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This work develops adaptive estimators for a linear regression model with serially correlated 
errors. We show that these results continue to hold when the order of the ARMA process 
characterizing the errors is unknown. The finite sample results are promising, indicating that 
substantial efficiency gains may be possible for samples as small as 50 observations. We use these 
estimators to investigate the behavior of the forward foreign exchange market. 

1. Introduction 

The standard linear model has served as the workhorse of many economet- 
ric studies. Within this framework most economists are familiar with the use 
of the ordinary least squares (OLS) technique to estimate the slope parame- 
ters. The popularity of this method stems from the fact that, when the errors 
have a likelihood function that declines monotonically in the sum of squared 
errors, OLS is equivalent to the method of maximum likelihood (ML). These 
estimators are the efficient unbiased estimators; they have the smallest 
possible asymptotic variance within the class of unbiased estimators. 

Statisticians have long noted the efficiency losses of OLS when the errors 
are nonnormal and, increasingly, empirical studies in economics have pointed 
to the difficulty in assuming that the residuals have a Gaussian distribution. 
An alternative approach involves the estimation of models with both para- 
metric and nonparametric components. As a simple example consider the 
linear model in which the conditional mean of the dependent variable, 
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denoted X,p, is fully parameterized while the distribution of the error term 
is unspecified making this component nonparametric. Any estimator of p 
that can be formed without relying upon the unknown error density is a 
semiparametric estimator of p, one example of which is the OLS estimator. 

In general, semiparametric estimators have larger asymptotic variances 
than the corresponding ML estimators based upon fully parameterized 
models, reflecting the loss of information inherent in leaving the error 
distribution unspecified. In certain cases however, the asymptotic distribu- 
tions of these estimators are equivalent, and in this situation the semipara- 
metric estimator is referred to as an adaptive estimator. 

Adaptive estimators are especially attractive for use in empirical financial 
models. These situations are characterized by significant departures from 
normality and with the quantity of data available, precise estimation is an 
important goal. One could attempt to capture these departures by employing 
ML estimators with a specified distribution that is asymmetric or character- 
ized by thick tails. Since the true distribution is not known these models are, 
in general, misspecified and their estimators are biased and inefficient. A 
more promising approach is to introduce conditional heteroscedasticity into 
the error sequence. In a recent survey article Bollerslev, Chou, and Kroner 
(1992) detail the extensive use of such models incorporating innovations with 
autoregressive conditional heteroscedasticity (ARCH). While an ARCH 
model depends upon only a small number of parameters to capture thick- 
tailed departures from normality, it does not account for asymmetry. Further, 
if this specification of the conditional moments is incorrect, the resultant 
misspecification is again a source of bias for the parameter estimators and 
leads to a variance that asymptotically exceeds the variance of the estimators 
of the correctly specified model. The semiparametric estimators introduced 
above rely upon much more general distributional assumptions, rendering 
them less susceptible to misspecification and restoring asymptotic efficiency 
in a wide range of cases. 

Adaptive estimators have been developed for the linear model with inde- 
pendent errors in Bickel (1982) and for zero mean ARMA processes with 
known order in Kreiss (1987). Neither of these results are sufficient for use in 
empirical financial models. Such models typically have a nonzero conditional 
mean and include dependence in the error sequence, either through condi- 
tional second moments as in the ARCH design mentioned above, or through 
ARMA models with an unknown order. In this paper we prove the existence 
of adaptive estimators for general linear models in which the error process 
has an autoregressive moving average representation (ARMA) and explicitly 
consider both the case in which the order is known and in which it is 
unknown. 

Section 2 begins by carefully defining the appropriate efficiency bound that 
an estimator must achieve to be adaptive. The class of models we consider is 
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described in section 3, while sections 4 and 5 show that the parameters of 
these models can be estimated adaptively. Finite sample results are pre- 
sented in section 6, and in section 7 use the estimators to investigate the 
properties of the forward foreign exchange market. For the sake of both 
brevity and clarity, notational derivations and all proofs have been confined 
to the appendix. 

2. Efficiency criterion 

Adaptive estimators are semiparametric estimators that are asymptotically 
equivalent to ML estimators. Therefore a natural efficiency criterion would 
seem to be the Cramer-Rao lower bound. This is not tractable since 
superefficient estimators exist that have limiting distributions with a smaller 
variance than the MLE’s at the point of superefficiency. For local neighbor- 
hoods of this point the relationship is reversed and the MLE has a smaller 
asymptotic variance [Hajek (197211. As a result we exclude superefficient 
estimators by restricting attention to estimators that have uniform limiting 
distributions in local neighborhoods of the true parameter value. 

The corresponding efficiency criterion is based on the minimax principle. 
Consider the problem of estimating a parameter vector (Y using the estimator 
hT where T indexes the sample size. Given a loss function I, a sequence (gT} 
is locally asymptotically minimax if for any open interval around (Y the 
estimator approximately minimizes the maximum expected loss as the sample 
size becomes large. 

More formally, to construct our minimax bound we let I represent a 
general loss function. This function maps R” into R+, the set of nonnegative 
real numbers. We assume that (z: f(z) I c} is closed, convex, and symmetric 
for every value of c 2 0. We also require that 

/ I( z)&(Az) dz < ~0, A >o, (2.1) 

where &i denotes the univariate standard normal density function. 
We wish to examine local neighborhoods of (Y, so let A represent the set 

of all sequences which are T’/‘-convergent to (Y, 

(2.2) 

If our model is sufficiently regular that the log-likelihood function is quadratic 
over A, then it can be represented using a second-order Taylor series 
expansion and the estimation problem is locally asymptotically normal (LAN). 
Using a result from Fabian and Hannan (19821, when a problem is LAN its 

J.Econ- J 
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asymptotic minimax bound is 

lim lim infsup,aT_a,<mEa~{ZlT1’2(~T-LyT)I} >E{l(Z)}, (2.3) 
,,,+m T+m 

where Z - N(0, .X((Y)-‘) and S(cy) denotes Fisher’s information matrix 
corresponding to the true distribution. 

An estimator which achieves this bound asymptotically is a locally asymp- 
totic minimax (LAM) estimator. An estimator is LAM if and only if its 
limiting distribution is invariant over A, giving us the following definition for 
an adaptive estimator. 

Definition 2.1. A semiparametric estimator {GT} is adaptive if and only if 

L,T{T”*(&~- a)] + N(O,S(a)-‘), 

for all {cY’} EA, whenever X(a) is finite and continuous at CY. 

3. Applications to regression problems 

We will consider the linear regression model with an ARMA(p, q) error, 

Y,=X,P+E t9 (3.1) 

where p is a subset of Rk and .c~ follows: 

El = u, (3.2) 
k=l j=l 

Here (u,} is a sequence of independent identically distributed (i.i.d.1 random 
variables with density function f. Let (Y = (p’, p’, 0’)’ and note (Y E R”, where 
a=k+p+q. 

To avoid nonparametric estimation of the density of the regressors, IX,), 
we must be sure that it is an ancillary statistic for the estimation of a. We 
therefore assume that weak exogeneity holds throughout so that we may 
confine our attention to the conditional density of {y,}. In addition, we need 
to make the following assumptions: 

Assumption 1. The time series error process 1~~) is stationary and invertible. 
The roots of the following polynomial equations are all strictly greater than 1 
in modulus, 

l9( 2) = 1 + e,z + . . . +e,zq = 0 

and 

p( 2) = 1 +piz + * . . +p,zp = 0. 
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Assumption 2. The independent and identically distributed random vari- 
ables u, have the common density f, with a zero mean and finite fourth 
moment. This density is absolutely continuous with respect to Lebesgue 
measure, f(u) > 0 for all u, f is symmetric, and Z(f) = j(f12/fdu is finite. 

Assumption 3. For all t = (1,2,3,. . . 1 the common distribution g,(ui_, 
,.‘., uo; E1--p,. . . > &I$ El,. . ., ET, . cu) is absolutely continuous with respect to 
Lebesgue measure and is defined over the entire space on which (Y is defined. 
We also assume that the initial conditions are well behaved in that if &r is a 
T1/2-consistent estimator of LY, then 

go(ul_q )..., Uo;E*-p ,..., Eo;q+gO(U1-q ,... >Uo;El-p>...+o;~) 

in P,-probability. 

Assumption 4. The T x k matrix of independent regressors, X, satisfies 
T-‘C;,,X;X,_, = Q,, s = 0 ,..., p, where Q, is a nonsingular k x k posi- 
tive definite matrix and J% indicates convergence almost surely. Note that 
X,, the tth row of X, is an element of lRk corresponding to the observations 
on the independent variables for period t. While this specifically allows for 
serial correlation in our right-hand-side variables, we need this correlation to 
vanish asymptotically for the sequence {X,) to have a stationary time series 
representation. Therefore we require that the lim, +-Q, = 0 and ET=oQS = Q 
< m. Since this last assumption restricts only the second moments of IX,), it 
is weaker than the restriction that IX,} be an a-mixing sequence. 

Assumption 5. If we let 5, =f(u,>/f(u,I, then 5 is assumed to satisfy 

lim [t(u+A) -S(u)]f(u)du=O. 
A+0 / 

In addition, the expected value of the derivative of 5 should satisfy 

We must first derive the asymptotic minimax bound for the model of eqs. 
(3.1) and (3.2). Using the logic outlined in section 2, if we can show that LAN 
holds, then our bound is given by (2.3). The LAN condition requires that our 
log-likelihood be asymptotically quadratic in a neighborhood of the true 
parameter value (if this property held over the entire parameter space, the 
model would be globally asymptotically normal). We define our neighbor- 
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hood, using the set A, as 

~T++T-l/2m,, $-Ep+ T-‘12m2, BT=e+T-1’2m3, (3.3) 

where m, E Rk, m2 E RP, and m3 E Rq. Using these neighborhoods we can 
concisely write UT - u, as 

UT- ~~=(m;:m;:rn;)~((~~,~~), (3.4) 

where the derivation of S, is described in the appendix. 
For all points in the neighborhood A the log-likelihood ratio is 

with the score function 

ST(aT) = i &d(aT). (3.5) 
I=1 

Here /$aT) represents the derivative of u, with respect to (Y evaluated at 
the point (Y’, and we use f ‘I2 rather than f because we want to work with 
square integrable functions and the definition of a density insures that f1j2 
is a member of this class. 

Lemma 3.1. Under Assumptions l-5 the log-likelihood ratio for the linear 
model with ARMA(p, q) errors is such that 

In LT- c ‘%)(“T-ur) 
r=1 

+ +( rnfI : rn; : m;) S( a)( m, : m2 : m,)’ + 0, 

A proof of Lemma 3.1 is given in Steigerwald (1989a). An important 
consequence of this lemma is 

La{ST(a)} +N(O,~(~)). (3.6) 
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4. Efficient estimation 

We have now shown that one can find suitable conditions under which 
local asymptotic normality holds for the linear regression model with serially 
correlated disturbances. Under LAN, Fabian and Hannan (1982) have shown 
that a sequence of estimators l&r) is locally asymptotic minimax if 

~1/2( &T _ a) --“(a)-‘S,(a) =0(l) (4.1) 

in probability under (Y. 
In proving the convergence in (4.1) we will make use of the discretized 

estimator, ET, developed by Le Cam. We use this to construct the discretized 
residuals which, upon setting (ET,,, . . . , ii,, 1 _4) and (ET,a, . . . , ET,, _,J equal to 
zero, are obtained from 

ii,,= i PT,jET,t-j + 5 ‘T,kET,t-kp (4.2) 
j=O k=l 

where ET f = y, - X,BT. The empirical density, which assigns mass T- ’ to 
each residual, is not continuous and poorly approximates f. 

To overcome this we follow Bickel (1982) and convolute the empirical 
density with the density of a mean zero normal random variable, lT. The 
variance of the normal variable, a& is selected by the researcher to control 
the degree of smoothing. Since we will be examining a derivative of this 
density estimator, we need to define it over a small neighborhood around 
each of our residuals, IiT I. To do this let our smoothed density estimator be 
defined for all t in a small neighborhood of each iiT,, as 

fT,l(~) = [2(7’- I)]-’ 5 [~T(Z+ET,j)+~T(Z-iiT,j)]a 

j= 1, j#r 

(4.3) 

Now the derivative of the log of the density at u,, &,,f> =[,, can be 
estimated by 

qT,t=O otherwise, (4.4) 

where our smoothing parameter, uT, and the trimming parameters (g,,,, g,,., 
g,,,) are all asymptotically negligible. To insure this we impose the following 
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condition: 

Condition T. The trimming parameters must satisfy g, T + *, g,, T + 0, and 
g,,. -+ m as T + ~0. The smoothing parameter must satkfi uT + 0 in such a 
way that g3,TuT+ 0 and g,,,aF3 is o(T) as T tends to infinity. 

To incorporate the kernel density estimator define ~5’ as 

a AT=zT+.2T(ET)-1.GT(ET), (4.5) 

which is analogous to the linearized likelihood estimator using estimators of 
the score function and information matrix. Our estimator of the score 
function is 

iT( (y’) = T-1/2 (4.6) 

To consistently estimate the matrix 3(CT> use 2T((UT) = &(C!T>GT(GyT), 
where 

fT(cYT) = T-’ f: q; @‘), 
r=l ’ 

GT(ZT) = 5 A(?+$@j’. (4.7) 
t=1 

The consistency of this estimator is shown in the proof of the following 
theorem: 

Theorem 4.1. Under Assumptions l-5 and Condition T the estimator, (;yT), 
for the linear regression model with ARiWI(p, q) errors is such that T’/2(&T - 
(Y) - X((Y)-‘S~((Y) is o(l). 

The above theorem insures that GT satisfies the convergence criterion of 
(4.1). It therefore is locally asymptotic minimax and, since it incorporates a 
nonparametric density estimator, is considered LAM-adaptive. 

The estimators defined in Theorem 4.1 are distinct from an estimator 
proposed by Stein (1960) for a related problem. For the linear regression 
model in which (y, X) have a joint multivariate normal distribution he 
showed that, when the number of independent regressors exceeds 2, the OLS 
estimators (which are MLE for this problem) are inadmissible when quadratic 
loss is the measure of risk. The biased estimator which dominates the MLE is 
a nonlinear function of the MLE and the multiple correlation coefficient for 
the problem. For the class of models we consider, (y, X) is typically non- 
Gaussian and the nonlinear adaptive estimator is equivalent to the MLE and 
is not dominated by the nonlinear biased estimators described above. 
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5. Adaptive estimation with unknown order 

The theoretical results derived above required that the order of the 
ARMA process be known. While this assumption is satisfied in some empiri- 
cal models, in most situations it cannot be maintained. Without it, one is 
naturally led to ask if it is still possible to construct adaptive estimators. 
Before we can answer this we need to carefully define the class of models we 
will consider. 

We must exercise caution to restrict ourselves to identified models; it is 
this concern which precludes us from simply selecting an overparameterized 
model under the assumption that the excess parameters will have estimated 
values that are not statistically indistinguishable from zero. To understand 
this point, consider the parameter space corresponding to an ARMA(l,l) 
model. At first glance, the domain would seem to be the subset of R* 
satisfying Assumption 1. Now consider points in this subspace along the line 
pi = 19,. For this set of points the transfer function [p(L)-‘B(L)] is equal to 1, 
which is identical to a model in which the innovations are uncorrelated. If we 
tried to estimate pi and Oi, our estimators would not converge to a unique 
point on the line pi = f3i. 

To formally treat the problem of identification, the following notation will 
be helpful. A polynomial in the lag coefficients, C&L), is a left divisor of p(L) 
and 8(L) if 

P(L) =4(L) F(L)7 e(L) =4(L) 3(L). 

The lag polynomials p(L) and B(L) are said to be right multiples of 6(L), 
and 4(L) is the greatest common left divisor if it is a right multiple of all left 
divisors. To insure that our model has a unique representation we employ the 
following definition: 

Definition 5.1. For the ARMA (p,q) process described in (3.21, p(L) and 
B(L) have 1 as a greatest common left divisor. 

It should be clear that this definition excludes models with common 
factors. We now modify Assumption 1 to restrict attention to identified 
models. 

Assumption 1’. The time series error process is stationary, invertible, and 
identi$ed. 

This assumption guarantees that the true model will be associated with 
unique values of p and q. 
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Given that our model is identified we must now confront two questions. 
First, is it possible to consistently estimate the order of the process? Second, 
if a consistent procedure is available, does the use of the procedure affect the 
asymptotic distribution of the estimators derived in section 4? We will 
address each of these questions in turn. 

Methods that consistently estimate the order of the ARMA process have 
been developed in the statistics literature. We choose a stepwise Lagrange 
multiplier procedure, first proposed by Potscher (1983), that uses the sum of 
the squared prediction errors as the criterion function. It is important that we 
use a stepwise testing procedure for, as Potscher (1990) has noted, failure to 
do so can lead to a lack of identification under the alternative hypothesis. To 
see this, suppose we test the null hypothesis that the process is an ARMA(1, 1) 
against the alternative that it is an ARMA(2,ll. If we do not restrict our 
attention to identified models, then our null class includes models with 
p, = 8,. Observe that under H, when p 1 = O,, both our restricted estimators 
and the Lagrange multiplier (LM) test statistic are inconsistent. Even if we 
confine our attention to null models that are identified, overparameterization 
under the alternative can create difficulties. Suppose we test H,: E, is an 
ARMA(l,O) against H, : E, is an ARMA(l,l>. For almost every value of p, 
the rank of the covariance matrix used in constructing the LM test statistic is 
1. However if pi = 0, the rank of this matrix is 0, and since there are no 
continuous generalized inverses over sets of matrices with different ranks, the 
LM test statistic is not consistent over the entire range of possibilities 
generated by Ha. Of course, if pi = 0, the appropriate test is H, : E, is white 
noise versus H, : E, is an ARMA( our problem above stems from the fact 
that the white noise model is not identified under the ARMA(1, 1) alterna- 
tive. 

The testing strategy proceeds as follows. Select values (p*, q*) that are 
large enough to insure that the true model (p’, so) is nested, hence p” <p* 

and 4’ I q*. Construct a chain consisting of (pi, qi) where p, = q1 = 0, and 
for each additional element (pair) in the chain either pi+ 1 =pi + 1 and 
qi+l =qi orpi+, =pi and qi+, =qi+ 1. For example, 

is one such possible chain. At each step, beginning at (O,O), estimate the 
ARMA models and construct an LM test of Ho :(p, q) = (pi, qi) vs. 

H 1 : ( p, q) = (pi+ 1, qi+ 1). Choose the model which is associated with the first 
failure to reject. Do this for all possible chains and select the model with the 
smallest number of parameters (in case of ties, choose the model with the 
minimum value of q). 

Given that it is possible to consistently estimate the order of the ARMA 
process, we turn our attention to the second question mentioned above. First, 
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observe that local asymptotic normality is a property that characterizes the 
underlying model whether or not p and 9 are known at the estimation stage. 

Next we ask, does the linearized likelihood estimator, GT, satisfy eq. (4.1) 
when the order of the ARMA process characterizing E is unknown? To 
answer this we call upon a result that is well known in the statistics literature, 
namely that consistent estimation of the order leaves the asymptotic distribu- 
tion of the parameter estimators unchanged [Potscher (1990)]. As a conse- 
quence we have: 

Corollary 5.2. Under Assumptions S-5, the estimator CET remains locally 
asymptotic minimax when the order of the ARM4 process describing E is 
unknown. 

Finally, we must determine if it is still possible to construct adaptive 
estimators when the order is unknown. In the context of the above discus- 
sion, this will be true if the introduction of an unknown innovation density 
leaves the asymptotic equivalence argument discussed in the previous para- 
graph unchanged. This will follow if the procedure used to estimate the order 
cannot make use of any information associated with knowledge of the 
underlying distribution. Intuitively, the fact that the Lagrange multiplier test 
statistic is independent of f(u) gives us our result. This is made more precise 
in the following theorem: 

Theorem 5.3. For the linear regression model given in eqs. (2.1) and (2.2), 
Assumptions S-5 and Condition T insure that the estimator hT is adaptive 
when the order of the error process is unknown. 

The use of a consistent testing procedure raises an interesting question. 
Given maximal values p* and q*, the corresponding process, an 
ARMA(p*, q* 1, is known as the overall model. The use of a consistent 
testing procedure leads to superefficient estimators for some elements of p* 
and q*. From our discussion in section 2 this might seem to violate the 
regularity conditions we imposed in deriving our efficiency bound. However, 
these estimators are superefficient only for the ‘excess’ parameters in the 
model, the parameters which always equal 0 when the order is known. The 
estimators are not superefficient for the parameters contained in CC 

Further, it is important that we use a consistent procedure to insure that 
we have identifiability in the overall model. Suppose the true model is an 
ARMA(l,O>, identification of this model imposes the requirement that pr # 0. 
If our overall model is an ARMA(2,l) and we let the parameters of this 
model be (S,, 6,,-y,), then the transfer functions of the two models are 
identical if 6, - y1 = pr and 6, - pryi = 0. In this case we need to select the 
true order of the model to guarantee that it is identified. 
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6. Simulations 

All of the above results concern the limiting distributions of our estimators. 
Yet potential applied users need some guide to the performance of these 
estimators in finite samples. In an effort to provide this, the following Monte 
Carlo sampling experiment is used. 

We consider the linear model with an intercept and one explanatory 
variable, 

Here X, is a Bernoulli random variable with equal probability of assuming 
either 0 or 1 and is independent of Em. The error, E[, follows an AR(l) or an 
MA(l) with an innovation sequence, {u,}, that is either Gaussian or drawn 
from one of the following densities (all of which are standardized to have 
mean 0 and variance 1). The first of these is a normal mixture that corre- 
sponds to the statistical definition of a contaminated sample in which some of 
the observations are, unknowingly to the researcher, characterized by addi- 
tional sampling error. We draw 90% of the observations from a N(0, i> and 
10% of the observations from a N(0,9) creating a density that is leptokurtic 
(it has a kurtosis that exceeds 3). It is similar to a Student-r distribution and 
differs from a normal random variable in two important ways: more of the 
density mass is concentrated near the mean and the tails are thicker. The 
next innovation distribution is a bimodal symmetric mixture, OSN( - 3,1> + 
OSN(3,l). It corresponds to problems in which two distinct samples have 
been combined forming a density with a kurtosis that is less than 3 (it 
declines toward 1 as the distance between the center of the two underlying 
densities grows). This density also has thicker tails than the normal distribu- 
tion, yet less of its density mass is concentrated near the mean. The final 
distribution is lognormal [exp(Z) where Z - N(0, 111 which is both asymmet- 
ric and leptokurtic. 

An experiment consists of generating 50 observations for both x and u and 
using this information to construct y. The generated data is then employed 
to estimate both the order of the model and the underlying parameters. The 
sequence is repeated 10,000 times for each possible experimental design. In 
constructing the adaptive estimators, we must specify both the smoothing and 
the trimming parameters. The smoothing parameter is selected via cross- 
validation using a loss function that corresponds to the normal kernel used in 
the nonparametric density estimator. The trimming parameters are chosen 
such that when the underlying density is normal, all three bind at the same 
value of 2.4; g,,, = m, gz, = exp( -m2/2), and g, r = m. We choose m = 8 in 

’ accordance with Hsieh and Manski (19871. 
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Table 1 

90% confidence intervals for p^. 

263 

OLS GLS ADAPT LLE 

Normal 
Unimodal 
Bimodal 
Lognormal 

E, = OSE,_, + u, 

(0.47,1.53) (0.56,1.45) 
(0.47,1.53) (0.57,1.45) 
(0.48,1.52) (0.56,1.42) 
(0.48,1.52) (0.59,1.42) 

(0.48,1.51) 
(0.63,1.35) 
(0.70,1.33) 
(0.60,1.42) 

(0.56,1.44) 
(0.68,1.36) 
(0.64,1.34) 
(0.58,1.45) 

Normal 
Unimodal 
Bimodal 
Lognormal 

E, = u, + 0.5u,_, 

(0.49,1.51) (0.53,1.48) 
(0.46,1.53) (0.59,1.46) 
(0.48,1.52) (0.52,1.49) 
(0.50,1.52) (0.57,1.47) 

(0.48,1.53) 
(0.64,1.36) 
(0.62,1.39) 
(0.57,1.43) 

(0.55,1.45) 
(0.65,1.33) 
(0.61,1.40) 
(0.56,1.45) 

The results of these experiments are reported in table l,*which lists the 
90% confidence interval from the empirical distribution of /3. We focus our 
attention on the slope coefficient since it is most frequently of central 
concern to researchers. In judging the adaptive estimator it is helpful to 
make two comparisons. The first compares the confidence interval for the 
adaptive estimator with that of its GLS counterpart, revealing the efficiency 
gains arising from the use of this technique when the underlying density is 
nonnormal. The second comparison relates the efficiency gains of the adap- 
tive estimator to those of the linearized likelihood estimator (LLE). The LLE 
is constructed using the one-step procedure of (4.5) with the actual values of 
the score function and information matrix, and this comparison points out 
how well the nonparametric estimator of the score function is performing. 

Our results are broadly consistent across the two possible error processes, 
the AR(l) and MA(l). When the underlying innovation sequence is normal, 
the adaptive estimator has an efficiency loss of approximately 10% relative 
to the GLS estimator. Nonparametrically estimating the density when it is 
not necessary is comparable, in this example, to ignoring the serial depen- 
dence in the error process (the OLS and adaptive intervals are roughly 
equal). 

Under the nonnormal distributions the results are quite promising. For the 
symmetric distributions, the adaptive estimators have confidence intervals 
between 20% and 40% smaller than their GLS counterparts based upon 
samples of only 50 observations. Further, the adaptive estimators capture 
most of the gains that are present as their confidence intervals closely 
approximate those of the LLE estimators. When the errors are lognormally 
distributed, the results are not as favorable. Since the earlier theorems hold 
only for symmetric densities, the construction of the nonparametric compo- 
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nent exploits this property in (4.31, and this reduces the efficiency of the 
adaptive estimator when the errors are not symmetric. The steep peak of this 
distribution also greatly increases q near the mode and the third trimming 
parameter removes many data points. This problem explains the relatively 
poor performance of the LLE in this experiment. 

7. Forward rate unbiasedness 

One of the interesting issues in international finance concerns the relation- 
ship between the forward rate and the spot rate for a specific currency. 
Economists have proposed that the efficient operating of this market should 
exclude arbitrage profit opportunities. As a result, deviations of the forward 
rate from the spot rate shoud be zero on average and unpredictable at the 
time the forward rate is set. 

Numerous econometric studies have examined this relation empirically. 
While early studies defined the null hypothesis in terms of market efficiency, 
careful examination of the underlying models revealed a host of auxiliary 
assumptions. Recently, the null hypothesis has been more carefully defined in 
terms of a test that the forward rate is an unbiased predictor of the future 
spot rate. 

To understand the relationship between the forward rate and the spot rate 
for a specific currency, consider the arbitrage pricing model developed by 
Cox, Ingersoll, and Ross (1981). For the following discussion, all of the 
variables are measured in dollars. Let Ft,q denote the time t foreign currency 
price of a U.S. dollar delivered q periods in the future. If S,,, represents the 
time t + q foreign currency spot price for a U.S. dollar, then S,,, - F,,q is 
the time t + q payoff of FI,q. Now let Rt,q be the risk-free return on a 
q-period bill issued at time t. Cox, Ingersoll, and Ross have shown that Fr,q is 
equal to the present discounted value of S,+,R,,, using the following 
intuitive argument. Consider investing F,, 4 dollars in a riskless q-period bill 

at time t and R,,q dollars in q-period forward contracts. The initial invest- 
ment is just F_ dollars since the forward contracts are payable at time t + q. 

The resulting payoff at time t + q is 

Ft.$t,q + (St+, - F,,,)R,,, = S,,,R,s,. (7.11 

Under arbitrage, an equilibrium is characterized by 

Fl,q = wt+,)~ 

which states that the q-period forward rate must equal the time t value of a 
contract that pays S,,, R,,, in period t + q. We let this expectation equal the 
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mathematical expectation defined over the time t information set available to 
the econometrician. 

If we let f and s denote the natural logarithms of F and S, respectively, 

then sfCq -f,,, represents the returns to holding foreign currency. Similarly, 

s* -ft,q, the deviation of the spot rate from the contemporaneous forward 
rate, captures all the information available to investors at time t. Under 
rational expectations this information should be orthogonal to the realized 
return leading to 

s t+q -f,,, = a + P(% -fr,,) + Et+q,q. V-2) 

Under the joint null hypothesis that the forward rate is an unbiased predictor 
of the future spot rate and that traders have rational expectations, both a! 
and p should be zero. By definition, etfq 4 has a mean of zero and is 
uncorrelated with all elements of the econometrician’s information set at 
time t. When q > 1, models such as (7.2) do not have uncorrelated errors. To 
see this, note that E~+~ 4 consists of unobservable information at time t as 
well as new information which is observable but arrives between time t and 
time t + q. Thus &t+q,q is correlated with E~+~_~,~ for 1 I a <q, and {E~+J 
follows an MA(q - 1). Further, as this new information arrives it becomes 
incorporated in the forward price so that f,,,,, is correlated with E,+~,~ for 
1 I 1z < q. The random variable f,,, is therefore not exogenous but rather 
predetermined at time t. 

Estimation of this equation can now proceed using OLS and the parameter 
estimators are consistent. They are not efficient however, since E~+~ 4 follows 
an MA(q - 1) process, and while this might appear to be a natural case for 
GLS, the nonexogeneity of our regressors presents a further problem. Let R 
represent the covariance matrix for E~+~ 4 and let X be the TX 2 design 
matrix corresponding to (7.2). Recalling that f,,,,, is correlated with E*+~,~, 
we see that E[X’fl-l&] f 0 and the GLS estimators are not consistent. 

An important consideration in estimating models of this type is that the 
prediction errors, s,+~ - f,,q, are not normally distributed. To see this we 
have constructed an omnibus test for nonnormality relying upon both skew- 
ness and kurtosis. We have chosen this test because we have no a priori 
knowledge of the suspected departures from normality exhibited by the data. 
In obtaining the critical values for the test statistic one must exercise some 
care owing to the dependence that arises between the two sample measures. 
This dependence can be accounted for by suitably adjusting the critical values 
of the test statistics as described in Pearson, D’Agostino, and Bowman 
(1977). For our sample size we have determined that the appropriate critical 
region for a nominal 5% test of the joint null hypothesis that ,/& (the 
skewness measure) equals 0 and b, (the kurtosis measure) equals 3 is 



266 D. Steigerwald, Adaptive estimation in regression models 

constructed from the following two intervals: 

(-0.698,0.698) for 6, (2.105,4.450) for b,. 

Our data consists of monthly spot rates and three-month-ahead forward 
rates collected by Barclay’s Bank. Because of the broad cross-sectional 
composition of this data, it is available only from September of 1982 to 
January of 1988, which yields 65 sample points. This makes it appropriate for 
our study, as it is roughly comparable to the sample size explored in the 
Monte Carlo simulations of section 6. 

For 16 of the 20 countries in our sample we can reject, at the 5% level, the 
null hypothesis that s,+~ - fr,3 is normally distributed. The majority of these 
rejections indicate that the underlying distribution is platykurtic, with asym- 
metry appearing for three countries. It is interesting to note that in four 
cases, departures from normality were detected in the raw data but not in the 
dependent variable. For the majority of cases in which we can reject, this 
leads one to suspect that the E~+~,~ are nonnormal as well. In this context the 
adaptive estimators developed above are asymptotically fully efficient while 
OLS estimators are not. Furthermore, the efficiency gains occur in moder- 
ately sized samples so their application here seems warranted. 

The results presented in table 3 compare the OLS estimates reported in 
MacArthur (1988) with estimates obtained using the adaptive estimators 
developed in section 4. The reported standard errors for the OLS estimates 
are calculated using a consistent estimate of the covariance matrix developed 
by White (1980). As noted in Steigerwald (1989b), the reported standard 
errors for the adaptive estimator are biased downward. This is a common 
feature in estimators with a nonparametric component, the effects of the 
smoothing parameter are not appropriately accounted for in the asymptotic 
variance expression. 

To obtain more accurate standard errors we employ a bootstrap resam- 
pling device. Corresponding to our initial adaptive estimates of the parame- 
ters (&, p^, ii, e^,>, we have the constructed white noise residuals (fill.. . , a,>. 
We then draw, with replacement, samples of 65 observations from the 
observed values of (.rt -f,,,> and the estimated parameter values to form a 
constructed series for the dependent variable. Using this constructed data we 
can again estimate the parameters, This procedure is repeated 1000 times 
and the standard errors are calculated from the empirical distribution of the 
estimated parameters. 

When looking at table 3 it should be pointed out that our data set is 
characterized by a strong appreciation of the dollar over much of the 
sampling period. Thus it may be the case that our rejections are due to a 
biased sample. For each of the open developed countries of the Atlantic, 
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Table 2 

Omnibus tests for nonnormality. 

Australia 

Belgium 

Canada 

Denmark 

France 

Germany (W) 

Greece 

Hong Kong 

Italy 

Japan 

Malaysia 

Netherlands 

Norway 

New Zealand 

Saudi Arabia 

spot 
Forward 

St+3 -ft.3 

spot 
Forward 

St+3 -f,,3 

spot 
Forward 

Jr+3 -fr,3 

spot 
Forward 

s,+3 -f,,3 

spot 
Forward 

s1+3 -fr,3 

spot 
Forward 

St+3 -f,,3 

spot 
Forward 

s1+3 -ft.3 

spot 
Forward 

s*+3 -fr.3 

spot 
Forward 

s1+3 -ft.3 

spot 
Forward 

s1+3 -ft.3 

spot 
Forward 

St+3 -ft.3 

spot 
Forward 

St+3 -ft.3 

spot 
Forward 

St+3 -f,,3 

spot 
Forward 

S1+3 -ft.3 

spot 
Forward 

St+3 -ft.3 

Skewness: 6 Kurtosis: b, 

0.15 2.16 
0.18 2.12 
1.12a 4.10 

-0.11 1.85a 
-0.12 1.86= 
-0.17 2.01” 

- 0.05 1.65” 
- 0.02 1.69” 
- 0.44 3.18 

- 0.01 1.91= 
- 0.02 1.94= 
-0.14 1.99a 

0.23 2.02” 
0.17 

-0.11 

-0.10 1.89” 
- 0.09 1.92a 
-0.11 1.96a 

-0.81” 2.27 
-0.79a 2.28 

0.11 2.28 

-2.06a 
- 1.98= 

1.74a 

0.36 
0.31 

-0.14 

- 0.35 
- 0.36 
- 0.37 

0.03 
0.31 
0.14 

0.15 
0.17 
0.12 

0.71a 
0.64 
0.55 

9.47” 

2.03a 
2.04” 
2.04a 

1.52a 
1.54a 
2.35 

1.70a 
2.12 
2.58 

1.94= 
1.9ga 
1.97= 

2.18 
2.10 
2.07” 

0.12 2.02a 
0.08 1.94a 
0.15 1.9ga 

-0.89a 2.24 
- 0.92” 2.18 
-0.84a 2.29 

2.02” 
1.86a 
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Table 2 (continued) 

Skewness: fi Kurtosis: b, 

Singapore 

Spain 

South Africa 

Sweden 

Switzerland 

United Kingdom 

spot 
Forward 

St+3 -f,.3 
spot 
Forward 

St+3 -ft.3 

spot 
Forward 

St+3 -f*.3 

spot 
Forward 

s*+3 -fr,3 

spot 
Forward 

St+3 -f,,3 

spot 
Forward 

St+3 -fr.3 

0.24 1.86” 
0.32 1.99a 
0.20 1.93a 

0.46 1.98h 
0.52 1.86” 
0.38 1.73a 

- 0.26 
- 0.33 
-0.18 

2.02” 
2.08” 
2.06” 

-0.17 
- 0.23 
- 0.34 

1.95” 
2.04= 
2.08” 

0.36 1.64” 
0.54 1.53” 
0.47 2.19 

-0.11 1.84” 
-0.17 1.73a 
- 0.06 1.96a 

‘Significant at 5% level. 

MacArthur found convincing evidence against the null hypothesis that (Y and 
p are both equal to 0. Of the remaining European developed countries 
(DC’s) only Sweden provided a rejection. For the newly liberalizing devel- 
oped countries of the Pacific, in two of the three cases the null hypothesis 
could again be rejected. However for the lesser developed countries (LDC’s), 
including the liberalizing members of the Pacific basin, the null hypothesis 
could not be rejected for any of them. This led MacArthur to conclude that 
capital markets in these countries behaved in an empirically distinct way from 
their developed country counterparts. Further, this disparity could not be 
attributed solely to the fact that they were newly liberalizing countries since 
the liberalizing Pacific developed countries looked fairly similar to the open 
Atlantic developed countries. 

Using the more precise adaptive estimators we confirm the rejections of 
the null hypothesis for the open Atlantic developed countries. For the 
remaining European developed countries, the adaptive estimators are more 
precise than their least squares counterpart in each case. For only two 
countries, France and Spain, are the gains in efficiency sufficient to reverse 
MacArthur’s findings. However, for the rest of the sample our results are 
strikingly different and we find little evidence to distinguish lesser developed 
countries from the developed economies. In the Pacific region, we find that 
two-thirds of the LDC’s reject the hypothesis of forward rate unbiasedness 
equivalent to the rejection frequency for the DC’s. We even find evidence 
against this null hypothesis for one of the closed economy LDC’s in our 
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Table 3 

Estimated values for s, +s -f,,s = (Y + PCs, -f& standard errors in parentheses. 

Australia 

Japan 

New Zealand 

Hong Kong 

Malaysia 

Singapore 

Greece 

Saudi Arabia 

South Africa 

Canada 

Germany (W) 

Netherlands 

Switzerland 

United Kingdom 

Belgium 

Denmark 

France 

OLS Adaptive 

(I P Q P 

Liberalizing Pacific DC’s 

10.29 2.01 
(8.82) (1.23) 

- 38.02 9.58 
(11.17) (3.31) 

20.82 2.91 
(10.38) (0.89) 

Liberalizing Pacific LDC’s 

3.36 0.63 
(2.98) (1.39) 

1.57 1.03 
(2.06) (0.36) 

3.68 - 1.59 
(3.61) (1.64) 

Closed LDC’s 

9.13 0.85 
(9.02) (0.57) 

1.57 0.79 
(0.50) (0.45) 

3.97 -0.13 
(9.62) (0.29) 

Open Atlantic DC’s 

- 4.89 5.14 
(1.89) (1.14) 

51.47 13.66 
(8.37) (1.79) 

38.04 12.17 
(7.29) (1.63) 

44.89 9.39 
(11.43) (2.27) 

- 12.99 9.25 
(3.07) (1.35) 

Other European DC’s 

6.53 1.99 
(6.58) (3.99) 

6.33 1.00 
(6.61) (1.91) 

9.82 - 0.73 
(7.45) (1.17) 

8.65 
(7.26) 

- 37.42 
(11.84) 

20.79 
(7.39) 

2.43 
(1.16) 

1.48 
(2.08) 

3.73 
(1.73) 

9.17 
(10.01) 

1.39 
(0.48) 

6.53 
(5.07) 

-5.04 
(2.03) 

50.88 
(6.42) 

37.60 
(4.91) 

42.87 
(12.66) 

- 13.06 
(2.58) 

5.89 
(4.83) 

6.75 
(3.24) 

9.88 
(4.62) 

1.86 
(0.78) 

8.63 
(3.64) 

3.36 
(0.65) 

0.94 
(0.38) 

1.01 
(0.43) 

- 1.84 
(0.88) 

0.77 
(0.56) 

0.98 
(0.25) 

- 0.28 
(0.11) 

4.87 
(1.20) 

13.73 
(1.17) 

9.63 
(1.26) 

9.47 
(2.63) 

11.12 
(1.06) 

2.84 
(1.60) 

1.72 
(0.94) 

- 1.36 
(0.63) 
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Table 3 (continued) 

OLS Adaptive 

Cr P a P 

Italy 

Norway 

Spain 

Sweden 

5.71 0.51 7.83 
(10.28) (1.23) (7.44) 

- 13.57 4.27 - 13.98 
(9.15) (1.49) (7.61) 

13.35 - 0.53 11.61 
(8.81) (0.76) (4.66) 

- 12.00 6.04 - 12.36 
(4.66) (1.03) (4.21) 

0.48 
(0.96) 

1.80 
(1.13) 

-0.77 
(0.28) 

4.21 
(0.87) 

sample, Saudi Arabia. In summary, using our potentially more efficient 
estimators, we find little evidence that capital markets behaved differently in 
the developed countries and the lesser developed countries over the 1980’s. 

There may be a simple explanation for these results. One of the features 
common to both the less developed countries and the newly liberalizing 
developed countries is a recently created international financial marketplace. 
Because of their relatively short history, we might expect data from these 
markets to be characterized by a high degree of ‘noise’ resulting from the still 
inefficient market channels through which information flows. In using an 
estimation technique that is capable of screening out such excess noise, one 
should obtain better estimates of the relationship between spot rates and 
forward rates, and therefore results that are more in line with those of the 
economies with full integrated international financial markets. The adaptive 
estimators provide results for countries with newly developing international 
capital markets that accord with those obtained for the traditional open 
economies. 

8. Conclusion 

The above results demonstrte that it is possible to construct estimators for 
the parameters of a regression model that are asymptotically fully efficient 
without knowledge of the underlying error sequence. These results pertain to 
models in which the error process is serially correlated and the asymptotic 
results are unaffected when the order of the ARMA process is unknown. The 
Monte Carlo study indicates that substantial efficiency gains are possible in 
small samples and our investigation of forward premia on foreign currency 
markets supports this finding. 

In addition to the practical applications highlighted in this paper, several 
theoretical questions indicate useful extensions of this work. One concerns 
the applicability of this technique to situations in which the errors do not 
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have a symmetric distribution. Initial work indicates that it may be possible to 
determine even weaker conditions under which adaptive estimators can be 
constructed. This work also appears to have natural extensions to multivari- 
ate problems. In constructing the likelihood function, the estimated score 
would involve a nonparametric estimate of the joint density of the errors 
from the equations in the model. 

Appendix 

The expression that we use for UT - u, is an extension of the notation 
originally developed in Kreiss (1987). Under Assumption 2, the moving 
average polynomial can be inverted and the coefficients from the power 
series expansion satisfy the recursion 

Aj +Ai_pl + . . . +A,_,e, = 0, 

where A, = 1 and Ai = 0 if i < 0. Using this recursion and setting pa = 0, = 1, 
we have 

t-1 q-1 

U, = C Ai ~ PjEt-i-j + C U-, ~ At+s-jej. 
i=O j=O s=o j=O 

From this, simple algebra yields (3.2) with 

t-1 

4( a=, a) = zAT[Y;,t :d$ :.Y;,& 
i=o 

where 

(A-1) 

Jl,,= -T-l’* ~~j[X,,,-i_j,...,~~,t_i_j], 
j=O 

S,,, = T-1’2[U,_i,...,U,-,-ql. 

Proof of Theorem 4.1 

Using the definition of 6T given in (4.5), the left-hand side of (4.1) can be 
rewritten as 

T”2(ZT-a) +.Y(a)-L[3(u)~T(ZT)-L~T(ZT) -S,(a)], 

(A.2) 
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where $r.T(c? and &ET) incorporate estimates of f and are defined in 
(4.6) and (4.7). 

In proving that this converges in probability to 0, we begin by noting the 5, 
are independent and identically distributed random variables, P,T and P, are 
contiguous, and ZT is T112 -consistent, so, using Chebychev’s WLLN, 

T-’ 5 6’[ ut(zT)] -+ z(f), 
t=1 

in probability under (Y. Therefore we need only prove that 

(A.31 

converges to 0. In proving that our estimate of 5 converges in quadratic mean 
to its expected valte, we will follow the logic employed by Bickel (1982). We 

can bound /[q(z, f> - t(z>12f(z)dz by 

3 /(4(z,f^,,,) -9(z,~,t)[~~/~])2f(Z)dZ 
i 

where f,(t) represents the convolution of f(z) and the density of 5 corre- 
sponding to the value of u used in constructing f6,t. Combining (A.31 and 
(A.41 we have three terms. For the first and third we can rely upon the result, 
given in Steigerwald (1989a), that Ell~(~r)112 is uniformly bounded in T. 
Therefore, when ur + 0 and g,,TcT + 0, we can use Lemmas 6.2 and 6.3 
from Bickel to show that these terms converge to zero. 

For the second term let C, D, and H represent the conditions given in 
(4.4), then, using the relationships noted in Stone (1975), we can place the 



D. Steigerwald, Adaptive estimation in regression models 273 

following bound on /[q(~,{~,,) -f,(z>/f,(z)l*f,(z)dz: 

(A.51 

Using (A.5) to construct the second term, we note that X is independent 
of f:,,(z) by assumption. Combining this with the fact that f has a finite 
fourth moment implies that the second term converges in probability to 0 
whenever g,,rar3 is o(T). 

Proof of Corollary 5.2 

We must alter our notation slightly to account for the fact that we are 
estimating the parameters p and q. Let fiT and dT represent the estimators 
constructed from the Lagrange multiplier (LM) test procedure based upon a 
sample size T. Our estimator of the score incorporates d<Ly’, bT, $r), where 

= r&:[-x;_h+ ..* +~~~x:_h_~TIEI_l_h,...,~,-_d~-hl 
h=O 

U,-1-h ,..., u,-qT_.,, . I 
In Steigerwald (1989a) we have shown that when f is known, G,(aT) -3 G(a) 
and 3(a)T’/*(Zr - cu) + ,!+(6!r) - S,(cr) + 0 guaranteeing (4.1). Consis- 
tency of our estimators fiT and $r implies 

P@T=p,cy=q) + 1, 

as T + 03. Employing the first lemma in Pijtscher (1990), we have 

P(G,(Zr,&jr) = G,($)) + 1, 

q&((U,BT,4T) = s(a)) --f 1, 

both as T + ~4. Thus our asymptotic results hold and the estimator &r 
remains LAM when p and q are unknown. 
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Proof of Theorem 5.3 

First observe that our LM test statistic uses as its criterion function the 
squared prediction error. It is independent of the underlying density and 
does not require knowledge of f for its construction. Thus consistent 
estimation remains possible when f is unknown. 

We only need show that our estimator q(z, fw,r, fiT, GT> is asymptotically 
equivalent to q(z, f,,,, p, q>. Using the logic employed above we can see that 

as T + ~0 for all elements t. 
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