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COMMUNITY INTERACTION WEBS AND ZOOPLANKTON RESPONSES TO 
PLANKTIVORY MANIPULATIONS 
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'National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, 

Santa Barbara, CA 93101 USA 

Abstract. The response of a species to an environmental perturbation depends on both 
the direct effect of the perturbation on the population growth rate of the species and the 
indirect effects operating through interactions among species in a community. To estimate 
the importance of indirect effects, we analyzed the population dynamics of nine zooplankton 
species or species groups in a lake subjected to experimental manipulations of the fish 
community. The manipulations included additions and removals of planktivorous and pi- 
scivorous fish over a period of seven years, thereby producing changes in planktivory rates 
on the zooplankton community. Applying autoregressive models to time-series data, col- 
lected during weekly samples, we estimated the direct interaction strengths between species, 
thereby constructing a quantitative interaction web for the zooplankton community. We 
then used this interaction web to explore the roles of direct and indirect interactions between 
species in determining the long-term changes in zooplankton biomasses that were observed 
over the course of the experimental manipulations. The analysis identified Daphnia pulex 
as a keystone species. This large herbivore had strong direct interactions with other zoo- 
plankton species and was strongly affected by changes in planktivory. Consequently, 
changes in the biomasses of other zooplankton species during the planktivory manipulations 
were influenced strongly by indirect interactions acting through changes in D. pulex biomass. 
In addition, we used the analysis to ask whether information about the response of species 
to planktivory manipulations could be used to anticipate species' responses to other types 
of perturbation. If the direct effects of a novel perturbation on each species in a community 
were known, then the interaction web would help to anticipate how a novel perturbation 
will affect each species via direct and indirect effects through the community. 

Key words. autoregressive models; community ecology; Daphnia pulex; food webs; species in- 
teractions; time-series analysis; trophic cascade; zooplankton. 

INTRODUCTION 

Food webs are among the most compelling concep- 
tual constructs in ecology. Food webs (and their more 
general relatives, interaction webs) show which species 
in a community interact with each other (Paine 1966, 
1980, Pimm 1982). Since interactions among species 
are a fundamental component of how communities and 
ecosystems function, interaction webs are central to a 
large number of ecological questions: (1) Are large 
communities more or less resilient to environmental 
stress than small communities (May 1974, Pimm 1984, 
Cohen and Newman 1985, Lawler and Morin 1993)? 
(2) What is the maximum number of trophic levels 
likely to occur in any community (Pimm and Lawton 
1977, Cohen et al. 1986)? (3) Do changes in species 
abundance or composition at one trophic level create 
cascading effects to other trophic levels (Hairston et 
al. 1960, Carpenter et al. 1985, Power 1992)? (4) For 
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a community subjected to an exogenous perturbation, 
do decreases in the densities of some species lead to 
compensatory increases in the densities of functionally 
similar species, thereby preserving the ecosystem level 
processes performed by the community (Lawton and 
Brown 1993, Frost et al. 1995, Tilman 1996)? 

To answer these questions, it is often not enough to 
know which species interact with each other. It is also 
necessary to know the strengths of interactions (Paine 
1980). To illustrate this, consider the case of two her- 
bivores that share common food resources and a pred- 
ator that attacks both herbivores. Suppose further that 
the predator increases in density due to some exoge- 
nous factor, such as long-term climate or habitat 
changes. The question is how the densities of the two 
herbivores respond to this change in predator density. 
The outcome of this hypothetical situation might be a 
trophic cascade (Carpenter et al. 1985): an increase in 
density at the predator trophic level leads to decreases 
in densities of both herbivores in the trophic level be- 
low. Alternatively, the outcome might be dictated by 
compensatory dynamics (Frost et al. 1995): the in- 
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crease in predator density may decrease the density of 
one of the herbivores, while the other herbivore shows 
a compensatory increase in density. Whether both her- 
bivores decrease in density, or one increases while the 
other decreases, depends on the strengths of interac- 
tions among all three species (Holt 1977, Abrams 
1987). The point of this example is that, even for a 
simple three-species community, it is necessary to 
know the strengths of species interactions to predict 
how densities will respond to an external perturbation. 

The objective of this article is to quantify the 
strengths of interactions among zooplankton species in 
order to understand how biomasses of different species 
changed in response to an experimental perturbation of 
planktivorous fish abundance (Carpenter and Kitchell 
1993). Over a seven-year period, Tuesday Lake was 
subjected to whole-lake manipulations in which pi- 
scivorous and planktivorous fish were added and re- 
moved. The manipulations of the fish community led 
to dramatic changes in the zooplankton community. 
With increases in the abundance of planktivorous fish, 
some zooplankton species decreased in biomass, while 
others increased. Some of the observed changes appear 
to be direct responses to the manipulations: species that 
are preferred prey of planktivorous fish decreased in 
biomass with increases in the abundance of their pred- 
ators. Other observed changes appear to be indirect: 
species of nonpreferred prey increased with increasing 
planktivore abundance. Our goal is to use the data from 
the lake manipulations to quantify interactions between 
species and thereby interpret the observed responses 
of species to the manipulations. 

To quantify the strengths of interaction between spe- 
cies, we analyze the data to take advantage of the short- 
term changes in population biomasses between weekly 
samples, using multispecies autoregression analysis 
(Ives 1995, Elkington et al. 1996, Solow and Sherman 
1997). This approach regresses the biomass of each 
species in a sample against the biomasses of all species 
and planktivory rates measured in the preceding sam- 
ple. Because direct effects lead to relatively rapid re- 
sponses of population growth rates, analyzing weekly 
changes in biomasses makes it possible to quantify both 
the strengths of interaction between species and the 
direct effects of planktivory on changes in species' 
biomasses. Thus, the result of the autoregression anal- 
ysis is a quantitative interaction web of the zooplankton 
community along with interaction links between zoo- 
plankton and planktivorous fish. 

In order to understand the response of the zooplank- 
ton community to experimental planktivory manipu- 
lations conducted over several years, it is necessary to 
consider the indirect effects of planktivory on each 
species acting through changes in other species' bio- 
masses. For example, consider those zooplankton spe- 
cies that increased in biomass when planktivory in- 
creased. This increase could be due to competitive 
release caused by the reduction in the biomass of com- 

petitors that are susceptible to planktivory. Alterna- 
tively, it could be due to the reduction in abundance 
of predatory zooplankton when they are eaten by plank- 
tivorous fish. Distinguishing between these alternatives 
requires knowing both the strength of competitive and 
predatory interactions on the species that increased in 
biomass, and how much the biomasses of potential 
competitors and predators decreased in response to fish 
predation. To study the outcome of direct and indirect 
effects, we derive a formula that uses the interaction 
coefficients obtained from the autoregression analysis 
to predict the average annual biomass of each zoo- 
plankton species as a function of average annual plank- 
tivory. This makes it possible to determine whether the 
interaction coefficients obtained from short-term 
changes in zooplankton biomasses are consistent with 
the long-term changes in biomasses measured across 
the seven years of the experiment. 

This formula also provides a tool to investigate 
which pathways through the community interaction 
web are the most important in understanding the long- 
term responses of the zooplankton community to the 
experimental manipulations. To measure the impor- 
tance of the interaction pathway through a particular 
species, we set the coefficient for the effects of plank- 
tivory on that species to zero. We then predict the 
changes in biomasses of all species in the community 
caused by changing average annual planktivory, and 
we compare these predictions to the observed changes. 
The greater the difference between predicted and ob- 
served changes, the more important is the effect of 
planktivory on the particular species in question. Thus, 
performing this analysis for each species susceptible 
to planktivory identifies which pathways through the 
interaction web are the most important in explaining 
how the entire zooplankton community changed in re- 
sponse to planktivory manipulations. 

Finally, the autoregression analysis separates endog- 
enous interactions between species within the com- 
munity from the exogenous forces that affect the spe- 
cies. We treat planktivory as an exogenous factor be- 
cause it was manipulated during the experiment. Even 
in unmanipulated systems, from the perspective of zoo- 
plankton community dynamics, it makes sense to con- 
sider planktivory as an exogenous factor. This is be- 
cause fish population dynamics occur on a much slower 
time scale than zooplankton dynamics and are sensitive 
to many environmental factors (such as human fishing 
pressure and winter anoxic events) that do not directly 
affect zooplankton. By separating the exogenous from 
the endogenous interactions, we can ask how important 
are the endogenous interactions in determining the sen- 
sitivities of species to planktivory manipulations. If the 
responses of species are dominated by indirect effects 
determined by interactions with other species, rather 
than the direct effects of planktivory on each species, 
then endogenous interactions will play a large role in 
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determining the sensitivities of species to the plank- 
tivory manipulations (Ives 1995). 

This question is central to the more general problem 
of understanding how the same community might re- 
spond to different types of exogenous perturbation. 
Any given community is susceptible to numerous types 
of exogenous perturbation, and it is unrealistic to ex- 
pect that we can study all possible perturbations as 
independent phenomena. Our analysis makes it pos- 
sible to use data from one perturbation to quantify the 
interaction strengths among species. Armed with a 
quantitative interaction web, anticipating the commu- 
nity response to a different perturbation requires know- 
ing only the direct effects of the perturbation on species 
in the community. 

METHODS 

Experiment 

The data we analyze were collected as part of the 
"trophic cascade" project conducted on three lakes in 
the Upper Peninsula of Michigan, USA (Carpenter and 
Kitchell 1993). Two of the lakes, Tuesday and Peter 
Lakes, were manipulated, while the third lake, Paul 
Lake, was an unmanipulated control. Details of the 
experimental manipulations, study organisms, and 
sampling methods are given in Carpenter and Kitchell 
(1993), and we only present an overview here. The 
experiment was designed to test the hypothesis that 
increases in planktivory will result in lower abundances 
of zooplankton, which, in turn, will lead to increased 
phytoplankton abundances and increased primary pro- 
ductivity. Manipulations of planktivory were achieved 
by both the removal and addition of planktivorous fish, 
and by the addition and removal of piscivorous fish 
that preyed on planktivorous fish. In general, the hy- 
pothesis was supported, with increasing planktivory 
leading to increased phytoplankton abundance. How- 
ever, the decrease in zooplankton abundance with in- 
creasing planktivory pressure was not uniform across 
all zooplankton species, and several species of zoo- 
plankton increased in abundance with increasing plank- 
tivory. 

For the analyses reported here, we used only the data 
from Tuesday Lake. The zooplankton communities in 
the three lakes were not identical, making the joint 
analysis of all three lakes complicated. We selected 
Tuesday Lake over the other two lakes, because it ex- 
perienced the most dramatic changes in zooplankton 
abundances in response to changes in planktivory. Pre- 
manipulation sampling of Tuesday Lake started in the 
spring of 1984. In early summer 1985, -90% of the 
planktivorous minnows were removed using minnow 
traps. Simultaneously, a roughly equal mass of pisciv- 
orous bass was collected by electrofishing and angling 
from Peter Lake and added to Tuesday Lake. The re- 
duction in planktivory was reversed after the summer 
of 1986 when all bass were removed and a small num- 

ber of planktivorous minnows were added. This led to 
a large minnow recruitment event in 1987, with plank- 
tivore abundance reaching levels found in 1984 before 
the initial manipulations. Tuesday Lake then remained 
unmanipulated until mid-summer of 1990 when some 
juvenile bass were added. This did not result in a sig- 
nificant drop in planktivore abundance in 1990. Sam- 
pling intensity of Tuesday Lake was reduced after 1990, 
so we use only the 1984-1990 data set. 

Data 

Planktivorous fish populations were assessed every 
2 wk from May-September using minnow traps. Plank- 
tivory rates were estimated with bioenergetics calcu- 
lations that use planktivore densities, the average 
growth rates of fish, temperature, and gut content anal- 
ysis (He et al. 1993). Since planktivorous fish may also 
feed in the benthos, including gut content analysis 
makes the estimate of planktivory reflect consumption 
rates of zooplankton only. 

We focused on five species of cladocerans and four 
groups of other zooplankton: omnivorous copepods, 
carnivorous copepods, rotifers, and predatory phantom 
midges in the genus Chaoborus. (For the remainder of 
the article, we will refer to the lumped groups of species 
simply as "species.") Table 1 lists the zooplankton 
species and gives brief descriptions. The most efficient 
herbivores are the large-bodied Daphnia pulex (Dp) 
and Holopedium gibberum (Hg); with the smaller cla- 
docerans, D. rosea (Dr), Bosmina longirostris (Bl), and 
Diaphanosoma birgei (Db) being less efficient (DeMott 
and Kerfoot 1982, Vanni 1986). The large size of Dp 
makes it particularly vulnerable to fish predation, and 
it may also be vulnerable to invertebrate predation dur- 
ing juvenile stages (MacKay et al. 1990). Adult Hg 
have a gelatinous mantle that is thought to protect 
against predation, although juveniles and recently 
molted adults are highly vulnerable (Tessier 1986). The 
small cladocerans appear to be less susceptible to fish 
predation than Dp and typically occur in lakes with 
high densities of planktivorous fish, although they are 
highly vulnerable to invertebrate predation (Lane 1978, 
Elser et al. 1987). 

We divided copepods into an omnivorous and a car- 
nivorous group. The omnivorous group consists of five 
genera of small- to large-bodied species and the ju- 
venile stages (nauplii and copepodids) of all copepods 
(including the carnivorous copepods). The omnivorous 
copepods (Ocop) range from primarily herbivores (e.g., 
Diaptomus oregonensis and the juvenile copepod 
stages) to the omnivorous Orthocyclops modestus, 
which can prey on rotifers, juvenile copepods, and 
small cladocerans. Owing to their size and strictly car- 
nivorous diet, we used a separate category for adult 
Mesocyclops edax (Ccop), which prey on rotifers, co- 
pepods, and small cladocerans (Gilbert and Williamson 
1978, Williamson 1980). The rotifers (Rot) are all small 
herbivores except Asplanchna spp., which preys on 
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TABLE 1. Summary of species/groups of zooplankton. 

Approximate 
Species or group Abbreviation Description generation time Mt 

Daphnia pulex Dp Large-bodied cladoceran; susceptible to 2 wk -0.59 
fish predation; juveniles susceptible 
to invertebrate predation. 

Daphnia rose Dr Medium-sized cladocerans; susceptible 2 wk -0.059 
to fish and invertebrate predation. 

Holopedium gibberum Hg Large-bodied cladoceran; gelatinous 2 wk -0.33 
mantle thought to reduce predation 
by invertebrate predators and possi- 
bly small fish. 

Bosmina longirostris Bl Small-bodied cladoceran; not preferred 2 wk 0.79 
by fish predators; vulnerable to inver- 
tebrate and copepod predation. 

Diaphanosoma birgei Db Small-bodied cladoceran; not preferred 2 wk 0.59 
by fish predators; vulnerable to inver- 
tebrate and copepod predation. 

Omnivorous copepods Ocop Five genera of small- to large-bodied 4 wk 0.26 
herbivores and omnivores; larger spe- 
cies may prey on small cladocerans 
and rotifers; includes nauplii and 
copepodid stages of all species; large 
individuals susceptible to fish 
predation, and small individuals sus- 
ceptible to invertebrate predation. 

Carnivorous copepods Ccop Consists solely of adult Mesocy- 4 wk 0.24 
clops edax; feeds on small cladocer- 
ans, rotifers, nauplii, and copepodids. 

Rotifers Rot 18 species of small herbivores; suscep- <1 wk 0.11 
tible to invertebrate predation. 

Chaoborus Chao Three species of phantom midges, 1-2 gen- -0.21 
Chaoborus trivittatus, C. fiavicans, era- 
and C. punctipennis; predators on tions/yr 
small to medium zooplankton at dif- 
ferent instars. 

t Slopes of yearly average log biomass against yearly average log planktivory. 

other rotifers. Because Asplanchna spp. only appeared 
in significant numbers in the final year of the study, 
we did not give it a separate category. Finally, we 
grouped the three species of Chaoborus together 
(Chao). Despite our grouping, there were changes in 
the composition of Chao, with the smallest species (C. 
punctipennis) dominating the two larger species (C. 
fiavicans and C. trivittatus) when planktivory was high 
(Soranno et al. 1993b). 

In addition to zooplankton biomasses and plankti- 
vory, we included primary productivity in the analysis 
of zooplankton responses to the planktivory manipu- 
lations. Primary productivity is an overall measure of 
turnover in the phytoplankton community that is sen- 
sitive to fluctuations in nutrient abundance. We in- 
cluded primary productivity to account for possible 
changes in the biomass of the total zooplankton com- 
munity, due to fluctuations in food supply. Primary 
productivity was measured weekly at three depths rep- 
resenting 100%, 50%, and 25% surface irradiance (Car- 
penter et al. 1993), and, for the analyses, we averaged 
across depths. 

Zooplankton other than Chao were sampled each 
week during May-September. Abundances of each spe- 
cies were converted to biomass using the average size 
of a subsample of individuals in each collection. Chao 

biomass and primary productivity were sampled every 
other week (Soranno et al. 1993a, Soranno et al. 
1993b). To match the zooplankton sampling dates, 
Chao biomass, primary productivity, and planktivory 
data were log-linearly interpolated. 

For the analyses, zooplankton biomasses and plank- 
tivory were log-transformed. Data for most zooplank- 
ton species included zeros when densities dropped be- 
low the detection limit of the sampling program. Before 
the log transformation, zero values were replaced by 
O.5X the lowest nonzero biomass of that species ob- 
served in the data set. 

Analysis 

The analysis uses short-term fluctuations in species' 
biomasses to estimate the direct effects of planktivory 
on population growth rates and the interaction strengths 
between zooplankton species (Ives 1995). For each spe- 
cies other than Chaoborus, we fitted the first-order au- 
toregressive model 

9 

xj(t + 1) = xi(t) + ci + [E bijxj(t) 

4 

+ E: aitkUk(t)(1 
k= 1 
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where xi(t) is the log biomass of species i in sample t, 
uk(t) is value of exogenous variable k [uplk(t) = log 

planktivory, upp(t) = primary productivity, Uday(t) = 

day-of-year, and Uday2 (t) = day-of-year squared], and 
ci, bi1, and aik are regression coefficients. We have in- 
cluded day-of-year and day-of-year squared to account 
for possible seasonal effects on changes in biomass. 

We fit the set of nine equations given by Eq. 1 si- 
multaneously, using two different estimation proce- 
dures. The first, conditional least-squares estimation 
(CLS), is most appropriate when all unexplained vari- 
ability is due to process error; while the second, total 
least-squares estimation (TLS), is most appropriate 
when all unexplained variability is due to measurement 
error. Of course, the unexplained variability in our data 
set is due to both types of error. However, fitting the 
model assuming the extremes of all process and all 
measurement error spans the range of possibilities for 
the relative contributions of process and measurement 
error. 

For CLS, we estimated parameters by minimizing 
the sum of squared differences between observed and 
predicted values from Eq. 1 (Klimko and Nelson 1978, 
Dennis et al. 1995). This method is algebraically the 
same as standard least-squares regression. We included 
only consecutive samples within the same year, so 
changes in biomasses from the last sample of one year 
to the first sample of the next were excluded. 

When measurement error is large, CLS is inappro- 
priate, because the biomasses of species in sample t, 
needed to predict the biomass of species i in sample t 
+ 1, are not known precisely, due to the measurement 
error. Therefore, we used TLS (Ludwig and Walters 
1989, Hilborn and Walters 1992). To describe the pro- 
cedure for TLS, let the function G(O) give the sum of 
squared differences between predicted and observed 
species biomasses for a particular set of coefficients 
contained in the vector 0 = [cl, . . . , c9, b,1, . . ., bg, 

al,1, . . ., a94]. The objective is to find that set of co- 
efficients 0 that minimizes the function G(O). For a 
particular set of coefficients, the function G(O) was 
calculated as follows: 

1) At the start of each year, we estimated the bio- 
mass of all species as the average biomass from the 
first three samples. 

2) From these starting biomasses, we generated time 
series of species biomasses by iterating Eq. 1 for the 
number of samples in the year. For each iteration, we 
used the observed values of the exogenous variables 
uk(t). However, the only biomass data used to generate 
the time series were those data used to estimate initial 
biomasses for each year. 

3) We then calculated the sum of squared differ- 
ences between observed and predicted biomasses, for 
all species and all samples, to give the function G(O). 

To find the set of coefficients 0 that minimizes G(O), 
we started with the coefficient values calculated using 

CLS, and then we used a Nelder-Mead simplex method 
to minimize G(O) (MathWorks 1996). 

The difference between CLS and TLS can be ex- 
plained as follows. When predicting species biomasses 
at time t + 1, CLS uses the observed biomasses at time 
t, since these are assumed to be known without mea- 
surement error. In contrast, when predicting species 
biomasses at time t + 1, TLS uses the predicted bio- 
masses at time t, since the observed biomasses are as- 
sumed to contain measurement error. In turn, the pre- 
dicted biomasses at time t are obtained from the pre- 
dicted biomasses at time t - 1. Thus, in TLS the es- 
timated coefficient values are those that give the best 
fitting time-series trajectory as calculated simulta- 
neously from the set of nine equations given by Eq. 1. 

Although the number of data points in the data set 
is large (107 consecutive samples X 9 species = 973), 
the number of coefficients to be estimated is also large 
(117 total). To avoid the problem of overparameteri- 
zation, we imposed an a priori structure to the model. 
Philosophically, this is similar to path analysis, in 
which interactions between particular species are either 
included or excluded in the analysis (e.g., Wootton 
1994a). Rather than including or excluding particular 
interactions, however, we constrained the signs of the 
coefficients to be biologically plausible. Specifically, 
we assumed that planktivory and Chao could only have 
negative effects on changes in zooplankton biomass. 
Furthermore, we assumed that herbivorous and omniv- 
orous zooplankton could only have negative effects on 
changes in each other's biomasses. For the carnivorous 
copepod, we assumed that it could only have negative 
effects on changes in the biomasses of other zooplank- 
ton (excluding the omnivorous copepods), while the 
other zooplankton could have only positive effects on 
changes in carnivorous copepod biomass. We let om- 
nivorous and carnivorous copepods have either nega- 
tive or positive effects on each other, because the om- 
nivorous copepod category includes the juvenile stages 
of the carnivorous copepod. Thus, although carnivo- 
rous copepods may prey on omnivorous copepods, they 
also produce omnivorous juvenile stages. Finally, we 
assumed that Dp was competitively superior to Bl and 
Db, and, therefore, that these two small cladocerans 
have no effect on changes in the biomass of Dp. This 
assumption has empirical support from other studies 
(DeMott and Kerfoot 1982, Vanni 1986). We assumed 
this because there were strong negative correlations 
both between Dp and Bl biomasses and between Dp 
and Db biomasses. Since Dp is known to be the superior 
competitor, these negative correlations will be driven 
by the negative effect of Dp on Bl and Db, rather than 
the other way around. 

An additional problem arose for Chao. Chao popu- 
lation dynamics occur on a much slower time scale 
than for the other zooplankton species, since Chao have 
only one generation per year in Tuesday Lake. More- 
over, Chao adults fly and are therefore not confined to 
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a lake. Thus, the only component of Chao demography 
necessarily tied to the lake community is mortality. As 
a consequence, changes in Chao abundance between 
samples were not great enough to identify the effects 
of other zooplankton species on Chao, and the pre- 
dicted biomass of Chao in sample t + 1 was dominated 
by the Chao biomass at time t. Therefore, in Eq. 1, we 
set coefficients for the effects of other zooplankton 
species on Chao equal to zero, and the coefficient for 
the effect of Chao on itself, we set equal to one. This 
assumes that Chao biomass is determined by the level 
of planktivory and the time-dependent influx of Chao 
into the lake [included in Eq. 1 as uday(t) and uday2(t); 

Primary productivity, upp(t), was included in the sta- 
tistical model but was never significant.] 

To select the best model structure, we used Akaike's 
Information Criterion (AIC) while estimating coeffi- 
cients using CLS. AIC incorporates a "penalty factor" 
for the number of parameters in a model, thereby se- 
lecting a model that includes only those parameters that 
provide a minimum amount of additional information 
about the system (Box et al. 1994, Dennis et al. 1998). 
The number of possible model structures is large; since 
there are 117 coefficients, there are 2117 possible model 
structures, depending on which coefficients are includ- 
ed. To select the best model (i.e., the model with the 
lowest AIC), we used the following procedure. We ran- 
domly constructed 100 model structures by including 
or excluding coefficients with probability 0.5, and, 
from these, we selected the best fitting model. We re- 
peated this 100 times, to give 100 models that were 
the best out of 100 randomly constructed models 
(10 000 total model structures). If a coefficient occurred 
in <15 of the 100 "best-of-100" models, we set the 
coefficient to zero. Then, we repeated the procedure to 
produce another 100 "best-of-100" models and set co- 
efficients to zero if they occurred in <15 models. Re- 
peating this procedure led to a single model with the 
lowest AIC. We checked that this model in fact had 
the lowest AIC both by repeating the procedure de- 
scribed above using different random numbers, and by 
exhaustively searching all models that differed from 
the best model by the inclusion or exclusion of indi- 
vidual coefficients. We selected the best model struc- 
ture using only CLS, because TLS was computationally 
too intensive to investigate many different model struc- 
tures. For TLS, we included all coefficients, but con- 
strained the signs of interactions as we have described. 
The magnitudes of the estimated coefficients reveal the 
importance of different interactions. 

The autoregression models were fit without any non- 
linear higher order interaction terms among species. To 
try to identify higher order interactions, we regressed 
residuals for each species from the best fitting model 
obtained by CLS in a pair-wise fashion against each 
higher order quadratic term of the form (xi(t) - j) X 

(xj(t) - -) for all i and j, where x is the mean log 
biomass; this produced 594 pair-wise regressions (re- 

siduals for each of nine species X 66 higher order 
interaction terms). For each regression, we calculated 
the F ratio, and we selected the strongest higher order 
interaction terms as those with the largest F ratios (Lar- 
sen and Marx 1981). F ratios can be used comparatively 
to rank the higher order interactions, because they are 
monotonic functions of the likelihood ratio statistic 
(Dennis and Taper 1994). However, the F ratios in this 
context do not have F distributions, and so tables of F 
distribution percentiles cannot be used with time-series 
data for hypothesis testing or estimating confidence 
intervals (Dennis and Taper 1994). 

To measure the long-term changes in biomasses in 
response to planktivory, we calculated the average spe- 
cies' biomasses for each of the seven years of study 
and regressed these against the average annual plank- 
tivory rate. The slope of this regression for species i 
is denoted Mi, and values of Mi for all species are given 
in Table 1. Negative and positive values of Mi corre- 
spond to decreases and increases, respectively, in av- 
erage annual species' biomasses with increases in av- 
erage annual planktivory rates. We will compare these 
values of long-term changes in species' biomasses with 
those predicted by the autoregression model, using an 
analysis described in the Results section. 

RESULTS 

Fitted autoregressive model 

Table 2 gives the coefficients for the autoregressive 
model fitted using CLS and TLS. For CLS (Table 2A), 
only those coefficients included in the best fitting mod- 
el are shown, and R2 values give the amount of ex- 
plained variance in the change in biomass from one 
sample to the next (i.e., xi(t + 1) - xi(t)). For TLS 
(Table 2B), all coefficients with magnitude >0.02 (or 
>0.0001 for day-of-year and day-of-year squared) are 
shown, and R2 values give the amount of explained 
variance in the biomass (i.e., xi(t)). 

In general, the coefficients given by CLS and TLS 
are similar. The main differences are the coefficients 
for the effects of Ocop on Dr (bDro,.p), Dr on itself 
(bDrDr), and Dp on Bl (bBDp). The R2 values reported 
for CLS are generally lower than those reported for 
TLS. This reflects differences in how these R2 values 
were calculated; for CLS, R2 was based on the variance 
in xi(t + 1) - xi(t), whereas for TLS, R2 was based on 
the variance in xi(t). 

Fig. 1 gives zooplankton biomasses and planktivory 
rates for the period 1984-1990, with zooplankton bio- 
masses predicted by the autoregressive model using 
CLS (dashed lines) and TLS (solid lines). The lines 
were fit to the data by estimating the first point of each 
year as the average of the biomasses in the first three 
samples of the year, and then generating predicted time 
series using Eq. 1. The lines obtained by CLS and TLS 
are similar, although they differ for a few species in a 
few years, for example, for Dp in 1987, for Dr in 1988, 
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and for Bi in 1988. Also, although the fitted lines cap- 
ture much of the variability in species' biomasses, the 
models do not capture some dynamical features of the 
data, for example, the very high biomasses of Dr in 
1988 and of Hg in 1985. It is unclear what caused these 
particularly high biomasses, but it is likely that ex- 
ogenous factors other than those included in the model 
(planktivory, primary productivity, and day-of-year) 
were involved. 

Fig. 2 summarizes the autoregressive model in the 
form of an interaction web. Species that decreased in 
biomass with increasing planktivory are shown in 
black, species that increased are white, and the species 
that remained unchanged, Dr, is shown with hatching 
(Table 1). Lines connecting species denote the inter- 
actions given by the coefficients obtained from CLS 
(Table 2A), with negative coefficients shown with ar- 
rows and positive coefficients shown with dots. The 
best fitting model included coefficients for intraspecific 
effects, bij, for all species, although these are not shown 
in the figure. 

Higher order interactions 

We searched for higher order interactions by regress- 
ing residuals from the best fitting model obtained using 
CLS against all quadratic terms of the form (xi(t) - xi) 
X (xj(t) - x) for all i and j. Of the 594 resulting re- 
gressions, the three with the highest F ratios were for 
Ccop residuals regressed against the interaction term 
Ccop X Bl, Ccop residuals against Ccop X Db, and 
Dr residuals against Dr X Dp; the corresponding F 
ratios were 15.08, 10.97, and 10.05, respectively. Fig. 
3 shows the strongest of these: Ccop residuals regressed 
against Ccop X Bl. The negative correlation between 
Ccop residuals and Ccop X Bl implies that the increase 
in biomass of Ccop was relatively high when either 
Ccop had high biomass and Bl had low biomass, or 
when Ccop had low biomass and Bl had high biomass. 
We can think of no biological reason for this to be the 
case. Furthermore, although this is the strongest higher 
order interaction, it does not explain much variance in 
the residuals from the best fitting linear model. 

This analysis highlights the difficulty of detecting 
higher order interactions in complex communities us- 
ing time series techniques. Although higher order in- 
teractions may exist, the large number of possible high- 
er order interactions makes detecting real higher order 
interactions statistically problematic. Furthermore, 
large amounts of unexplained variability in natural sys- 
tems will obscure the effects of higher order interac- 
tions. 

Long-term changes in average annual biomass 

The coefficients from the autoregressive model mea- 
sure the direct effects of species interactions on short- 
term changes in biomass, assuming that changes in 
biomasses between weekly samples are too rapid to be 
the result of indirect interactions acting through 

changes in the biomasses of other species. In contrast, 
long-term changes in species' biomasses depend on 
both direct interactions and indirect interactions op- 
erating through long-term changes in biomasses of oth- 
er species in the community (Bender et al. 1984, Yodzis 
1989, Ives 1995). To investigate the importance of 
these indirect effects, in Appendix A we derive a math- 
ematical formula that uses the coefficients estimated 
from the autoregressive model to predict the long-term 
changes in species biomass. This formula can be ex- 
pressed in terms of vectors Bj = [blj, b2j, . - ., b9j] and 
ApIk = [alplk, a2plk, - . , a9plkl; Bj contains the coeffi- 
cients for the effects of species j on all other species 
in the community, and Aplk contains the coefficients for 
the effect of planktivory on all species. The predicted 
long-term change in biomass of species i, Li, is then 
given by 

det(B,, .. . , Bi,-1, Aplk' Bi+1, ... I B9) (2) 

i det(B,, . *, B() 

By comparing values of Li to the observed changes in 
average annual species biomasses with changes in av- 
erage annual planktivory (given by Mi in Table 1), we 
can determine whether the direct interactions obtained 
from the autoregressive model are consistent with long- 
term changes in the zooplankton community. When 
assessing the predicted changes in zooplankton bio- 
masses, we excluded Chao, since the autoregressive 
model did not include coefficients for the effects of 
other zooplankton species on changes in Chao biomass. 

Fig. 4 graphs the predicted changes in average annual 
zooplankton biomasses with changes in average annual 
planktivory, Li, against the actual changes, Mi. This 
relationship is based on CLS (Fig. 4A) and TLS (Fig. 
4B). For CLS, the match between Li and Mi is very 
close. The match is poorer for TLS. The two low values 
of Li for TLS correspond to Dr and Ccop. Considering 
the similarity in coefficients obtained from CLS and 
TLS (Table 2), the differences in values of Li for Dr 
and Ccop are surprisingly large. Trying to determine 
exactly which coefficients are responsible for the dif- 
ferences in the predicted values of Li is difficult, be- 
cause the values of Li depend on all coefficients, not 
just those involving the particular species i. Because 
the coefficient values obtained from CLS give better 
predictions of the long-term changes in zooplankton 
biomasses, we will use these values in further analyses. 

In this analysis, Li and Mi were both derived from 
the same data. Therefore, the match between Li and Mi 
should not be interpreted as a test of the fit of the 
autoregressive model to the data. Instead, the formula 
for Li should be viewed as a tool to investigate the 
interaction web derived from the autoregressive model 
and how indirect interactions acting through this web 
explain the community responses to planktivory ma- 
nipulations. 
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TABLE 2. Regression coefficients ci, b3j, and aik obtained from (A) conditional least-squares estimation, and (B) total least- 
squares estimation. 

Species bij 
(i) cj Dp Dr Hg Bi Db Ocop Ccop Rot Chao Plk 

A) Conditional least-squares estimation 
Dp 1.17 -0.59 -0.40 -0.26 
Dr 0.18 -0.19 -0.13 -0.14 
Hg -1.17 -0.19 -0.28 -0.22 -0.09 
Bl -0.23 -0.05 -0.07 -0.11 
Db -0.47 -0.16 -0.18 -0.27 
Ocop 0.30 -0.06 -0.14 
Ccop -0.07 0.12 -0.10 0.15 
Rot -0.33 -0.13 -0.05 -0.37 
Chao -1.91 it -0.21 

B) Total least-squares estimation 
Dp 1.49 -0.45 -0.03 -0.57 -0.16 
Dr 0.23 -0.03 0.0 -0.02 -0.11 
Hg -0.79 -0.20 -0.25 -0.19 -0.11 
BI -0.34 -0.16 -0.13 -0.02 -0.21 
Db -0.11 -0.24 -0.03 -0.12 -0.27 
Ocop 0.34 -0.09 -0.14 
Ccop -0.06 0.07 -0.07 0.12 
Rot -0.29 -0.16 -0.39 -0.02 
Chao -2.17 it -0.21 

Note: In (B), only values with magnitude -0.02 shown, except for Day and Day2, where only values ?0.00001 are shown. 
t In (A), R2 is calculated for changes in log biomasses between consecutive samples. In (B), R2 is calculated for total 

variation in log biomasses. 
t Regression coefficient set to 1. 

Pathways of the effects of planktivory 

The equation for Li (Eq. 2) gives a tool that can be 
used to explore the pathways by which changes in 
planktivory change the biomasses of zooplankton in 
the community. From the autoregressive model, plank- 
tivory has its main effects through Dp, Hg, and Chao 
(Table 2, Fig. 2). It is natural to ask which of these 
three pathways is the most important in explaining the 
long-term changes in zooplankton biomasses in re- 
sponse to changes in planktivory. 

To address this, we sequentially set the coefficients 
for the effects of planktivory on Dp, Hg, and Chao to 
zero, and recalculated the predicted long-term change 
in biomass, Li, for all species. Comparing the resulting 
values of Li to the observed values Mi shows that re- 
moving the effect of planktivory on Dp causes the 
greatest decrease in the correlation between Li and M 
(Fig. 5). Therefore, the effect of planktivory on Dp is 
the most important in explaining the changes in average 
annual zooplankton biomasses observed over the 
course of the experiment. Nonetheless, even after the 
removal of the effect of planktivory on Dp, the cor- 
relation between Li and Mi is 0.71, implying that the 
effects of planktivory on Hg and Chao also play an 
important role. 

Endogenous vs. exogenous interactions 

The autoregressive model (Eq. 1) separates the en- 
dogenous interactions between species within the com- 
munity that are given by coefficients bij, from the ex- 
ogenous interactions between species and planktivory 

that are given by coefficients aiplk. The long-term re- 
sponses of zooplankton biomasses to changes in plank- 
tivory, Li, depend on both the endogenous and exog- 
enous interactions. Nonetheless, Eq. 2 breaks Li down 
into a denominator, which is independent of the effects 
of planktivory on species in the community (APLk), and 
a numerator, which is independent of the effects of 
species i on species in the community (Be). This makes 
it possible to ask, for a given species i, whether its 
sensitivity to long-term planktivory manipulations can 
be predicted from only endogenous interactions be- 
tween species (denominator of Eq. 2); whether its sen- 
sitivity can be predicted without knowing its effects Bi 
on other species (numerator of Eq. 2); or whether both 
of these components are needed to predict a species' 
sensitivity to planktivory manipulation. 

Fig. 6 shows the magnitudes of Li, the denominator 
of Eq. 2, and the numerator of Eq. 2 graphed against 
the magnitude of the observed long-term change in the 
biomass of species i, Mi. Variation in the magnitude of 
the denominator of Eq. 2 explains little of the variation 
in |Mij (Fig. 6B). Therefore, endogenous interactions 
alone are not sufficient to predict the sensitivity of 
species to planktivory perturbations. The numerator of 
Eq. 2 explains more of the variation in |Mij (Fig. 6C), 
although not as much as the product of the numerator 
and denominator, that is, Li (Fig. 6A). We therefore 
conclude that to predict the sensitivity of species i to 
planktivory perturbations, it is necessary to know how 
planktivory effects all species, how species i effects all 
species, and how all of the other species interact in the 
community. 
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TABLE 2. Extended. 

aik 

Pp Day Day2 R2t 

0.30 
0.11 

0.0038 -0.00031 0.27 
0.05 

-0.0029 -0.00038 0.19 
0.08 
0.14 

-0.19 0.21 
0.0067 -0.000082 0.25 

-0.00031 0.73 
-0.00072 0.64 

0.0033 -0.00041 0.49 
-0.0010 0.72 
-0.0048 -0.00031 0.78 
-0.00089 0.79 
-0.00045 0.75 

-0.25 -0.00061 0.33 
0.0070 0.00016 0.23 

Arguing from this result for planktivory perturba- 
tions, it is likely that predicting how species will re- 
spond to any other type of perturbation will require 
knowing how that perturbation affects the population 
growth rates of all species in the community. Knowing 
only the interaction strengths between species is not 
enough. However, once the interaction web for a com- 
munity is quantified using data from one perturbation, 
it can be used to predict species' responses to another 
perturbation, when combined with information on how 
the perturbation affects each species. This argument 
assumes that the quantitative interaction web, as cal- 
culated from data collected during one type of pertur- 
bation, would correctly describe interactions experi- 
enced during a different type of perturbation. In the 
Discussion, we consider whether this assumption is 
likely to be valid. 

In Appendix B, we break down Eq. 2 still further 
and show that the sensitivity of a species to a pertur- 
bation decreases with the following: (1) the strength 
of interactions of that species on other species in the 
community (measured by the magnitude of Bk), (2) the 
ecological distinctiveness of the species in the com- 
munity (measured by the dissimilarity between Bi and 
the Bj's for all other species in the community), and 
(3) the similarity between the effects of planktivory 
and the effects of species other than species i (measured 
by the similarity between Apik and all Bj's except for 
Bk). This analysis reveals several interesting patterns. 
For example, the magnitudes of responses of both Dp 
and Db to long-term planktivory manipulations were 
that same (IMDPI = IMDbI = 0.59). Dp had strong effects 
on other species, while Db had weak effects. This 
should buffer Dp against long-term perturbations rel- 
ative to Db. Nonetheless, Dp was ecologically similar 

to Hg and Ocop (Table 2, Fig. 2), and this greater 
ecological similarity counteracted the buffering effect 
of having strong interactions with other species. The 
net result is that Dp was as sensitive as Db to the 
planktivory perturbations. Appendix B summarizes the 
results of this analysis for all species in the community, 
showing that no single factor was responsible for dif- 
ferences among species' in their sensitivity to plank- 
tivory manipulations. 

DISCUSSION 

Our goal has been to understand the observed 
changes in the zooplankton community of Tuesday 
Lake caused when planktivory rates were experimen- 
tally manipulated. Using weekly changes in species 
biomasses over the seven-year period of the experi- 
ment, we constructed a quantitative interaction web for 
the zooplankton community, using autoregression to 
estimate the direct interaction strengths between spe- 
cies (Table 2, Fig. 2). We then used the interaction web 
to investigate how direct and indirect interactions com- 
bine to explain the long-term changes in species bio- 
masses with changes in average annual planktivory 
rates. 

Biological plausibility of the interaction web 

When interpreting the interaction web produced by 
the autoregressive model, two caveats are needed. First, 
the autoregressive model relies on correlated changes 
in species' biomasses to infer interactions between spe- 
cies. The best fitting model gives the best post hoc 
description of changes in species' biomasses, but, as 
with any model based on correlation, it does not con- 
stitute a test of species interactions. Second, for inter- 
actions between species to be detected, the interactions 
must be involved in the observed changes in species' 
biomasses. For example, even though a species may 
have a negative effect on another, this effect will not 
be found using autoregression unless the biomass of 
the first species changes. Therefore, the ability of au- 
toregression to identify species interactions depends on 
the response of the entire community to a perturbation. 

Despite these caveats, the autoregressive model 
gives a biologically plausible depiction of the main 
interactions within the zooplankton community (Fig. 
2). Planktivory has greatest impact on the large-bodied 
zooplankton species, D. pulex (Dp), Chaoborus (Chao), 
and H. gibberum (Hg), as expected from size-selective 
predation (Brooks and Dodson 1965, Hall et al. 1976). 
Dp interacts strongly with the other herbivores, and 
this pattern is consistent with the view that Dp is the 
most critical zooplankton species for successful bio- 
manipulation (Shapiro 1990, Carpenter and Kitchell 
1993). Its broad diet and rapid numerical response 
make it a formidable grazer and competitor (Lynch 
1979, Vanni 1986). The negative effect of Chao on B. 
longirostris (Bl) is consistent with predation known 
from Tuesday and other lakes (Elser et al. 1987). The 
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FIG. 1. Log biomass of zooplankton species and planktivory rates over seven years of experimental manipulation in 

Tuesday Lake. The lines in the graphs for each species give the population dynamics predicted by iterating the autoregressive 
model, using the coefficients obtained from conditional least-squares estimation ( .------) and total least-squares estimation 
( --), given in Table 2. The data are given as sequential points, and the years are separated by breaks in the fitted lines. 
The acronyms for the different species are given in Table 1. Planktivory (Plk) is log-transformed and rescaled so that it 
fits on the same scale as the log biomasses of the zooplankton. 

strong predator-prey interaction between carnivorous 
copepods (Ccop) and rotifers (Rot) makes sense (Sor- 
anno et al. 1993b), although Ccop were abundant in 
only one year of the study. 

Some other interactions are plausible but not well 
studied. For example, the negative effects of omniv- 
orous copepods (Ocop) on Dp and D. rosea (Dr), and 
of Dp on Ocop, could represent competition with, or 
predation on, juveniles. Although we do not understand 
the mechanism of these interactions, they appear to 
have substantial effect and could be investigated ex- 
perimentally. The negative effect of Rot on Dr is puz- 
zling, but does appear as important in our autoregressions. 

We expected seasonal patterns to be weak, because 

our sampling program was designed to focus on sum- 
mer stratification and avoid strongly seasonal patterns. 
The species that show seasonal effects (Chao, Hg, and 
D. birgei [Db]) are those that typically show a cycle 
within the summer season in these lakes (Carpenter et 
al. 1987, Elser et al. 1987, Soranno et al. 1993b). Dur- 
ing the course of the summer, Chao undergoes the ma- 
jor events of its life cycle: pupating, emerging, ovi- 
positing, and growth through four larval instars. Thus, 
a strong seasonal effect is expected. 

In other cases, we were surprised by interactions that 
were not revealed by autoregression. While numerous 
negative effects of competition or predation are evi- 
dent, positive effects of prey on predators are rare. This 
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FIG. 2. Interaction web derived from the best fitting au- 
toregressive model with coefficients obtained from condi- 
tional least-squares estimation (Table 2A). The abbreviations 
of species names are explained in Table 1. The shading cor- 
responds to decreasing (black), increasing (white), or un- 
changing (hatching) biomass of the species with increasing 
planktivory. Boxes are used for mainly herbivorous species, 
while circles denote predatory species. Arrows denote neg- 
ative coefficients on the species to which the arrow is directed, 
and solid dots denote positive coefficients. Although not 
shown, the best fitting model includes negative coefficients 
for intraspecific effects for all species. 
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FIG. 3. Graph of the strongest quadratic higher order in- 
teraction. The residual change in log biomass of carnivorous 
copepods (Ccop) from the best fitting autoregressive model 
is regressed against the interaction term between carnivorous 
copepod and B. longirostris log biomasses, [xc~0p(t) - CcCop] 
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FIG. 4. The predicted change in average annual biomass 
with average annual planktivory for each species, Li, vs. the 
observed change, M,. (A) L; was predicted using coefficients 
obtained from conditional least-squares estimation. (B) Lwas 
predicted using coefficients obtained from total least-squares 
estimation. Each point corresponds to a zooplankton species, 
although Chaoborus is excluded (see Results: Long-term 
changes). 

may indicate that predators can be sustained by a num- 
ber of prey species and consequently are not sensitive 
to shifts in the availability of any one prey item. Based 
on diet analyses (Elser et al. 1987), we expected Chao 
to have a negative impact on Rot. Because of inter- 
ference competition (Gilbert 1988), we also expected 
Dp and Dr to have negative impacts on Rot. There are 
at least two biological explanations for the absence of 
these negative effects. (1) Rotifers have relatively fast 
growth rates (Downing and Rigler 1984), and rapid 
growth may obscure effects in measurements made at 
1-wk intervals. (2) Rotifers are the most speciose of 
the lumped groups in the analysis (Soranno et al. 
1993b), and shifts in species composition could prevent 
changes in total rotifer biomass (Frost et al. 1995). We 
expected primary production to have a generally pos- 
itive effect on zooplankton biomass, as has occurred 
in whole-lake nutrient enrichments (Carpenter et al. 
1996). However, effects of primary production were 
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FIG. 5. The predicted change in average annual biomass 
with average annual planktivory for each species, Li, vs. the 
observed change, Mi, when different interactions between 
planktivory and zooplankton are removed. The coefficients 
used to calculate Li were obtained from conditional least- 
squares estimation. The top left-hand panel corresponds to 
Fig. 4A. The panel labels "Plk - j removed" denote that 
the coefficient for the effect of planktivory on species j is set 
to zero. The abbreviations of species names are explained in 
Table 1. 

weak. Primary production varied far more in nutrient 
enrichment experiments than in the Tuesday Lake 
planktivory manipulation, and the range of primary 
production was probably insufficient to detect its ef- 
fects on zooplankton. Because autoregression analyses 
can fail to detect effects for a number of reasons, the 
interaction web of Fig. 2 should be viewed as a minimal 
map of the most strongly apparent interactions. 

Quantifying the importance of indirect interactions 

We used the quantitative interaction web to integrate 
the direct and indirect effects of planktivory manipu- 
lations and, thereby, explain the long-term responses 
of species to changing planktivory. The coefficients of 
the autoregressive model obtained from conditional 
least-squares (CLS) estimation gave predictions for the 
effect of planktivory on average annual species' bio- 
masses that are consistent with the observed average 
annual biomasses. In contrast, the coefficients obtained 
from total least-squares (TLS) estimation gave poor 
predictions, especially for D. rosea and the carnivorous 
copepods. This occurs despite the similarity between 
coefficients obtained using both estimation procedures 
(Table 2), and despite the similarity in trajectories of 
the models fitted to the data (Fig. 1). This result em- 
phasizes how predicting long-term changes in species 
abundances may be sensitive to the magnitudes of the 
estimated strengths of interaction between species. 

From the analysis of the interaction web with co- 
efficients obtained from conditional least-squares es- 
timation, planktivory appears to have its main effect 
on the zooplankton community through its effect on D. 
pulex; setting the coefficient for the effect of plankti- 
vory on D. pulex to zero leads to poor predictions of 
the long-term changes in zooplankton biomasses (Fig. 
5). This identifies D. pulex as a keystone species with 
respect to changes in the community brought about by 
changes in planktivory. Despite the importance of D. 
pulex, the effects of planktivory on H. gibberum and 
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FIG. 6. Magnitude of the predicted change in average an- 
nual biomass of each species (excluding Chaoborus), with 
changes in average annual planktivory, vs. the magnitude of 
the observed changes |Mi|. (A) Prediction based on |LI|, given 
by Eq. 2. (B) Prediction based only on the magnitude of the 
denominator of Eq. 2, I1/det(BI, ..., B9)I. (C) Prediction 
based only on the magnitude of the numerator of Eq. 2, 
Idet(BI, . .. , Bi-,, Apik, Bi+,, - . . B9)I. 
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Chaloborus are also important, and together, in the ab- 
sence of the effects on D. pulex, they can explain much 
of the observed long-term responses in the zooplankton 
community (Fig. 5). 

The interaction web can also be used to quantify how 
the patterns of interaction between zooplankton within 
the community either buffer or accentuate the effects 
of planktivory. Theory predicts that, all else being 
equal, species that have distinct ecological roles and 
exert large effects on other species in the community 
will be relatively buffered against long-term exogenous 
perturbations (Appendix 2; Ives 1995). In principle, 
this makes it possible to predict which species are the 
least sensitive to environmental perturbations, based 
solely on how they interact with other species. How- 
ever, our analysis shows this does not work for plank- 
tivory manipulations (Fig. 6). Instead, knowing how 
planktivory effects all zooplankton species is essential 
for making predictions about which species will change 
to the greatest extent when the community experiences 
planktivory manipulations. Thus, although theory 
makes predictions about which species will be most 
sensitive assuming all else is equal, for the community 
and manipulation we analyzed, all else is not equal. 

Assumptions underlying the quantitative 
interaction web 

A central assumption of the autoregressive model is 
that, over the weekly intervals between samples, 
changes in zooplankton biomasses are driven by direct 
interactions between species. By inferring direct inter- 
actions using weekly data, we are assuming that in- 
direct interactions between two species, acting via 
changes in the biomass of a third species, do not occur 
rapidly enough to be observed on a weekly time scale. 
For example, consider three competing species, x, y, 
and z, with y having a direct effect on x, and z having 
a direct effect on y, but not on x. Suppose that the 
biomass of species z was high in week t, and this led 
to a decrease in biomass of species y. If species x re- 
sponded rapidly to this decrease in y, then the increase 
in z would appear to create an increase in the biomass 
of species x. Although this example highlights the po- 
tential danger of inferring direct interactions from 
weekly samples, two things reduce this danger. First, 
the biomass of species y, in week t, itself appears in 
the regression for the change in the biomass of species 
x. Therefore, the indirect positive effect of species z 
on x will only appear if the change in biomass of species 
y, after the sample in week t, explains a substantial 
amount of variance in the change in biomass of species 
x beyond that already explained by the biomass of spe- 
cies y in week t. Second, in Tuesday Lake, the gen- 
eration times of all zooplankton except rotifers are at 
least twice as long as the weekly sampling interval, 
thereby limiting the magnitude of possible indirect in- 
teractions. 

The autoregressive model also assumes that changes 

in species' biomasses between successive samples are 
explained by the biomasses of all species at the initial 
sample, with no effect of biomasses measured in pre- 
ceding weeks. The potential for time-delayed effects 
exists if there are changes in the age structure of pop- 
ulations. For example, if predators selectively killed 
juvenile stages of a species, then the effect of predation 
on the species' reproduction rate would be delayed by 
the time required for juveniles to reach reproductive 
age. The potential for time-delayed effects is reduced 
at longer intervals between sampling, since longer sam- 
pling intervals will incorporate time-delayed effects. 
Thus, the sampling interval of roughly half a generation 
time of many of the zooplankton species we analyzed 
decreases the likelihood of time-delayed effects. Notice 
that there is a conflict between sampling at short in- 
tervals to reduce the confounding effects of indirect 
interactions, and sampling at long intervals to reduce 
the potential for time-delayed effects. The weekly sam- 
pling interval of the data we analyzed should be a rea- 
sonably good compromise of this conflict. 

Finally, the autoregressive model assumes that in- 
teractions between the log-transformed biomasses of 
species are linear. To search for potential nonlinear in- 
teractions, we regressed residuals from the best fitting 
log-linear model against all quadratic terms of the form 
(xi(t) - J) X (xj(t) - XJ). Even the strongest nonlinear 
interaction (Fig. 3) did not explain much of the residual 
variation in changes in biomasses. A problem of de- 
tecting nonlinear higher order interactions is the large 
number of possible nonlinear interactions, even when 
there are relatively few species in a community; for 
our data set, there are 594 possible quadratic interaction 
terms. Nonlinear interactions might occur in real com- 
munities, but only very strong nonlinearities are likely 
to be detected in time-series data sets, especially if the 
natural variability in the community is large. Although 
a log-linear model may not be biologically accurate, it 
may nonetheless be sufficient to characterize the major 
patterns of interactions between species and make pre- 
dictions about long-term responses to environmental 
perturbations (Ives 1995, Ives and Jansen 1998). 

Predicting the response of the community to 
other perturbations 

The magnitude of changes in average annual bio- 
masses of species, with respect to changes in average 
annual planktivory, depends on both endogenous in- 
teractions within the community and the direct effects 
of exogenous manipulations of planktivory on each of 
the individual species. In principle, it is possible to 
anticipate the magnitude of these changes from knowl- 
edge of only the endogenous interactions. Nonetheless, 
for the case of planktivory perturbations, we showed 
that it is necessary to know both endogenous and ex- 
ogenous patterns of interactions. Thus, to predict how 
a novel perturbation will affect the zooplankton com- 
munity, it will be necessary to know how this pertur- 
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bation directly affects all species in the community. 
This is not to say, however, that information obtained 
from analyzing the community responses to the plank- 
tivory manipulation is useless. The quantitative inter- 
action web can be combined with information on the 
direct effects of a novel perturbation to predict how 
the community will respond to the perturbation. The 
direct effects of factors such as pH, temperature, food 
abundance, and chemical pollutants are often measured 
in laboratory and enclosure experiments (Graney et al. 
1994). Our approach may make it possible to use the 
results of small-scale, single-species experiments to 
predict the response of an entire community to pertur- 
bations, thereby making a bridge between small-scale 
experiments and community responses to novel per- 
turbations. 

Although it is possible to use the interaction web 
estimated from the planktivory manipulations to pre- 
dict how the Tuesday Lake community will respond to 
a novel perturbation, this relies on the assumption that 
the interactions revealed by the planktivory manipu- 
lations will be the same as those that drive the response 
of the community to the novel perturbation. Because 
the ability of autoregression to detect interactions be- 
tween species depends on the amount of variation ex- 
plained by the interactions, which interactions are de- 
tected may depend on the perturbation that drives the 
pattern of variation in species' biomasses. Unfortu- 
nately, Tuesday Lake was subjected to only a single 
kind of perturbation, thereby making it impossible to 
assess whether our analysis could predict community 
responses to a different perturbation. A thorough as- 
sessment of the possibility of using information from 
one perturbation to predict the responses to another 
requires a different data set. 

Linear autoregression provides a relatively simple 
tool for quantifying how direct and indirect interactions 
affect the response of species to environmental per- 
turbations. Of course, many complexities of the inter- 
actions among species are ignored. For example, we 
measured interaction strengths as linear regression co- 
efficients, even though interactions between species are 
almost certainly nonlinear (Vandermeer 1969, Case and 
Bender 1981, Gilpin et al. 1986, Billick and Case 1994, 
Wootton 1994b). Although nonlinear modeling ap- 
proaches are possible, these often require estimates of 
large numbers of parameters and make numerous as- 
sumptions about the particular forms of nonlinearities 
(Walters 1986, DeAngelis 1988). A different approach 
to quantifying interactions between species in a com- 
munity is to manipulate the biomasses of individual 
species independently and measure the resulting 
changes in biomasses of other species (Bender et al. 
1984). Although this approach has been applied to lab- 
oratory (Case and Bender 1981, Gilpin et al. 1986, 
Worthen and Moore 1991) and field communities (Mor- 
an et al. 1988, Wootton 1993, 1994a, Menge 1995), it 
is not possible at the scale of whole lakes. Furthermore, 

although it is possible to manipulate abundances of 
species in smaller-scale mesocosm experiments, inter- 
actions among species within mesocosms are often 
poor predictors of interactions at the scale of whole 
lakes (Carpenter 1996, Pace et al. 1998). Therefore, 
given the constraints inherent when studying whole- 
lake communities, we believe that our method is more 
direct, simpler, and, therefore, more robust than other 
methods we could have used to assess the role of spe- 
cies interactions in the response of the Tuesday Lake 
zooplankton community to planktivory. 
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APPENDIX A 

LONG-TERM CHANGES IN SPECIES BIOMASSES 

Here we derive Eq. 2, giving the long-term change in a 
species' biomass with long-term changes in planktivory. Eq. 
1 can be written in matrix form as 

X(t + 1) = X(t) + C + BX(t) + AU(t) (A.1) 

where 

X(t) = [xl (t), ...,X9 (01] 

U(t) = [u1(t), ... U4(01' 

C = [c, c9] 

b1,1 ... b1,9 

B =9.. 

_b9j ... b9,9_ 

a>,,, ..* 1,4 

A [= i aM 

9a,j .. 9,4_ 

and the prime symbol (') denotes transpose. Let E,,(X) de- 
note the vector of average values of X(t) for samples m-n 
within the same year; En,,(X) = [1/(n - m + 1)] In.. X(t). 

If there are T samples in a year, then taking the average of 
the first T - 1 samples on both sides of Eq. A. 1 gives 

E2T(X) = E1T-1(X) + C + BET-1(X) 

+ AEIT-I(U). (A.2) 

'If the number of samples per year is large, and the bio- 
masses in the last sample are similar to the average annual 
biomasses, then ElT l(X) ElT(X), since ElT l(X) 
ET(X) + [1/(T - 1)][ET(X - X(T)]. Similarly, ETl(U) 

E1,T(U), and E2T(X) ET(X). Using these approxima- 
tions, 

E1T(X) E1T(X) + C + BEIT(X) 

+ AEIT(U). (A.3) 

*This gives a set of 9 equations with 9 unknowns, which can 
be solved to give 

El T(X) -B-'[C + AE, (U)]. (A.4) 

The predicted change in average annual biomass of species 
i with changes in average annual planktivory, Li, is the slope 
of E, T(xi) against E, T(uplk) which is given by the ith element 
of the vector -B-'Aplk. Applying Cramer's Rule leads directly 
to Eq. 2 (Apostol 1969, Ives 1995). 

APPENDIX B 

FACTORS AFFECTING THE SENSITIVITY OF SPECIES TO PERTURBATIONS 

From Eq. 2, the predicted change in the average annual 
biomass of species i with changes in average annual plank- 
tivory, Li, can be expressed as follows (Ives 1995): 

L Aplk1 cos x 
(B.) 

IjBill cos Pi 
where 11 11 denotes the magnitude of a vector (e.g., IjBill 
(b2,i + b2i + ... + b2i)12). This equation has a graphical 
interpretation that is illustrated in Fig. Bi for the case of a 
three-species community. JjAPlklj and IjBill are the lengths of 
ApIk and Bi, while (xi and Pi are the angles between ApIk and 
Bi, respectively, and the vector which is perpendicular to the 
vectors B1 for the species other than species i. The angle Pi 
can be interpreted as giving the "ecological role" or "El- 
tonian niche" of species i, since it measures how distinctly 

species i affects all species in the community (Leibold 1995). 
When Pi is close to 90?, Bi lies close to the plane defined by 
the vectors B1 for species j =# i. This implies that the ecological 
effect of species i is similar to the combined ecological effects 
of other species in the community, in the sense that Bi is 
nearly equal to a linear combination of Bi (j =# i). When P 
is small, Bi lies far from the plane defined by the vectors B.j 
for species j =# i. In this case, there is no combination of 
changes in the biomasses of other species that would have 
the same effect on all species in the community as changing 
the biomass of species i. This implies that species i is eco- 
logically distinct from all other species. In a similar fashion, 
(xi measures how planktivory affects species in the commu- 
nity, relative to the effects of all species other than species 
i. If (xi is close to 900, then changing planktivory has a similar 
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FIG. Bi. Graphical interpretation of Eq. B.1 for a three- 
species community. The vectors Bi are defined by the points 
[b I,, b2i, b3J], and ApIk is defined by la,, a2, a3]. The quantities 
l1B II cos PI and IIApIk11 cos cx- are, respectively, the projections 
of B. and Aplk onto the line perpendicular to the surface 
spanned by B2 and B3. 

effect as changing a combination of biomasses of species j 
(j -: i). Conversely, if (xi is small, then the pattern of plank- 
tivory effects on species in the community is distinct from 
those of all species other than species i. 

From Eq. B. 1, three factors decrease the magnitude of the 
species-specific response to long-term changes in plankti- 
vory: (1) strong effects exerted by species i on other species 
in the community (IjBill large), (2) a distinctive ecological role 
for species i (pi small and cos Pi large), and (3) a pattern of 
planktivory that is similar to the vectors Bj for species other 
than species i ((xi large and cos oi small). The fourth term to 
consider in Eq. B.i, IAApIkd, is the same for all species and, 
therefore, does not contribute to the relative sensitivities of 

different species. Values of IjBill, cos Pi, and cos (xi are given 
for each species in Table B 1. Dp has the greatest value of 
IjBill, implying that the magnitude of effects of Dp on all 
species in the system is greatest. This buffers Dp against long- 
term changes. The next two species in order of IjBill are Ocop 
and Rot. For Ocop, the high value of IjBill is largely due to 
its negative effect on Dp; for Rot, the high value of IjBill is 
due to its negative effect on itself. 

Ecological distinctiveness, measured by cos Pi, is greatest 
for Ccop, which is not surprising since this is the only car- 
nivorous species. The next species in terms of ecological 
distinctiveness is Rot, largely owing to its large negative 
effect on itself and its positive effect on Ccop. The three 
groups containing large herbivores, Dp, Hg, and Ocop, all 
have low ecological distinctiveness, since they are all similar 
to each other. This similarity may lead to compensatory 
changes in biomasses, with increases in the biomass of any 
one of them causing compensatory decreases in the biomasses 
of the others. Therefore, the low ecological distinctiveness 
of these three species will tend to make each more prone to 
change (either increase or decrease) when the community 
experiences an exogenous perturbation. 

Finally, the magnitude of cos (xi is greatest for Dp. This 
implies that the effect of Dp on other species in the com- 
munity is the most similar to that of planktivory (Fig. B1). 
The large value of cos (xi increases the long-term change in 
Dp biomass with changes in planktivory (Eq. B.1). The spe- 
cies with the lowest value of cos (i, is Ccop, thereby giving 
it the lowest value of Li. 

These three components, IjBill, cos Pi, and cos (xi, combine 
in different ways to explain the long-term changes in species' 
biomasses to changes in planktivory. Considering the three 
species with the largest values of Mi, Dp, Bl and Db, the 
explanation for Dp's sensitivity to long-term changes in 
planktivory is different from B1 and Db. Dp has a strong 
effect on other species (i.e., a large IjBill), thereby buffering 
it against long-term changes. Nonetheless, this buffering ef- 
fect is overwhelmed by Dp's similarity to other species (small 
cos fi) and its similarity to the effects of planktivory (large 
cos (xi). In contrast, both B 1 and Db are relatively weak in- 
teractors with other species, and they have relatively large 
values of cos ci that drive large changes in average annual 
biomasses. 

TABLE B1. Values of terms in Eq. B.1 for zooplankton in Tuesday Lake. 

Species cLi IBill Cos Pi cos (x 

Dp -0.59 -0.61 0.64 -0.23 0.090 
Dr -0.059 -0.32 0.22 -0.45 0.032 
Hg -0.33 -0.52 0.35 -0.24 0.044 
BI 0.79 0.78 0.23 -0.29 -0.052 
Db 0.59 0.68 0.27 -0.40 -0.076 
Ocop, 0.26 0.24 0.45 -0.24 -0.025 
Ccop 0.24 -0.089 0.11 -0.67 0.0063 
Rot 0.11 0.20 0.42 -0.49 -0.040 
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