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Exact Derivation of the Nonlinear

Negative-Resistance Oscillator Pulling Figure

J. OBREGON AND A. P. S. KHANNA

Abstract — Only approximate relations are so far available for the pufling

figure of an oscillator. An exact derivation of the pnlling figure is presented

here, tafdng fufly into account the nonlinearity of the oscillator admittance.

Effect of the oscillator nonlinearity on the asymmetry of the pulling range

is presented.

I. INTRODUCTION

Oscillator frequency variation with the load changes is often

represented by its pulling figure. The pulling figure has so far

been calculated either by neglecting the oscillator admittance

variation with the RF voltage [1] or has been calculated by

approximately taking into account the transferred admittance in

the oscillator plane for a small-load perturbation [2]. We present

here an exact derivation of the pulling figure taking fully into

account the nonlinear behavior of the oscillator admittance. The

relation between the asymmetry of the oscillator pulling range

and the nonlinearity of the oscillator admittance has been de-

rived. Pulling figures for certain particular cases are also pre-

sented.

11. FREQUENCY VARIATION WITH THE LOAD CHANGES

The oscillation condition at the oscillator-output plane without

any load perturbation is represented by

YTO=YT+YO=O (1)

where Y~ is the oscillator nonlinear output admittance and YO is

the load admittance.

If the oscillations exist with a load perturbation of A YL in the

oscillator output plane and writing Au and A~ as the correspond-

ing frequency and RF voltage changes, the oscillation condition

can be represented by

“~o Au + dY
Y~o+AYL+z. -# Av=o.

From (1) and (2)

separating into real and imaginary parts

AGL +
dGTo dGTo
~Aco+ ~Av=O

(2)

(3)

(4)
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(c)

Fig, 1. Simulation of load variation.

and

ABL+
dBTo dBTO
~Au+ ~v=o

where

AYL=AGL+ABL

and

Y~o = G~o + BTO.

From (4) and (5)

AGL%
Au=

dGTo dBTo _ dGTO dBTo—. —— —
dV do do “ dV

(5)

dG
ABL. ~

—
dGTo dBTo dGTo dBTo

(6)
—— .— .—

dv da dw dV

and

dG
ABL. ~

Av=
dGTo dBTodGTo dBr-o . _—. —

dV do do dV

dBTo
AGL. ~

—
dGTo dBTo “

(7)
dGTo dBTo _

dV”dudm”dV

III. LOAD VARIATION SIMULATION

From Fig. 1 it can be noted that any reactive load perturbation

of value jA B cm be represented by a nonreactive load perturba-

tion of AG by suitably selecting the reference plane in the output

line between the oscillator and the perturbation. For the purposes

of the exact derivation of the pulling figure, we simulate the load

perturbation by AG (Fig. 1(b)) with the transmission-line length 1
variable between O and ~ /2.

For any value of b’ = I?l, the transferred load admittance YL at
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the oscillator output plane can be written as

YO+ AC + jYOtan 19
YL=YO.

YO+j(YO + AG)tanO

=ys(l+tan*e)
+ jYO.

(1–r)tane

0 1+ Sztan*o 1+ ~2 tan2t7

where ~ is the VSWR of the perturbating admittance

output line given by

~=l+x
Y. “

(8)

(9)

in the

(lo)

5
f-y=~ ---- 1

41
..

3

I 2

1

s-
0

l“

-?I

I
The change in the load admittance, at the oscillator output plane, -3

AYL( = AGL + jABL) = YL – YO, can now be represented by the

following two equations:
-4

AC =Yo(s–l)(l–stan%)
L (11) Fig 2 Maximum frequency variation as a function of load VSWR S for

l+sztan% various values of oscillator nonlinearity constant a.

AB =Y (1–s*)tano
LO

1+ Sztan% “
(12) Substituting (17) and (18) into (13)

IV. DERIVATION OF THE PULLING FIGURE
FA@ =YKS–l ~ +l(2a2+s+l)–2a( l+a2)

10 2s
~2-~G+l

(19)

Substituting (11) and (12) into (6) the frequency variation Ati

can be written as
and

dBTo

AU=YO. ~G
dV

TO dBTo dGTo dBTo

dV”dm–dm”dV
where

Au =YK1– S w(2~2+~+l)+2@+~2)
20 2s

F

(20)
az+a a-+1+1

. (S-1) (1-~tan20)

1+ ~2 tan28
dGTo/dV

K= dGTo dBTo dGTo dBTo
(21)

dGTo

dV . (1- S2)tan6’
dV”dco-da”dV

–Yo.
dGTo dBTodGTo dBTo — 1+ ~2tan26’ The maximum total variation AOM = Au, – Aaz can now be

dV”dcodco”dV found to be

(13)
ACOM=YOK~(~-;} (22)

Now maximum frequency derivation as a function of 13can be

calculated from

dAu = o

dO
(14)

giving us

5’2tan26+2~atan0 -1=0 (15)

with

dBTo/dV

a z dGTo/dV
(16)

where a is a nonlinear constant of the oscillator. (15) has the

following two solutions of d which correspond to the extreme

values of Au, and AU2:

This is the relation which represents rigorously the pulling

figure of a nonlinear negative-resistance oscillator.

An interesting feature of the above(19) and (20) results, is that

it brings into evidence the asymmetry of the pulling range,

around the free-running oscillator frequency, as a function of

nonlinearity constant a of the oscillator. Fig. 2 represents Aa I

and AU2 as a function of VSWR S of the perturbating admittance

(10) for various values of a. It maybe noted that for a= O the

pulling range is symmetrical and becomes more and more asym-

metrical with increasing values of a.

In the same way, from (7) the RF voltage variation AV can be

shown to be a function of

dGTo/da
b= dBTo\dm

and

~=tm_, (a2+l-a
(17)

and asymmetrical in the pulling range.

I s The unknown constants a and K of relation (22) can be found

by dividing (19) and (20) and arranging

(18)

AO, _kY2+l(S+l)+a (S-1)

Auz –
(23)

a(s–1)–(m(s+l)
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or TABLE I

‘)+’’(’-2)=0 ~ ’24) f
/-(1+::2

with with
without

‘GTo / dGTo
:,pproximmt ion

T=O l~=~=o

where ‘ represents the reflection coefficient of perturbed load “(”M Y“, K, {s-;) #&42T{s. +~* {s.;)

equals S – 1/S+ 1. Ati, and Auz being opposite in sign, Ati ~/AQ2
.X

is always negative.
W1 ;) Y{, K ( Q ),, ~ +yy} ~ (yl

. .

Substituting
%xt

we have x always positive.
From (24)

Im(l-x)+dl+x)=o.

(25) From (22) and (29)

==.
““M=A”MO P

(30)

Knowing AuM, S, and a AuMo can be determined.
(26) A number of Particular cases can be derived from the general

From (26), a can now be calculated for the three possible cases
solution presented above. Table I lists expressions for the pulling
figure with and without approximations where

as

forx=l, ~=’ Qext = $ %

for~<x <l,

“=-A
and a and K are defined by (16) and (21), respectively.

It maybe noted that

forl<x<S, —

““b

(27)

where

~=r(l+x)

(l-x) “ .,

Knowing a, S, Aw,, and AW2, the value of K can be determined
from (19) or (20).

A frequency deviation AWMOcan be defined [3] for the condi-
tion when the real part of the perturbed load admittance at the
oscillator plane is Y., i.e., AGL = O. This corresponds to Wm — tin

where m and n are the common points on G = 1 and the per-
turbed load impedance locus (Fig. (1c)). From ( 11), this condition
gives

(28)

with’ 2<<1

1

{–)

s–1

‘–3=4 S+l

and AOM, for example, for the approximation dG~o /dw = Q can

be written as given in [2]
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From (13), the total frequency deviation AWMOis now given by p]

(–)‘wM0=2y0K‘&l“

REFERENCES

F. L. Warner and G. S. Hobson, “Loaded Q-factor measurements on

Gmm oscillators: Microwave Jaarnal, vol. 13, pp. 46-52, Feb. 1970.

G. S. Hobson, “Measurement of external Q-factor of microwave oscilla-

tors using frequency pulting or frequency locking; Electron. I.dt., vol. 8,
pp. 191-193, 1973.

G. S. Hobson, The Gunn Effect. Oxford: Clarendon Press, 1974, ch. 7,..
pp. 84-86.


