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ABSTRACT 

In contrast to the unilateral claim in some papers that a 
positive Lyapunov exponent means chaos, it was claimed in 
this paper that this is just one of the three conditions that 
Lyapunov exponent should satisfy in a dissipative dynamical 
system when the chaotic motion appears. The other two 
conditions, any continuous dynamical system without a fixed 
point has at least one zero exponent, and any dissipative 
dynamical system has at least one negative exponent and the 
sum of all of the 1-dimensional Lyapunov exponents id 
negative, are also discussed. In order to verify the conclusion, a 
MATLAB scheme was developed for the computation of the 1-
dimensional and 3-dimensional Lyapunov exponents of the 
Duffing system with square and cubic nonlinearity. 
KEYWORDS: Lyapunov exponent, chaos, three conditions, 
Duffing system 

 
INTRODUCTION 

Recently, chaotic motions that arise from the nonlinearity 
of dissipative dynamical systems have received a great concern 
in both physical and non-physical fields. The most striking 
feature of chaos is the unpredictability of the future despite a 
deterministic time evolution. This unpredictability is a 
consequence of the inherent instability of the solutions, 
reflected by what is called sensitive dependence on initial 
conditions. The tiny deviations between the initial conditions of 
all the trajectories are blown up after a short time. 

A more careful investigation of this instability leads to two 
different, although related, concepts. One is the loss of 
information related to unpredictability, quantified by the 
Kolmogorov-Sinai entropy. The other is a simple geometric 
one, namely, that nearby trajectories separate very fast, or more 
precisely, separate exponentially over time. The properly 
averaged exponent of this increase is the characteristics for the 
dings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use
dynamical system and quantifiers the strength of chaos. It is 
called the Lyapunov exponent. 

In many papers there was a unilateral claim that a positive 
Lyapunov exponent means an exponential divergence of nearby 
trajectories, i.e. chaos. In many situations the exist of the 
maximal positive Lyapunov exponent only is completely 
justified. However, when a dynamical system is defined as a 
mathematical object in a given state space, there exist as many 
different Lyapunov exponents as there are phase dimensions 
and only the complete set of Lyapunov exponents can 
characterize the asymptotic behavior of the dissipative 
dynamical systems. 

The purpose of this paper is to present a comprehensive 
analysis of the Lyapunov exponent spectrum. As a result, three 
conditions, which Lyapunov exponents should satisfy in a 
dissipative dynamical system when the chaotic motion appears, 
were derived. The conclusion was verified through the 
computation of Lyapunov exponents in a Duffing system with 
square and cubic nonlinearity. 

NOMENCLATURE 
C  damping coefficient 
F excitation amplitude 
f n-dimensional nonlinear vector 
J the nn×  Jacobian matrix 
M mass 
w the deviation between x and y 
x n-dimensional state variable 
y n-dimensional state variable 
ω  excitation frequency 
ei eigenvector 
Ki stiffness 

iΛ  eigenvalue 
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iλ  Lyapunov exponent 
)( neλ  n-dimensional Lyapunov exponent 
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1.  LYAPUNOV EXPONENT SPECTRUM 
Chaotic systems have the property of sensitive dependence 

on initial conditions, which means that infinitesimally close 
vectors in phase space give rise to two trajectories that separate 
exponentially. The time evolution of infinitesimal difference, 
however, is completely described by the time evolution in 
tangent space, that is, by the linearized dynamics [1]. 

Let us consider the dynamical system of which the time 
evolution is described by a set of differential equations in n-
dimensional Euclidian space 

),,( 21 ni
i xxxf

dt
dx

L=     i=1, 2,…, n                              (1) 

 
Fig. 1  Sketch for the divergence of two trajectories 

 
where t is time, {x1, x2, …, xn } is a n-dimensional state variable 
which constitutes a n-dimensional phase space, and fi is a n-
dimensional nonlinear vector. 

The solution of system (1) under the initial condition 
x(0)=x0 is a trajectory x(t). Supposing a deviation w(0) of the 
initial condition x(0), another trajectory y(t) originating from 
y(0) is formed, as illustrated in Fig. 1, where y(0)=x(0)+w(0) 
and y(t)= x(t)+w(t). w(t)={w1(t), w2(t), …, wi(t)} constitutes a 
phase space called the tangent space. 

As far as {wi(t)} is small enough and dynamical system (1) 
is dissipative, the time evolution of the deviation w(t) obeys the 
following linear differential equations 

i
i Jw

dt
dw

=                                                                      (2) 

where J is the n  Jacobian matrix of dynamical system (1) 
with 

n×

j

i
ij x

fJ
∂
∂

=     i, j=1, 2,…, n                                              (3) 

Let ei be an eigenvector of J and iΛ  be its eigenvalue. If 
wi(t) is parallel to one of the eigenvectors ei, it is either 
stretched or compressed by a factor of iΛ . Thus n different 
local stretching factors are found and the phase space is 
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decomposed into n linear subspaces. Up to now the analysis is 
local in space and for a fixed time. However, the Jacobian 
matrix is in general position dependent. In order to characterize 
the dynamical system as a whole one, the Lyapunov exponents 

iλ  is defined as an average stretching factor of the infinitely 
long trajectory wi(t) [1,2], that is 

λ1

)(ln1lim N
iNi N

Λλ
∞→

=      i =1, 2,…, n                                 (4) 

or 

)0(
)(

ln1lim
i

i

ti w
tw

t∞→
=λ      i =1, 2,…, n                               (5) 

where  means the ith eigenvalue of the product of all 
Jacobian matrices along the trajectory, and 

)( N
iΛ

)0(iw  and )(twi  
are the lengths or norms of wi(0) and wi(t), respectively. 

Thus n different exponents of the n-dimensional dynamical 
system (1) are defined and the set of exponents is often called 
the spectrum of the Lyapunov exponent. It is often notated that 

nλλ L≥≥ 2 , where 1λ  is called the maximal Lyapunov 
exponent. 

2.  THREE CONDITIONS 

2.1  The Maximal Lyapunov Exponent 
The Lyapunov exponents give a typical time scale for the 

divergence or convergence of nearby trajectories. If iλ  is zero, 
the nearby trajectories in the ith phase dimension never 
converge or diverge. Similarly, if iλ  is positive or negative, this 
means an exponential divergence or convergence of nearby 
trajectories in the ith phase dimension. Of all the Lyapunov 
exponents of the n-dimensional dynamical system (1), the 
maximal Lyapunov exponent 1λ  is the most important one. In 
many papers it was claimed that the maximal Lyapunov 
exponent 1λ , if positive, means chaos. Beyond all doubt, that 
the maximal Lyapunov exponent 1λ  is positive is the 
precondition for chaos in dynamical system (1). However the 
computation of the maximal Lyapunov exponent only can not 
give a complete portray of the complicated motion. For 
example, there might exist more than two positive Lyapunov 
exponents in 4 or higher dimensional dissipative dynamical 
systems, where the chaotic motion is called hyperchaos. In 
some dissipative dynamical systems one can also find a 
negative maximal Lyapunov exponent which reflects the 
existence of a stable fixed point. Two trajectories that approach 
the fixed point also approach each other exponentially. If the 
motion settles down onto a limit cycle, the maximal Lyapunov 
exponent is zero and the motion is called marginally stable. 

2.2  The Sum of All Lyapunov Exponents 
A dynamical system described by autonomous differential 

equations can not be chaotic in less than three dimensions [3]. 
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So the chaotic system has at least three Lyapunov exponents. 
What about the sum of them? 

The definition of the Lyapunov exponent iλ  above is 
concerned with the convergence or divergence of nearby 
trajectories in each phase dimension, and hence they are 1-
dimensional. In the same way, the k-dimensional Lyapunov 
exponent  can also be defined according to the 
expanding rate of the volume of the k-dimensional 
parallelepiped in the tangent space along the orbit which starts 
at x

)( keλ

0 [4]. 
 

)0(
)(ln1lim)(

V
tV

t
e

t

k

∞→
=λ                                                      (6) 

The k-dimensional Lyapunov exponent  may take, at 
most,  distinct values, and each value is connected with a 
sum of k distinct 1-dimensional exponents. For instance, in the 
case n=3, the k-dimensional Lyapunov exponent  may 
take the following values respectively: 

)( keλ
k
nC

)( keλ

)( 1eλ =one of the values in { 1λ , 2λ , 3λ }, 
)( 2eλ =one of the values in {( 1λ + 2λ ), ( 1λ + 3λ ), 

( 2λ + 3λ )} 
)( 3eλ =( 1λ + 2λ + 3λ ). 

According to the Liouville theorem, the phase volume of 
the n-dimensional dynamical system (1) is contracting, if it is 
dissipative. The contracting rate of phase space is defined as [5] 

∑
=

=
∂

∂
=

n

i i

i xdivf
x

xf
x

1

)(
)(

)(Λ                                             (7) 

Apparently, in the dissipative dynamical system (1) 
0)( <xΛ                                                                         (8) 

The n-dimensional Lyapunov exponent  is also an 
indication of the contracting rate of the phase volume of the n-
dimensional dissipative dynamical system (1), namely,  

)( neλ

0)( <neλ                                                                        (9) 
According to the statement above, the n-dimensional 

Lyapunov exponent  equals to the sum of all of the n 1-
dimensional Lyapunov exponents 

)( neλ

iλ . So, it is easy to gain the 
conclusion that there is at least one negative exponent in any 
dissipative dynamical system and the sum of all of the 1-
dimensional Lyapunov exponents is negative. This is the 
second condition Lyapunov exponents should satisfy in a 
dissipative dynamical system. 

2.3  At Least One Lyapunov Exponent Vanishes 
There is another attractive 1-dimensional Lyapunov 

exponent. H. Haken [6] provided a mathematically rigorous 
proof that for each trajectory, which does not terminate at a 
fixed point, at least one Lyapunov exponent vanishes, namely, 
zero. This 1-dimensional Lyapunov exponent corresponds to 
the direction tangent to the flow defined by dynamical system 
(1). The direction corresponding to a Lyapunov exponent zero 
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is called marginally stable. This direction is usually useless for 
analysis and the Poincaré section method is just to remove this 
direction from the phase space. 

Further more, what is called the maximal Lyapunov 
exponent is the greatest one of all of the 1-dimensional 
Lyapunov exponents except this zero one. 

Up to now, the three conditions the 1-dimensional 
Lyapunov exponents should satisfy in a dissipative dynamical 
system when the chaos appears have been all derived. They are 

1) At least one 1-dimensional Lyapunov exponent is 
positive. 

2)   At least one 1-dimensional Lyapunov exponent is zero. 
3) At least one 1-dimensional Lyapunov exponent is 

negative and the sum of all of the 1-dimensional Lyapunov 
exponents is negative. 

In order to verify the conclusion, the 1-dimensional and 3-
dimensional Lyapunov exponents of a forced nonlinear 
vibration system were calculated. 

3.  1- AND 3-DIMENSIONAL LYAPUNOV EXPONENT 
OF THE DUFFING SYSTEM 

In this section, the explicit result of the complete set of the 
1-dimensional and the 3-dimensional Lyapunov exponents for 
the Duffing system is presented. 

The forced vibration of a single-degree-of-freedom 
nonlinear system with square and cubic nonlinearity is 
described by the following equation 

TFXKXKXK
dT
dXC

dT
XdM ωcos3

3
2

212

2

=++++     (10) 

where M is the mass of the oscillator, C  the damping, K0> i 
(i=1, 2, 3) the stiffness, F the excitation amplitude, and ω  the 
frequency of the excitation. 

Let MK10 =Ω  be the natural frequency of the 

corresponding linearized undamped system, NCxX = , and 

0ΩTt = . Hence, the system (10) can be rewritten as  

)cos(2 32
...

btfxxxxx =++++ δξ                                  (11) 

where  is the damping coefficient, 

312 KKK=δ , 0Ωω=b , and 3
13 KKFf = . 

12/ MKC=ξ

The qualitative analysis showed that the system has no 
equilibrium, but that all the trajectories are attracted into a 
limited phase space [7]. 

In order to compute the Lyapunov exponents, system (11) 
is rewritten as an autonomous one 










=

+−−−−=

=

1

)cos(2
.

2
3
1

2
112

.
21

.

t

btfxxxxx

xx

ξδ                         (12) 

Thus the contracting rate of the phase space of system (12) 
is 
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02 <−= ξ                                                                    (13) 
That is, the contracting rate of the phase volume of system 

(12) is constant. This indicates that the contracting rate of the 
phase space of system (12) is uniform the whole phase space. 
Then the sum of all the 1-dimensional Lyapunov exponents is 

ξλλλ 2321 −=++                                                        (14) 
Based on the algorithm developed by Shimada [8], a 

MATLAB scheme was developed for the computation of the 1-
dimensional and 3-dimensional Lyapunov exponent of system 
(12). The property of the Duffing system presented in equation 
(14) can be used to verify the numerical scheme. 

Let 1.0=ξ , 2.0=δ , 5.20 == ωωb . The 1-dimensional 
and 3-dimensional Lyapunov exponents for different f are 
shown in Table 1. Let 1.0=ξ , 2.0=δ , . The 1-
dimensional and 3-dimensional Lyapunov exponents for 
different b are shown in Table 2. 

9002 =f

The computation results showed in Table 1 and 2 verified 
the three conditions derived in section 3. Especially, the sum of 
1-dimensional Lyapunov exponents iλ  equals to ξ2− . 

 
Table 1  1- and 3-dimensional Lyapunov exponents for 

different f where 1.0=ξ , 2.0=δ , and 5.2=b  

)( 1eλ  
f2 

1λ  2λ  3λ  
)( 3eλ  

1200 0.0236  0.0000 -0.2236 -0.2000 
1300 0.1198 -0.0002 -0.3196 -0.2000 
1390 0.0222  0.0001 -0.2223 -0.2000 
2370 0.0041 -0.0003 -0.2038 -0.2000 
2426 0.0279 -0.0001 -0.2278 -0.2000 
2630 0.0054 -0.0000 -0.2054 -0.2000 

 
Table 2  1- and 3-dimensional Lyapunov exponents 
for different b where 1.0=ξ , 2.0=δ , and  9002 =f

)( 1eλ  
b 

1λ  2λ  3λ  
)( 3eλ  

0.6 0.0468  0.0001 -0.2469 -0.2000 
0.9 0.0663  0.0000 -0.2663 -0.2000 
1.1 0.0070 -0.0001 -0.2069 -0.2000 
1.3 0.0231 -0.0002 -0.2229 -0.2000 
1.5 0.1065  0.0000 -0.3065 -0.2000 
1.8 0.0279 0.0003 -0.2282 -0.2000 

 

4.  CONCLUSION 
In order to characterize the chaotic behavior of the 

dissipative dynamical systems, the Lyapunov exponent 
spectrum was analyzed comprehensively and three conditions 
the 1-dimensional Lyapunov exponents should satisfy in the 
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dissipative dynamical system when the chaotic motion appears 
were derived. 

The most striking feature of chaos is the unpredictability of 
the future despite a deterministic time evolution, namely, the 
sensitive dependence on the initial conditions. This is 
quantified by one positive 1-dimensional Lyapunov exponent. 
It is the precondition of chaos that at least one 1-dimensional 
Lyapunov exponent is positive which reflects a “direction” in 
which two trajectories diverge exponentially. 

Any continuous dynamical system without a fixed point 
will have at least one zero exponent, corresponding to the 
slowly changing magnitude of a principal axis tangent to the 
flow defined by the dynamical system. 

The sum of the 1-dimensional Lyapunov exponents is the 
time-averaged divergence rate of the phase volume: Hence any 
dissipative dynamical system has at least one negative exponent 
and the sum of all of the 1-dimensional Lyapunov exponents is 
negative. Especially, for some dissipative dynamical systems 
with a constant divergence rate of the phase volume, i.e., 

)(xΛ =constant, the sum of the 1-dimensional Lyapunov 
exponents takes a fairly simple form. The maximal positive 
Lyapunov exponent and the negative sum of all of the 1-
dimensional Lyapunov exponents shows that the dynamical 
system experiences the repeated stretching and folding. 
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