at time
t+1 is that certain controllability don't care conditions [7] have
been used at time t that are not valid at time t+1. However,
similarly as the image computations of the conventional verifi-
cation approach [5] identify all reachable states after a finite
number of iterations, all different don't care sets at the nodes in
the circuit array have been examined after a finite number of
time frames.

Therefore, it is our goal to identify a set of circuit transfor-
mations between the nodes of machine A and machine B that is
valid in all time frames. The basic instrument to find such a set
is an instruction queue Qt that contains a set of instructions for
circuit transformations at some time t. The instruction queue is
processed in a first-in-first-out manner. Circuit transformations
at time t are stored in Qt in the order in which they have been
performed. This is operation is called "record". In the next time
frame at t+1, we try to make maximum use of the instructions
recorded previously and for each recorded circuit transformation
we check whether or not it is still valid at time t+1. Only if it is
invalid it is removed from the instruction queue, otherwise the
transformation is performed also at t+1. This process of re-
using the stored instructions is referred to as "play". If the cir-
cuit transformations in the instruction queue are not sufficient to
establish the equivalence of the output signals at time t+1 addi-
tional transformations are identified and recorded.

By recording and playing the instruction queue is improved
in each time frame. Finally, an instruction queue is created that
remains valid also in the next time frame and which completes
the task of proving the equivalence for the circuit outputs. Now
it remains to be shown that this instruction queue is also valid
in all future time frames. To permit this induction a cutting
procedure is applied to the circuit array. The cut must be se-
lected such that the don't care conditions needed for the validity
of the circuit transformations are still present in the selected
part of the circuit array. Most don't care conditions that allow us
to merge logic between the two machines by local transforma-
tions are induced by the previous merging steps. Therefore, it is
usually sufficient to keep only a few levels of logic in front of
the merge frontier and to cut off all circuitry starting from the
beginning of the circuit array up to a few levels before the
merge frontier. If an instruction queue can be played a sufficient
number of times, it is guaranteed that the combinational struc-
ture in the circuit array repeats periodically. Then we say that
our procedure has reached a "structural fixed point". This is a
simplified summary of the proposed method. It is described in
more detail in the following section.

3 The record & play procedure

Figure 2 shows the proposed algorithm for FSM equiva-
lence checking. Routine record&play() is given in Table 1. The
different steps of the algorithm are illustrated by means of an
example depicted in Figure 3 to Figure 9.

The variables stub_levels and p_max must be defined by the
user as will be discussed later. At the beginning of each itera-
tion a new time frame is attached to the current circuit array.
Initially, the circuit array is empty. Whenever a new time frame
is attached we assign constant values of the state variables to
the corresponding nodes in the circuit array and simplify the
logic accordingly. Initially, the constant values are given by the
initial state. Note that these constant values may propagate to
the next state variables. Consider the example in Figure 3. For
both machines we are given an initial state of 0 for all registers.
This leads to the situation shown in the left part of Figure 4. A
constant value of 0 has propagated to the next state vector and it
is j1 = 0. This value will be propagated further when the next
time frame is attached.

After the time frame has been attached the algorithm opti-
mizes the logic to facilitate equivalence checking at the outputs

in this and subsequent time frames. This optimization is per-
formed in a controlled way by an instruction queue in order to
detect a fixed point. For each time frame we store a set of in-
structions Qt that keeps exact records of all transformations
performed in that time frame. Routine record&play() has the
task to select one of the previous instruction queues and to de-
termine for the selected queue whether or not the recorded cir-
cuit transformations are still valid in the current time frame. If
this is not the case another instruction queue is tried. Trying a
large number of instruction queues can be time consuming,
therefore the user-defined parameter p_max is used to restrict
the search to the last p_max instruction queues. If no instruction
queue is found that can be played successfully, new circuit
transformations are identified and stored in the instruction
queue. In our example, no previous instruction queue exists.
The circuit is optimized as shown in the right part of Figure 4
and the performed transformations are stored in Q0. For reasons
of simplicity, in our example, node substitutions are considered
as the only possible type of circuit transformations.

START
t := 0;
t_induction := ;
p_max := user de fined;
s tub_ levels := user defined;

com binationa l ATPG
at p rimary ou tputs

 p rimary outputs
at tim e t a re equ ivalen t ?

no

sequen tial backward
justifica tion to genera te
d istinguish ing sequence

Aborted

retim e regis ters o f last time fram e
backwards until they are m erged;
dete rm ine m erge-fron tier M ;t

cut o ff all log ic in the trans itive fan in
of M w ith topological d istance from
M o f stub_leve ls or m ore;

t

t

 t = t_ induction ? m achines are
equivalen t

yes

no

t := t+1 ;
attach new tim e frame;
s := z ;
introduce constant nodes
fo r constan t state variables in s ;
fo rward imp ly constant va lues ;
elim ina te constan t nodes and deter-
m ine constant sta te va riab les in z ;

worked := reco rd&play();

worked?

t_induction := ;

t_induction<

m ark a ll ga tes belonging to
tim e frames be fore t;

t_ induction := t + pe riod ;

yes

nono yes

yes

abort

any gates marked ?

t_induction = t_induction + pe riod

yes

no

t t-1

t

t

Figure 2: sequential equivalence checking algorithm

Next, it is checked whether the primary outputs in the cur-
rent time frame are equivalent. If this is not the case, the circuits
are not equivalent and a backward justification process like in

conventional sequential ATPG tools is invoked to calculate a
distinguishing sequence.

/* routine operates on a global data structure for the current miter array
with present state variables s and next state variables z and has t,
t_induction, period and p_max of Figure 2 as global variables */

record&play()
{

if (t_induction < ∞) /* trying induction */
PLAY := {Qt-period};

else /* check old queues to find fixed point */
PLAY := { Qi | i ∈ {t-1, t-2, ..., t-p_max} and si = st};

worked := NO;
for (each Qi ∈ PLAY)
{ worked := YES;

Qt := ∅;
for (each instruction αj ∈ Qi)
{ verify whether or not circuit transformation αj is valid

in current time frame;
if (valid)
{ execute αj (perform circuit transformation);

Qt := Qt ∪ {αj}; /* put in queue */
}
else worked := NO;

}
if (worked = YES)
{ period := t - i;

break ;
}
else reverse all transformations made for Qi;

}
if (worked = NO)
{ Qt := ∅;

for (each node in circuit array)
{ identify implication based circuit transformation, α;

if (α reduces literal count of circuit array)
{ perform transformation α;

Qt := Qt ∪ {α}; /* put in queue */
}

}
}
return (worked);

}

Table 1: Routine record&play()

a

b

y
FF1

FF2

j

k

f

A

c
e

a

b

y

FF
i

B

g

d

Figure 3: Circuit examples with initial states S0,A = S0,B = 0

The algorithm now determines whether previously proc-
essed portions of the circuit array can be cut off. Note that our
algorithm only performs local transformations in the circuit
array. For this reason it does usually not affect the quality of the
performed circuit transformations if we cut off previously proc-
essed circuitry in a sufficiently large distance from the currently
active area. A heuristic procedure based on retiming [12] de-
termines the "merge frontier". This is accomplished by moving
the registers at the end of the last time frame backwards until
they are located in fanout branches such that different branches
of the same fanout stem feed registers of different machines.

The corresponding fanout stems represent the nodes of the
merge frontier. The detailed description of this procedure must
be omitted here for reasons of brevity. The cut through the cir-
cuit array is located in the transitive fanin of the merge frontier.
In principle, false negatives can occur as a result of this cutting
process. However, in practice we can always avoid false nega-
tives by leaving a sufficient number of logic levels in front of
the merge frontier. This number of logic levels is called
stub_levels in Figure 2 and is a user-defined parameter. Typical
values are between 0 and 5.

Consider again the right portion of Figure 4. We only con-
sider the registers that are not assigned a constant value and are
still physically present in the circuit array. These are the regis-
ters at k1 and i1. Note that k1 stems from machine A and i1 from
machine B. They are located in fanout branches of the same
fanout stem, hence e0 belongs to the merge frontier, which here
does not have any other nodes. In the example, we assume
stub_levels = 0. Hence the circuit array can be cut at signal e0
and a new time frame is attached. The result is shown in the left
portion of Figure 5. The newly introduced variable at the cut
line is called s.
a b0 0

yA,0

yB,0

0

0

k = X1

i = X1

j = 01

g

e0

0

a b0 0

k = X1

i = X1

j = 01

e0

Q = {(substitute g by e)}0 t t

yA,0

yB,0

0

0

Figure 4: Circuit array in first iteration

a b

g

11

yA,1

yB,1

k = x2

j = x2

i = x2

1

e1

s

c1

d1

a b

g

11

yA,1

yB,1

k = x2

j = x2

i = x2

1

e1

s

c1

Q = {(substitute d by c)}1 t t

Figure 5: Circuit array in second iteration before (left) and
after (right) merging

a b

f

11

yA,1

yB,1

yA,2

yB,2

a b22

2 k = x3

j = x3

3

s

e 1

g 1
g 2

e 2

i = x

c1 c2

d 2

Figure 6: Circuit array in third iteration before merging

a b

f

11

2

s

e 1

a b

g

22

yA,2

yB,2

k = x3

j = x3

i = x3

2

e2

c2

yA,1

yB,1

c 1

Q = {(substitute g by f), (substitute d by c)}2 t-1 t t t

Figure 7: Circuit array in third iteration after merging

a b

f

22

yA,2

yB,2

yA,3

yB,3

a b33

3 k = x4

j = x4

4

s

e 2

g2

g 3

e 3

i = x

c2 c3

d 3

Figure 8: Circuit array in fourth iteration before merging

a b

f

22

3

s

e 2

a b

g

33

yA,3

yB,3

k = x4

j = x4

i = x4

3

e3

c3

yA,2

yB,2

c 2

Q worked2

Figure 9: Circuit array in fourth iteration after merging

After a new time frame has been appended it is always
checked whether a previous instruction queue can be played. As
given by the definition of set PLAY in routine record&play() an
instruction queue can only be played if it was recorded with the
same constant values at the state variables as are given in the
current time frame. In our example, no instruction queue can be
played. New transformations are recorded in Q1 as shown in the
right portion of Figure 5. As a result of the optimization it is
trivial to determine the equivalence of the primary outputs.
Next, a merge frontier is determined as shown in the right por-
tion of Figure 5. Assuming stub_levels = 0 we can cut the cir-
cuit array at the stems of these fanout systems. Here, this does
not result in any removal of logic.

A new time frame is attached as shown in Figure 6 and a
new instruction queue must be recorded. The transformations
lead to the circuit array shown in Figure 7. We determine a new
merge frontier suggesting a cut at signal f2. The next iteration
leads to the circuit array of Figure 8. Just like in the previous
time frame no constant values exist at the state variables and it
is determined in record&play() that the instruction queue Q2
can be played. Actually, all recorded transformations turn out to

be valid in the current time frame so that the circuit of Figure 9
results.

If an instruction queue has been played successfully the al-
gorithm enters the induction mode. This is done by setting vari-
able t_induction to t + period where period is the number of
cycles since the successful instruction queue has been recorded.
In most practical cases, this is the most recently recorded in-
struction queue so that period = 1. Furthermore, to ensure the
correctness of the induction all gates belonging to time frames
prior to the current time frame are marked. The algorithm con-
tinues the iteration and in each new time frame the instruction
queue recorded at time t - period is played. This is done until all
queues of a period have been played. Remember that we have
marked all gates of previous time frames when we started the
induction mode. We continue to play the instruction queues
until all marked gates have disappeared as a result of the cut-
ting procedure. At this point, it is guaranteed that the combina-
tional structures generated in the circuit array will repeat peri-
odically and hence, a structural fixed point of the iteration is
reached.

Note that our method is not restricted to a unique initial
state. If a set of initial states is used additional circuitry must be
attached in front of the first time frame that encodes the given
set of initial states. This is similar to the notion of the stub cir-
cuit to be described in the next section. If an initializing se-
quence is given the above iteration has to be slightly modified.
Instead of assigning an initial state at the state variables, the
values of the initializing sequence are assigned to the primary
inputs for each iteration. During the application of the initializ-
ing sequence the equivalence check at the outputs is switched
off unless the designer wants to check the equivalence of the
machines also during the initializing process [14].

4 Discussion of Theoretical Issues

For a better understanding of the record&play procedure we
now consider a more general formulation of a structural fixed
point iteration. We consider a FSM M = (I, S, δ, S0, O, λ) where
I is the input alphabet, S is the set of states, δ : S × I → S is the
next-state function, S0

 is the initial state, O is the output alpha-
bet and λ : S × I → O is the output function. For simplicity we
restrict our discussion to a single initial state, however, a set of
initial states can be treated in a similar way. To examine the
nature of the proposed fixed point iteration we can ignore the
output behavior of the machine, i.e., we only consider the corre-
sponding finite state transition structure FST H = (I, S, δ, S0).

We consider the iterative circuit array of the FST expanded
from time 0 to time t. At time 0 the circuit array is initialized,
i.e., the initial state is assigned to the state variables. The upper
part of Figure 10 shows the time frame for time t. The transition
function δ(s, x) is implemented by combinational circuitry de-
noted A.

Let S(t) denote the set of states reachable at state variables st
and let S(t+1) denote the set of states reachable at the next state
variables zt. Figure 10 shows a decomposition of δ into func-
tions δ't and σt. The combinational circuitry A' with output
vector ct of length k implements function δ't(s, x). The circuit
labelled STUBt implements function σt(ct) and is called stub
circuit. The stub function σt is defined to be a function that
maps the set of all combinations of value assignments at the
variables ct to exactly those combinations of value assignments
at zt that correspond to the reachable states S(t+1), i.e., we de-
fine σt : {0, 1}k → S(t+1). Furthermore, for a valid decomposi-
tion it must hold that σt(δt'(s, x)) = δ(s, x).

This decomposition has an important property: if we cut
through the circuit array at the variables ct and only maintain
the circuit array starting from STUBt , the set of reachable states
at the variables zt or at any state variables of later times does
not change. By the above decomposition in combination with
cutting off all logic in front of the stub circuit we loose func-
tional information telling us under what conditions at the inputs

in previous time frames we can reach certain states at time t+1.
However, by definition of this decomposition we do not loose
the information what states are reachable at time t+1 or later.
Therefore, this decomposition and cut can be considered as
structural analogy to the existential abstraction operation used
in the image computations for the conventional BDD-based
fixed point iteration.

s

x t

A
t

zt

im p le m en ts δ

s

x t

A '
t

im p le m en ts δ'

ztS TU B t

im p lem ents σt

c t

cu t lin e

im p lem ents δ

decom pose

t

Figure 10: Existential abstraction - in a structural way

The question arises how this decomposition can be com-
puted. One possibility is to choose δ' = δ. In this case the stub
function σt has to be determined such that all combinations of
values that can occur in the circuit array at ct are mapped to
identical values at zt, and the combinations of value assign-
ments that can not occur at ct are mapped to values at zt that can
occur in the circuit array. A synthesis procedure for the a stub
circuit can be formulated based on the AND/OR reasoning
graphs of [10, 17]. Assume that the unreachable states at a time
t are represented by a list of cubes. As an example for such a
cube, assume that (z1 = 1, z2 = 1, z3 = 0, z4 = X) denotes some
unreachable states for the next state variables at time t. Also
assume that the cube list is prime. Therefore, if value assign-
ments z1 = 1 and z2 = 1 are made it can be implied that z3 must
be 1 to obtain a reachable state. Hence, in the given circuit ar-
ray, z1z2 must be an implicant for z3. Implicants that consist of
literals belonging to arbitrary nodes in a Boolean network can
be calculated using the method described in [10, 17]. Therefore,
the stub circuit can be constructed as follows. For each next
state variable at time t calculate all prime implicants that exist
in terms of the other next state variables at time t and add them
to the cover of the current next state variable. This introduces
redundancy in the circuit but does not change its function. In
fact, the combinational circuit implementing the added impli-
cants represents a stub circuit according to the above defini-
tions. We can now cut off all other logic without affecting the
number of reachable states at zt.

In practice, approximate solutions must be considered. In-
stead of only calculating implicants for the state variables we
perform implication-based transformations at all nodes in the
network. Our heuristic to "merge" as much logic as possible
between the different parts of the product machine is the at-
tempt to compress all information about the reachability of
states (and internal don't cares) into a relatively small area of
the circuit array near the next state variable of the last time
frame. If we did not put any restrictions on the recursion depth
and computed all implicants at the next state variables we
would always succeed in finding a decomposition with the
above properties.

Based on this combinational decomposition we can formu-
late the fixed point iteration shown in Figure 11. In each itera-
tion the above described decomposition is performed to create
the stub circuit. Then all logic in front of the stub circuit is cut

off. As explained, this does not affect the set of reachable states
at the state variables of all future time frames. Note an impor-
tant difference to the conventional FSM traversal. In each itera-
tion we only take into account the number of states reachable
exactly at time t but not the set of all states reachable at any
time 0, 1, ...t. This must be considered when detecting the fixed
point. The fixed point is reached when there is a sequence S(t),
S(t + 1), ... S(t + p) of sets of states reachable at time t, t + 1, ...
t + p that repeats with a period of length p. This is detected by
determining that the decomposition steps to produce the stub
circuit are the same as the steps performed p time frames ear-
lier. In our practical implementation an instruction queue is
used for this purpose. Since we are dealing with a finite state
machine the sets of states reachable at a given time must repeat
with a finite period and it follows that the fixed point iteration
of Figure 11 reaches a fixed point for any completely specified,
deterministic FST after a finite number of steps.

d e co m p o se circ uit ar ra y su ch
th at ST U B is cre a ted

S T AR T
 a t t=0

S T U B : se t o f c o ns ta nt s ig n a ls
c or re sp o n d in g to in itia l s ta te

t := t + 1 ;
a tta ch tim e fram e to S T U B

cu t o ff c irc u itry in fron t
o f S T U B

0

t-1

t

 is th e re a p, p >0 , su c h
th at fo r e ac h i = 0 , 1 , ... p-1 th e
d e co m p o s ition s te p s p rod u cin g
 ST U B a re th e sa m e a s
 fo r ST U B ?

t-i

t-p-i

n o

re a ch e d fixe d p o in t,
t = t

yes

t fix

Figure 11: Structural fixed point iteration

Fortunately, p is very small for most practical circuits. This
is confirmed by our experimental results as well as a theoretical
analysis. This analysis must be omitted for reasons of brevity
but can be summarized as follows: suppose we are given a ma-
chine M that is strongly connected [7]. We consider all q cycles
in the state transition graph of M. Let P = {p1, p2, ...pq} be a set
of integer numbers such that each number corresponds to the
length of a cycle in the state transition graph of M. Then, the
period p in our procedure is given by the greatest common divi-
sor for all numbers in P. This explains why a period of 1 is
sufficient for most practical cases. If the machine is not strongly
connected the same result applies for the strongly connected
component (SCC) of the machine.

Since the record&play procedure of the previous section
only calculates an approximate solution to the above decompo-
sition problem the resulting stub circuit represents a superset of
S(t), i.e., we may consider more states than are actually reach-
able. As discussed earlier, this can lead to false negatives.
However, since a complete symbolic state traversal is impossi-
ble for most large designs usually the same information about
unreachable states and local don't cares that has been used by
the synthesis tool can also be compressed into the stub circuit
using local transformations.

On the other hand, the fact that we may consider more states
than are actually reachable can have a very beneficial effect.

With an approximate decomposition we may reach a fixed point
much faster than with the exact solution.

Note that the methods [8, 9] can be useful as a pre-
processing phase to our approach. If equivalent state variables
can be determined then the corresponding substitutions can be
added to the instruction queue for every time frame so that a
fixed point is reached much faster.

5 Experimental Results

A prototype of the described approach has been incorpo-
rated into the HANNIBAL [10] package. We evaluated the
techniques by verifying circuits of the ISCAS89 benchmark set
against the optimized and retimed circuits. The circuits were
optimized by kerneling (using fx in SIS). After optimization
retiming is performed (using retime in SIS). The resulting cir-
cuits were verified against the original ones. For the original
circuits we assumed an initial state of 0 for all registers.

Circuit record&play
(HANNIBAL)

verify_fsm
(SIS)

Name # regis-
ters

iterations
til fixed point

CPU-time
(h:min:sec)

CPU-time
(h:min:sec)

s208 8 15 0: 00: 08 0: 00: 03
s298 14 10 0: 00: 09 0: 00: 03
s344 15 9 0: 00: 11 0: 00 06
s349 15 9 0: 00: 11 0: 00: 06
s382 21 16 0: 00: 17 0: 00: 38
s386 6 9 0: 00: 48 0: 00: 01
s420 16 27 0: 00: 43 0: 27: 19
s444 21 16 0: 00: 18 0: 00: 28
s510 6 12 0: 00: 35 0: 00: 02
s526 21 21 0: 00: 35 0: 00: 12
s635 32 37 0: 01: 32 unable
s641 19 9 0: 00: 12 0: 00: 08
s713 19 9 0: 00: 12 0: 00: 09
s820 5 17 0: 36: 50 0: 00: 04
s832 5 16 0: 26: 37 0: 00: 04
s838 32 51 0: 08: 13 unable
s953 29 11 0: 01: 09 0: 00: 12
s1196 18 6 0: 00: 40 0: 00: 08
s1238 18 6 0: 00: 46 0: 00: 08
s1423 74 14 0: 03: 31 unable
s1512 57 16 0: 04: 09 > 30 h
s3271 116 19 0: 21: 17 unable
s3330 132 9 0: 11: 33 unable
s3384 183 17 0: 31: 24 unable
s4863 104 8 0: 36: 52 unable
s5378 179 36 0: 55: 23 unable
s6669 239 11 0: 47: 15 unable

Table 2: Verification of optimized and retimed circuits

A difficulty in our experimental evaluation comes from the
fact that for larger circuits SIS cannot compute the initial state
after retiming, because it uses symbolic FSM traversal for this
task. Therefore, we developped a simple retiming algorithm that
moves all registers as far as possible into forward direction. The
new initial state can simply be calculated by forward implica-
tion of the old initial state. We applied our own retiming
method to those circuits where SIS did not move any registers.
In this way, we ensured that the encoding for all optimized cir-
cuits differs drastically from the encoding of the unoptimized
original circuits and no simple relationships exist between state
variables.

Table 2 shows our experimental results for a SUN Ultra I
workstation. In [8, 9] a different notion of equivalence is used
and no results are shown for circuits that are both optimized

and retimed. Therefore we compare our techniques only with
the conventional verification approach by symbolic FSM tra-
versal. The results for verify_fsm in SIS are shown in the left
column of Table 2. The results show the feasibility and great
potential of this approach to verify circuits after synthesis and
retiming. With our technique the verification could be com-
pleted within acceptable CPU-time for several cases where the
conventional approach fails. In all cases the fixed point was
reached with p_max = 1.

Conclusion

Based on a combinational decomposition procedure we
have introduced a method for structural FSM traversal. Our
approach is promising in applications where the designs under
comparison have been modified by a sequence of local trans-
formations. This is the case after most industrial synthesis pro-
cedures and retiming. Future work will examine whether the
proposed fixed point iteration is useful to verify typical engi-
neering changes at the RTL level, like modifying the pipelining
of the circuit.

References
[1] Brand D.: “Verification of Large Synthesized Designs”, Proc. Int. Conf.

on Computer-Aided Circuit Design (ICCAD), Santa Clara, pp. 534-537,
Nov. 1993.

[2] Bryant R.: “Graph-based algorithms for Boolean function manipulation“,
IEEE Transactions on Computers, vol. 35, pp. 677-691, August 1986.

[3] Cabodi G., Camurati P., Quer S.: "Improved Reachability Analysis of
Large Finite State Machines", Proc. Int. Conf. on Computer-Aided De-
sign (ICCAD), pp. 354-360, 1996.

[4] Cho H. et al.: "A Structural Approach for State Space Decomposition for
Approximate Reachability Analysis", Proc. IEEE Int. Conf. on Com-
puter Design, pp. 236-239, 1994.

[5] Coudert O., Berthet C., and Madre J.Ch.: "Verification of Synchronous
Sequential Machines Based on Symbolic Execution", in Lecture Notes in
Computer Science, vol. 407, (Automatic Verification Methods for Finite
State Systems, International Workshop, Grenoble, France), Springer-
Verlag, June 1989.

[6] van Eijk C.A.J., and Jess J.A.G.: "Exploiting Functional Dependencies in
Finite State Machine Verification", Proc. European Design & Test
Conf., pp. 9-14, 1996.

[7] Hachtel G., and Somenzi F.: Logic Synthesis and Verification Algo-
rithms, Kluwer Academic Publishers, Boston 1996.

[8] Huang S.Y., Cheng K.T., Chen K.C., and Gläser U.: "An ATPG-based
Framework for Verifying Sequential Equivalence" Proc. Int. Test Con-
ference, 1996.

[9] Huang S.Y., Cheng K.T., Chen K.C., and Gläser U.: "On Verifying the
Correctness of Retimed Circuits" Proc. Great Lakes Symposium on
VLSI, 1996.

[10]Kunz W., and Stoffel D.: "Reasoning in Boolean Networks - Logic Syn-
thesis and Verification Using Testing Techniques" Kluwer Academic
Publishers, Boston 1997.

[11]Kunz W., Stoffel D., and Menon P.: “Multi-Level Logic Optimization
and Equivalence Checking by Implication Analysis", IEEE Transaction
on Computer-Aided Design, Vol.16, no.3, pp. 266-281, March 1997.

[12]Leiserson C.E., and Saxe J.B.: "Retiming Synchronous Circuitry", Algo-
rithmica, vol. 6., pp. 5-35, 1991.

[13]McMillan K.L.: "Symbolic Model Checking", Kluwer Academic Pub-
lishers, 1993.

[14]Pixley C., Singhal V., Aziz A., and Brayton R.K.: "Multi-level Synthesis
for Replaceability", Proc. Int. Conf. on Computer-Aided Design
(ICCAD), pp. 442-449, 1994.

[15]Quer S. et al.: "Incremental Re-encoding for Symbolic Traversal of Prod-
uct Machines", Proc. European Design Automation Conf., 1996.

[16]Ravi K., and Somenzi F.: "High Density Reachability Analysis", Proc.
Int. Conf. on Computer-Aided Design (ICCAD), pp. 154-158, 1995.

[17]Stoffel D., and Kunz W.: "AND/OR Reasoning Graphs for Determining
Prime Implicants in Multi-Level Combinational Networks", Proc. Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 529
- 538, Japan, 1997.

