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The search for a qubit that is robust against local decoherence 
has led to extensive studies of the so-called Majorana zero-
energy mode in materials with strong spin–orbit coupling 
(SOC) combined with s-wave superconductors. Nanowires 
and topological insulators are promising candidate materials 
with strong spin–orbit coupling [1–15]. Experimentalists have 
already reported signatures of the Majorana zero-energy mode 
[16–18], where zero-bias conductance peaks are the main fea-
tures observed in this context.

Besides the possibility of hosting Majorana modes, 
topological materials are also interesting for the study of 
unconventional p-wave superconductivity by itself. p-wave 
superconductivity gained renewed interest after the predic-
tion that the p-wave pairing symmetry in He3 would lead to 
half-quantum vortices with potential application to the field 
of quantum computing [19–21]. Sr2RuO4 is believed to have 
p-wave symmetry and together with the prediction of the 
existence of a nodal gap it has led to an extensive study of 
this material [22–29]. Also, superconductor/ferromagnet/
superconductor junctions are studied for their prospective  
to switch from a dominant s-wave state to a p-wave state  
[30–35]. Furthermore, these devices have potential application 
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Abstract
To guide experimental work on the search for Majorana zero-energy modes, we calculate the 
superconducting pairing symmetry of a three-dimensional topological insulator in combination 
with an s-wave superconductor. We show how the pairing symmetry changes across different 
topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient 
to realise a Majorana zero-energy mode useful for quantum computation. Our main result is 
the relation between odd-frequency pairing and Majorana zero energy modes by using Green 
functions techniques in three-dimensional topological insulators in the so-called Majorana 
regime. We discuss thereafter how the pairing relations in the different regimes can be 
observed in the tunneling conductance of an s-wave proximised three-dimensional topological 
insulator. We discuss the necessity to incorporate a ferromagnetic insulator to localise the 
zero-energy bound state to the interface as a Majorana mode.
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to quantum computation, through which the understanding of 
the behaviour of p-wave superconductivity has become a field 
on its own.

In this paper we study the s and p-wave correlations that 
exist in three-dimensional topological insulators (3D TIs). 
We first discuss in which regime a dominant p-wave corre-
lation is present and under which conditions a dominant p-
wave correlation can lead to a zero-energy Majorana bound 
state. We derived the expressions for the bound states formed 
at a 3D TI in the ‘Majorana’ regime. We show the relation 
between odd-frequency pairing and Majorana zero-energy 
modes by using a Green function approach. We use those new 
insights to calculate the conductance spectra of proximity 
induced superconducting 3D TIs with and without broken 
time-reversal symmetry. The main focus is to understand how 
the modelled tunneling conductance spectra arise from the 
s and p-wave correlations. We will see that the combination 
of a zero-bias conductance peak together with conductance 
dips at the gap energy are distinguished features for p-wave 
correlations. We demonstrate that it is not necessary to be in 
the ‘Majorana’ regime in order to observe signatures of the 
p-wave correlations.

1.  Pairing wave function and Majorana-modes in a 
3D TI

In order to determine the pairing relations for a material with 
strong SOC we start with the relation 1[ − ] =E H G  where G 
is the Green function of the system, 1 the identity matrix and 

H is in the basis ψ ψ ψ ψ[ ]↿ ⇃ ↿ ⇃, , ,† †  [6]. For a system with spin orbit 
coupling [ − ]E H  is given by

⎡
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⎢
⎢
⎢
⎢
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where ϵ μ= − ℏ
p

k

m2

2

. Here, λx y,  is the SOC strength in the x and 

y-directions. At the end we will set the SOC strength equal to 
the Fermi velocity and ϵ μ=p  to discuss the superconducting 
correlations in the topological surface states. μ is the chemical 
potential, Δ is the induced superconducting gap and M is the 
energy of a perpendicular magnetic field, either externally 
applied (Zeeman term) or due to an exchange interaction. 
Note that the Zeeman contribution of a magnetic field can 
be considerable due to the large g-factor of the most relevant 
materials. We neglect the orbital contribution of the applied 
field.

By taking the inverse of this matrix equation we can obtain 
the Green function G expressed as

⎡
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⎦
⎥

G G

G G
.

11 12

21 22

� (2)

The elements Gij are blocks of 2 × 2 matrices. The diagonal 
blocks describe the propagation of the electrons and holes 

separately. The off-diagonal blocks describe the combined 
electron and hole propagation, i.e. they describe the propaga-
tion of the Cooper pairs in the s-wave proximised topological 
insulator, which is the quantity of interest in this paper. When 
we represent
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the Green function is given by
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To discuss the symmetry of the anomalous Green functions, 
we use the Matsubara representation which can be obtained 
by analytical continuation, δ ω+ →E i i n,

σ
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The total wave function of a pair of fermions should be 
asymmetric and the total wave functions can be described 
by the product of an orbital (or parity), spin and frequency 
term. Even-frequency pairing means that a function is even 
in ωn. If we consider singlet (which is an odd function under 
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spin permutation) s-wave (orbitally symmetric) pairing, the 
pairing wave function F(=   G12) should satisfy the relation 
Fs(k)   =   Fs(−k) in order for the wave function to be antisym-
metric when the pairing is even in frequency. For p-wave tri-
plet pairing the relation Fp(k)   =   −  Fp(−k) applies [36].

We note that Z is an even function of ωn and is an even-
parity function. The singlet component f 0 belongs to the 
even-frequency even-parity class (ESE). The two equal-spin 
components ( f 1 and f 2 ) are even-frequency spin-triplet odd-
parity class (ETO). Finally, f 3 belongs to odd-frequency spin-
triplet even-parity class (OTE).

For a 3D topological insulator ϵp and the SOC strength in 
the x and y-direction in equation  (1) are equal to μ and the 
Fermi velocity v, respectively. The matrix [E  −  H] in the rela-
tion 1[ − ] =E H G  is then given by

⎡
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

μ

μ

μ

μ

+ − − −Δ

− + + Δ

Δ − + −

−Δ − − −

θ

θ

θ

θ

−

−

E M v k

v k E M

E M v k

v k E M

e 0

e 0

0 e

0 e

,

i

i

i

i

� (14)

where M is a magnetisation term and θ is the angle between 
kx and ky. It is instructive to compare the 3D TI with semi-
conductors with strong spin–orbit coupling. Although there 
are analogies between them, also several differences exist 
between them. For comparison, we show therefore the model 
for nanowires in the supplementary material (stacks.iop.org/
JPhysCM/27/315701/mmedia).

We assume in this section  that μ > EDP where DP stands 
for the Dirac point, but the opposite ‘hole’ regime of μ < EDP 
can also easily be obtained. For a chemical potential far above 
the Dirac point we can make additionally the assumption that 
μ ≫ Δ. If we also consider low energy excitations we obtain 
for the topological insulator

⎡
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where
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μ μ= ( + − ) + Δ ( + − )B v k M v k M2 .TI
2 2 2 2 2 2 2 2 2 2 2� (17)

G21 is related to G12 by complex conjugation. The θ±e i  
factor shows the chiral p-wave character of an s-wave proxim-
ised 3D topological insulator.

For the moment we assume that we have even-frequency 
symmetry. ( f 3 in equation (15) can be neglected in the regime 
of low energy excitations. The appearance of non-negligible 
odd-frequency symmetry terms will be discussed in section 3). 

The second and third relations in equation  (16), therefore, 
correspond to s-wave pairing and the other two with p-wave 
pairing relations.

The energy dispersion relation of the s-wave proximised 
topological insulator can be obtained by diagonalising the cor-
responding Hamiltonian as described above, and is found to 
be

= ± ±′ ′E E E2t s� (18)

where μ= + Δ + +′E M k vt
2 2 2 2 2 and μ= Δ +′E M Ms

2 2 2 2 
μ+ k v2 2 2. In the limit of μ ≫ Δ this can in good approxima-

tion be written as

μ= ± ± +E v k M ,2 2 2

Now we have all the formal work done to consider the pairing 
symmetry in three different regimes: =M 0, μ<M  and the 
‘Majorana’ regime.

1.1.  Regime =M 0

Assume a homogenous magnetisation term (for example 
caused by an external magnetic field). In the regime μ≪M  
we have the situation as depicted in figure 1. There is a gap 
opening indicated by Δ1 at positive momentum. At nega-
tive momentum a gap with the same size opens. Using the 
approached dispersion relation we have μ = v k  at the gap 
opening. Substituting this relation into equation  (16) we 
obtain the following anomalous Green function relations at Δ1

∼ Δ

∼ − Δ

∼ Δ

∼ − Δ

θ

θ

↿↿

↿⇃

⇃↿

⇃⇃
−

F k k Z

F k Z

F k Z

F k k Z

2 e / ,

2 / ,

2 / ,

2 e / .

f

f

i
TI

2
TI

2
TI

i
TI

Figure 1.  Energy dispersion relation for a 3D topological insulator 

in the regime μ≪M . The solid line corresponds to −′ ′E E2t s  
and the dashed line to +′ ′E E2t s . The graph is plotted for Δ in 
the order of μ for clarity.

µ
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We see from the above that the matrix elements corre-
sponding to the s-wave pairing are in magnitude as large as 
the matrix elements corresponding to the p-wave relations. 
So in the case of negligible M we have an equal admixture 
of s-wave and p-wave correlations. This result is similar to 
the result found by Tkachov in [37, 38] for a topological 
insulator. In [15] Fu and Kane transform to another basis, 

ψ ψ= ( + )θ
↿ ⇃c ek k k

i , in which the Hamiltonian becomes equiv-
alent to a spinless +p pix y (dominant p-wave). Although this 
transformation is an elegant way to show that p-wave rela-
tions are present, when doing predictions for the experimental 
outcome in this basis, a transformation also has to be made to 
the s-wave superconductor deposited on top. This would also 
cause an additional phase shift in the normal superconductor 
through which one can then conclude that the p-wave is no 
longer dominant. Nonetheless, the existing proposals of Fu 
and Kane for Majorana devices [15] still hold as it was already 
noted that breaking time-reversal symmetry can make +p pix y 
dominant, as we will see next.

1.2.  Regime μ<M

As we turn on the perpendicular magnetisation term, 
it follows from the dispersion relations that we have at 
Δ1, μ = +v k M2 2 2 2. The anomalous Green function relations 
become

μ μ

μ

μ

μ μ

∼ Δ ( − )( + )

∼ − Δ( − )

∼ Δ( − )

∼ − Δ ( − ) ( + )

θ

θ

↿↿

↿⇃

⇃↿

⇃⇃
−

F M M Z

F M Z

F M Z

F M M Z

2 e / ,

2 / ,

2 / ,

2 e / .

i 3
TI

2 2
TI

2 2
TI

i 3
TI

As soon as the time-reversal symmetry is broken the 
increase in M causes the p-wave component to become larger 
in magnitude than the s-wave component. This can be intu-
itively understood by notifying that a magnetic field aligns 
the spins parallel to the field. Therefore spin triplet pairing 
is favoured above spin singlet pairing. It is therefore possible 
to already observe dominant p-wave features in the regime 

μ<M .

1.3. The ‘Majorana’ regime

Unfortunately, the presence of dominant p-wave correlations 
still does not mean that a Majorana zero-energy mode exists 
as soon as we apply magnetisation, because the zero-energy 
mode is not yet fully localised. As already noted by Fu and 
Kane [15], the 2D TI surface has no edge, which prevents a 
localised Majorana bound state to form. The same is true in a 
2D topological insulator, where 1D edge states can go around 
the 2D topological insulator. We therefore need a different 
device in order to localise the zero-energy mode.

One way to create an edge and break time-reversal sym-
metry is shown in figure 2(a). The M denotes the magnetisa-
tion induced by the ferromagnet. We assume here that we 
have an insulating ferromagnet so that the current is only 

going through the surface states. A different way is to have 
a Josephson junction with a phase difference between the 
two superconductors [15]. For now, we focus on the device 
in figure 2(a). In order to have a localised zero-energy mode, 
the Majorana mode needs to be localised both at the super-
conducting side and at the ferromagnet side. At the supercon-
ducting side the superconducting gap is doing the job. At the 
ferromagnet side, the magnetisation has to be large enough 
such that the Fermi level is inside the gap (see figure 2(b)). 
Then, the zero-energy mode is fully localised. To be more 
specific, in order to have a proper localised Majorana mode 

one has to satisfy the relation μ( ) > Δ( ) +M x x 2 2  at the fer-
romagnet side. We also included the superconducting gap 
as a function of position to take the proximity effect into 
account.

2.  Surface Andreev bound states and Majorana 
zero-energy modes

So far we have looked at the properties of the bulk, i.e. the 
inner part of the s-wave proximised 2D surface states of the 
topological insulator. We are now going to discuss the prop-
erties at the interface between the superconductor and fer-
romagnet, where the Majorana zero mode is formed in the 
Majorana regime. It is expected that different symmetries are 
present at the surface or edge of a superconducting system, as 
noted in [39, 40]. Due to a finite size, the translational sym-
metry is broken in that direction. The orbital symmetry (even 
or odd) is then not a well-defined parameter anymore, giving 
rise to mixed odd and even symmetry at the interface. The 
spin pairing symmetry, however, is not affected by the finite 
size. The only option, therefore, to have an asymmetric wave 
function is to allow for odd-frequency states at the interface.

Figure 2(a) shows the superconductor/ferromagnet device 
needed to localise a Majorana state. In experiments it is useful 
to use a ferromagnetic insulator (FI) to ensure that the magnet 
itself does not shunt the device [41]. We will, therefore, indi-
cate the ferromagnet as FI in the remaining part of the paper.

Assume that we are in the regime with a fully localised 
Majorana state, i.e. μ>M . The resulting SABSs can be cal-
culated by considering a small non-superconducting region in 
the order of the coherence length to model the suppression of 
the gap near the edge (figure 2(c)). We use the wave functions 
described in our previous work ([42]) to calculate the SABSs. 
The direction of the transmitted waves in the superconductor 
is chosen such that k is conserved parallel to the interface. We 
assume that the electrons in the non-superconducting part are 
confined and, therefore, that they completely reflect back at 
x   =   −  L.

The phase difference that is picked up in one round trip 
(figure 2(c)) is

θ π π

θ
θ π

( − ) − + + Δ =

=
ℏ

− + + Δ

L k k E n

LE

v
E

2 2 3 2 arccos / 2

4

cos
2 3 2 arccos /

e h

f

� (19)

so
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⎛

⎝
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⎠
⎟π θ

θΔ
= − + +

ℏ
E LE

v
cos 3 /2

2

cosf
� (20)

⎛

⎝
⎜

⎞

⎠
⎟θ

θ
= − +

ℏ
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v
sin

2

cos
.

f
� (21)

Taking the limit →L 0 we have

θ
Δ

= − ( )E
sin� (22)

= −k k/ .y� (23)

When the magnetisation of the FI is in the exact opposite 

direction, the resulting ABS is θ= ( )
Δ

sinE . This is exactly the 

SABS of a chiral p-wave superconductor [43].
In order to determine the features of the SABS and its rela-

tion to Majorana zero energy modes, we consider the regimes 
around E   =   0 and ≠E 0 in more detail in the following.

2.1.  Around E   =   0

In figure 2(c) we can calculate the reflection and transmission 
coefficients of the electron and holes at the interface by using 
continuation of the wave function. From these coefficients it 

follows that the total wave function in the superconducting 

part in the electron–hole basis ψ ψ ψ ψ[ ]↑ ↓ − ↑ − ↓, , ,k k k k
† †  is given by

⎛
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� (24)

where Ω̃ = Δ − E2 2 and ξ = Δ − E v/0
2 2

F. Around E   =   0 
(and so around θ = 0) the expression for the Majorana zero 
mode becomes

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

π

π

π

π

Ψ =

( + )

( − )
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( − )

ξ

π

π

π

π

−

−

−
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kx

e

2e cos /4

2e cos /4

2e cos /4

2e cos /4

.x /

i /4

i /4

i /4

i /4

0� (25)

Figure 2.  (a) A ferromagnet insulator (FI) can both break time-reversal symmetry and localise the Majorana zero-energy mode in a TI. The 
location of the Majorana mode is indicated by the white arrow. (b) The dispersion relation of the topological insulator at the ferromagnet 
side for a magnetisation smaller and larger than the chemical potential. In the former, the chemical potential still lies in the Dirac cone. 
In the latter, the states around the chemical potential are gapped out and the zero-energy mode is localised at the interface between the 
superconductor and ferromagnet. (c) Calculation of the surface Andreev bound state. To model the suppression of the superconducting gap 
of the superconducting topological insulator (STI) we assume a normal part in the order of the coherence length ξ0 at the interface between 
the superconductor and the ferromagnet.

S

E=-∆sinθ

M

µ

-L x=0

θ

I

II

~ξ

STIFI

o

(a)

(b)

(c)
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Note that this expression is consistent with the result found 
by Tanaka and Asano in a semiconductor/superconductor 
device [6]. In their case, an additional magnetic field is applied 
through which only the spin up part survives of equation (25).

To give a complete picture of the properties of this Majorana 
zero-energy mode, we calculated the frequency symmetry of 
this zero-energy state. The anomalous Green function can be 
obtained by the relation

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ
δ δ

( ) = Σ
( ) * ( )

+ −
+

* ( ) ( )
+ +

′
′ ′

↑↓
↑ ↓ ↑ ↓

F E r r
u r v r

E E

v r u r

E E
, , ;

i i
.n

n n

n

n n

n
� (26)

Where u and v are the electron and hole parts, respectively.
The relationship at = =′x x 0 satisfies

( ) = −[ ( − )]*β α α βF E F Er p r p, , ,, ,� (27)

where F denotes the conjugated of F and α and β are the 
spin-indices [36], which means the Cooper pairs are odd-fre-
quency pairs. The spatial symmetry of equation (25) satisfies 
the s-wave symmetry. Therefore, the boundary of a pure p-
wave even-frequency superconductor is a pure s-wave, odd-
frequency state. The appearance of odd-frequency states near 
zero-energy is also noted in calculations on px and +p pix y 
superconductors [44].

2.2.  E ≠ 0

In a similar way as discussed for zero energy we can calculate 
the anomalous Green function for energies larger than zero. 
We find that there is an admixture between even and odd-fre-
quency. The odd and even-frequency parts are, respectively, 
given by

∽ − ΔF E1 / ,odd
2 2� (28)

∽ ΔF E / .even� (29)

Near zero-energy, the odd-frequency part is dominant and 
the even-frequency contribution grows with E. The emergence 
of a (partly) odd-frequency amplitude at the surface/interface 
due to spatial non-uniformity [39, 45–47] or interorbital pairing 
[48] is well-known for superconducting systems. However, in 
this case, we have a full odd-frequency state at zero energy. 
Therefore, the conclusion of Asano and Tanaka [6] holds that 
in these devices pure odd-frequency Cooper pairs and the 
Majorana zero-energy mode are one and the same thing.

3. TI/STI tunneling conductance

In the study of the conductance we consider the system 
where one electrode consists of the topological insulator 
proximised by the FI and the other electrode of the topo-
logical insulator proximised by the s-wave superconductor, 
as depicted in figure 3(a). We assume here that the magneti-
sation is smaller than the chemical potential in the magnetic 
topological insulator electrode. We modelled this magnetic 
TI/STI interface by using the wave functions in the magnetic 
TI and STI, as described in [42], and match them at the inter-
face such that

ψ ψ ψ ψ ψ+ + = +a b t tin h e e Se h Sh� (30)

where ψh is the reflected hole, ψe the reflected electron, ψSe 
the transmitted quasi-particle in the electron branch of the 
superconductor, ψSh the transmitted quasi-particle in the 
hole branch of the superconductor and a, b, te and th are the 
Andreev, normal, electron transmission and hole transmission 
coefficients, respectively. We calculated then the conductance 
by using the relation

∫

∫

θ θ θ

θ θ θ
=

( ) ( )

( ) ( )
π

π

π

π
−

− Δ=

G

G

T

T

d cos , eV

d cos , eV
,

0

/2

/2

/2

/2

0

� (31)

where θ( ) = + −T E a b, 1 2 2 and θ is the angle between kx and 
ky. The Andreev formalism holds when the distance between 
the superconducting and the ferromagnet side is smaller than 
the coherence length and the mean free path (lmean), as shown 
in figure 3(b). We choose here to divide the conductance by 
the energy dependent normal conductance to ensure that the 
normalised conductance goes to one at high voltage.

We first consider the case with time-reversal symmetry, i.e. 
without the FI on top of the TI. By means of a gate electric 
field, the chemical potential at the superconductor side can 
be tuned independently from the non-superconductor side. 
Therefore, we make from now on a distinction between the 
chemical potential at the superconductor and non-supercon-
ductor side. In figure 4(a) we plotted the normalised conduct-
ance for different ratios of the STI chemical potential, μS, and 
TI chemical potential, μTI. A conductance peak at = ΔeV  
appears for larger barriers due to Andreev resonance at this 
energy, similar to the s-wave case. Opposite to the s-wave 
case, the value of the conductance never drops to zero, even 
for a large mismatch where the barrier height goes practically 

Figure 3.  (a) In the calculation of the conductance we consider two electrodes: the proximised TI by the FI and the proximised TI by the s-
wave superconductor. (b) In order for the Andreev formalism to hold, the distance between the FI and the superconductor should be smaller 
than the mean free path and the coherence length.

M <ξ  , lo mean

(a) (b)
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to infinity (μ μ =/ 1/100S T ). The conductance inside the gap 
is close to one instead, which can be understood by consid-
ering different angles of incidence. The large barrier causes 
the propagation direction in the superconductor to be almost 
equal to θ = 0 as follows from the conservation of parallel 
momentum: θ θμ μ= ( )arcsin sin /S TI S . The spin in the topo-
logical insulator with θ = 0 sees no barrier because of Klein 
tunneling (which gives perfect Andreev reflection for all ener-
gies) and for θ π= /2 the spin mismatch is the largest, which 
results in the lowest transparency (perfect normal reflec-
tion). For angles in between, the transparency of the barrier 
increases continuously from one to zero for an increasing 
angle of incidence. The angle averaged conductance is there-
fore close to one.

The presence of a non-zero conductance for energies below 
the gap, even for large barriers, distinguishes the proximised 
TI surface from conventional s-wave symmetry superconduc-
tors. Although the p-wave pairing is not dominant in the time 
symmetric situation, the p-wave correlations are encoded in 
the non-zero conductance for energies below the gap in the 
presence of a barrier. The fact that the gap does not go to zero 
is due to the spin-momentum locking, which is also respon-
sible for the p-wave correlations.

4. TI/STI tunneling conductance with broken 
time-symmetry

To modulate the TI/STI tunneling conductance with broken 
time-reversal symmetry we take the set-up, as displayed in 
figure 3(a). We will use a relatively large chemical potential 
compared to the superconducting gap to model the experi-
mentally realistic regime. The topological insulators so far 
have the Dirac point close or at the same energy as the bulk 
bands so as long as the chemical potential is in the gap, the 
chemical potential is likely much larger than the supercon-
ducting gap. We argued in earlier work [42], that a magne-
tisation in the case of a ferromagnet insulator will only be 
a few percent of the chemical potential. However, to see 
the effect of the broken time-symmetry we also modulated 
the conductance spectrum for a magnetisation value of 0.95 
μTI. This result is shown in figure  4(b). There are two dis-
tinguished features compared to an N/S interface, namely a 
zero-bias peak (ZBP) and a conductance dip at = ΔeV . The 
appearance of these two features for large magnetisation is 
also reported by Linder et al [41]. Both features are due to 
the formation of SABSs at the interface. In fact, the SABSs 
have a constant density of states at energies between −Δ and 

Figure 4.  (a) Conductance spectra for a TI/STI configuration for different mismatches in chemical potential. (b) Conductance spectra 
for a magnetisation Δ =M / 95, μ Δ =/ 100TI  and different mismatches in chemical potential. (c) Conductance spectra for a magnetisation 

Δ =M / 10, μ Δ =/ 100TI  and different mismatches in chemical potential. (d) The conductance spectra for different values of magnetisation 
and μ μΔ = Δ =/ / 100TI S . Even if the magnetisation is smaller than the chemical potential, clear signatures of the SABSs are still visible.

(a) (b)

(c) (d)
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+Δ as follows from equation (22), but from conservation of 
parallel momentum it follows that the angles near zero have 
a larger transparency. The coherence peaks at the gap energy 
in the low barrier limit are replaced by resistance peaks at the 
same energy. The coherence dips at Δ arise from the spectral 
weight transfer from high to low energy due to the formation 
of SABSs. This results in a decrease of the density of states at 
Δ. Therefore, next to a zero bias conductance peak, coherence 
dips are also a distinguished feature of a p-wave order param-
eter compared to s-wave.

Note that the surface states are not fully gapped yet with 
a magnetisation of 95% of the chemical potential, i.e. the 
chemical potential is not inside the gap at the FI side. We are 
therefore not in the topologically non-trivial regime. However, 
the increased reflection at the interface or enhanced p-wave 
pairing symmetry due to magnetisation causes the SABS to 
form at the interface. If we use a magnetisation value of 10% 
of the chemical potential in the TI, figure 4(c) is obtained. We 
see there is only a small effect on the conductance spectra 
around zero energy at Δ compared to the time-reversal sym-
metry case in figure  4(a). Figure  4(d) shows the effect of 
increasing the magnetisation for μ μ= = Δ100TI S . Gradually, 
the conductance at zero energy increases while at Δ the con-
ductance decreases due to the formation of SABSs for larger 
magnetisation. It shows that the ZBP and conductance dip at 
the gap energy come together. That is, if one has a dominant 
p-wave pairing wave function and if one observes a ZBP, then 
the conductance dips are also present. As soon as the ZBP 
becomes less pronounced, as is the case for lower magneti-
sations, the conductance dip at = ΔeV  is less pronounced. 
The observation of both a ZBP and a conductance dip is a 
strong signature for a p-wave state. For practical ferromagnets 
that have a magnetisation in the order of a few percent of the 
chemical potential of the TI, it is not expected to see this par-
ticular p-wave signatures back in the conductance spectra. A 
pronounced deviation from s-wave behaviour starts to occur 
when Δ =M / 60 (see figure  4(d)). With a typical exchange 
energy of 40 meV [49, 50] it means that one has to gate tune 
the chemical potential to about 70 meV from the Dirac point, 
which seems doable experimentally [51, 52].

5.  Discussion and conclusion

An equal admixture of s and p-wave correlations exists in a 
3D topological insulator proximised by an s-wave supercon-
ductor. By inducing a perpendicular magnetisation, the p-
wave pairing becomes dominant. For a magnetisation energy 
as large as the chemical potential, the topological regime is 
entered with Majorana modes.

We studied the symmetry of the bound state of a 3D topo-
logical insulator in the Majorana regime. Green function tech-
niques show us that the pure odd-frequency pairing state at 
interfaces is equivalent to a zero-energy Majorana mode.

In the conductance spectra the increasing p-wave pairing 
can be observed by the presence of a ZBP together with a 
conductance dip at the gap energy. In the time-reversal sym-
metric case, the non-zero sub-gap conductance in the presence 

of large interface barriers, indicates that p-wave correlations 
are present.
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