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We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The
corresponding linear-response parameters are derived from accurate estimates of solvation energy
calculated for several hole charge distributions in DNA stacks. Two models are considered:sAd the
correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the
corresponding site andsBd in addition to this term, the reaction field due to adjacent base pairs is
accounted for. We show that both schemes give very similar results. The effects of the polar medium
on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings
essentially suppress charge delocalization in DNA, and hole states insGCdn sequences are localized
on individual guanines. ©2005 American Institute of Physics. fDOI: 10.1063/1.1924551g

INTRODUCTION

DNA-mediated charge transfer currently attracts consid-
erable interest because of its relevance for the oxidative dam-
age and mutations of DNA and its potential importance for
molecular electronics. The status of experimental and theo-
retical investigations on charge transport through DNA has
recently been the subject of several reviews in the book.1 The
physical framework for a quantitative treatment of charge
transfer in DNA has also been considered in papers by Be-
ratan and co-workers2,3 and Ratner and co-workers.4,5

Solvation effects play an important role in the charge
transfer mediated by DNA. In particular, solvent reorganiza-
tion is a key parameter, which influences the dynamics of
electron-hole migration through DNA. Estimates of the in-
teraction energy between an excess charge in the interior of
the double helix and its environment can essentially depend
on a model employed for the calculation. For instance, to
estimate the reorganization energy for hole transfer in DNA,
one applied the Poisson equation solver6 to heterogeneous
dielectric models consisting of several different dielectric
zones surrounding the hole donor and acceptor sites.2,5,7,8

The calculation results are quite different because of uncer-
tainties concerning the construction of the dielectric model.8

The surrounding polar medium affects also the delocal-
ization of an electron hole in DNA over adjacent base pairs.
There has been an interesting discussion as to whether the
hole charge in DNA is confined to a single base pair or
delocalized over several adjacent base pairsssee, for in-
stance, Ref. 1 and references thereind. Recent computational
studies gave conflicting results.s1d Based on a simple cylin-
drical cavity model, where the charge was concentrated on
the axis of the cylinder, Basko and Conwell accounted for
the solvation effects in the tight-binding Hamiltonian and
concluded that the hole charge is spread over five or more

adjacentsGCd base pairs.9 The hole wave function found
within this model is similar to that calculated, without taking
into account the polar medium.s2d By contrast, Beratan and
co-workers showed that the interaction with surroundings
considerably affects the charge distribution in DNA.2 They
employed a heterogeneous dielectric model comprised of a
DNA zone and a solvent zone. Although solvation terms
were shown to essentially favor localization of the hole de-
localization over two or three guanines is found to be ener-
getically feasible. Beratan and co-workers estimated the total
energies of the system with localized and uniformly delocal-
ized hole, while they did not consider the corresponding cor-
rection of the Hamiltonian for the effects of polar
surroundings.2

Many interesting theoretical results concerning charge
transfer in DNA have been obtained by using tight-binding
Hamiltonians. Olofsson and Larsson studied the effect of
structural reorganization of nucleobases on the delocalization
of an excessive charge in DNA.10 Effects of static and dy-
namic structural fluctuations on the hole mobility in DNA
were considered recently by Grozemaet al.11 Roche studied
the dependence of the DNA-mediated conduction on the se-
quence base pairs.12 Hole transfer throughp stacks contain-
ing chemically modified nucleobases was also considered.13

However, in these studies, the effects of the environment
have not been accounted for. As already noted the solvation
term was included in the Hamiltonian within a simple cylin-
drical model.9 In this paper we consider a scheme to derive
the polar-medium correction terms for tight-binding Hamil-
tonians, using solvation energies computed within more
elaborated schemes based on heterogeneoussmultizoned di-
electric approach or molecular-dynamics simulations. Then
we will study the effects of a polar environment on the hole
distribution in sGCdn sequences.adElectronic mail: alexander.voityuk@icrea.es
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METHOD

Effective Hamiltonian

Distribution of the hole charge in ap stack can be de-

scribed using a tight-binding HamiltonianH̃. Only one state
per sitesbase pairbid is taken into account. Thus asystem
b1b2. . .bn hasn states, where the hole is localized on one of
the site. The corresponding state functions are assumed to be
orthonormalizedsoverlap between states is neglectedd. Ma-

trix elements ofH̃ are determined as

H̃ii = «i
0 + si ,

H̃ij = Vij .

The diagonal elementsH̃ii can be estimated as a sum of the
oxidation potential«i

0 and the solvation correctionsi. Off-
diagonal elements between adjacent base pairss j = i ±1d can
be approximated by the corresponding electronic coupling
Vij and neglected in other cases. For the canonical structure
of B-DNA, the electronic couplingV of adjacent GC pairs
calculated using different schemes is about 0.08 eV.14,15

In turn, the vertical oxidation potential«i
0 may be ap-

proximated by the relative ionization energy of a base pairbi

in the sequence. These energies depend in an essential fash-
ion on the nature of adjacent base pairsj s j = i ±1d.16,17How-
ever, in sequencess *dsGCdsGCdnsGCds *d all base pairs
within the sGCdn fragment have very similar oxidation po-
tentials,«i

0=«0 for all i.
Let us consider now how to estimate the solvation term

si. According to the reaction field theory, a charge immersed
in a dielectric medium will induce an electric field in the
solvent. In turn, this field will stabilize the solute. Within the
linear-response modelsi can be written as

si = si
0 + zi

0sqi − 1d + o
jÞ0

zi
jsqi−j + qi+jd. s1d

The quantitysi
0 corresponds to a reference state in which the

positive charge is completely localized on a single base pair
sqi =1,qi−j =qi+j =0d; the second termzi

0sqi −1d is due to me-
dium polarization by the chargeqi, zi

0,0; the last term
o jÞ0zi

jsqi−j +qi+jd is due to chargesqi−j andqi+j on other base
pairs se.g., for nearest neighboring pairsj =1d; one can ex-
pect thatuzi

ju, uzi
0u. When all base pairs in the systems are

identical the quantitiessi
0, zi

0, andzi
j do not depend on a base

pair bi and the subscripti can be dropped. We will consider
two models. In the model A, the correctionsi, Eq. s1d, de-
pends only on the charge localized on the corresponding site,
i.e., for all j , zi

j =0. In the model B, the reaction field due to
nearest base pairsj = ±1 is also accounted for,zi

1Þ0. Then
the solvation term corresponding to a state with charge dis-
tribution hqij can be expressed as

DEsolvsq1,q2, . . . ,qnd

= o
i=1

n

qisi = o
i=1

n

qiss0 + z0sqi − 1d + z1qi−1 + z1qi+1d. s2d

When a hole is delocalized overn base pairs the correspond-
ing solvation termDEn

solv is

DEn
solv = s0 + S1

n
− 1Dz0 +

2n − 2

n2 z1. s3d

Thus, for n=1, DE1
solv=s0; for n=2, DE2

solv=s0−1/2z0

+1/2z1; and so on. Parametersz0 and z1 can be found by
fitting of DEn

solv snù2d given by Eq.s3d to corresponding
values computed for the “real” models.

As already noted quite complicated schemes must be
used to estimate solvation energiesDEn

solv of hole states in
DNA. Kurnikov et al. calculated the stabilization energy of
different hole states within DNA duplexes.2 In particular,
they considered several systems with the charge uniformly
delocalized oversGCdn clusters embedded in AT run.DEn

solv

is found to be −1.857, −1.451, −1.190, and −1.013 eV, for
n=1, 2, 3, and 4, respectively. Based on these results we can
estimate the quantitiess0, z0, and z1. The fitted values
we obtain are zA

0 =−1.020 eV for the model A, and
zB

0 =−1.433 eV andzB
1 =−0.629 eV for the model B. Using

these parameters, one can well reproduce reference values of
DEn

solv fthe standard deviation of solvation energies estimated
within the models A and BsEq. s2dd are 0.066 and 0.006 eV,
respectivelyg. Note that the parameters0=DE1

solv does not
influence the charge distribution in the system, but equally
shifts all energy levels. As will be shown, the models A and
B provide very similar results.

The energiesEi and the coefficients matrixC are deter-
mined by the eigenvalue problem for the effective Hamil-

tonianH̃. Because diagonal matrix elements ofH̃ depend on
the charge distribution, an iterative procedure is used. An
initial density matrix is assumed to be diagonal, with matrix
elements corresponding to a delocalized hole.

RESULTS AND DISCUSSION

In this section, we study the effects of a polar environ-
ment on the charge distribution insGCdn sequences. First, we
consider charge distributions in the sequences when the sol-
vation effects are neglectedsTable Id. The hole charge is well
delocalized overp stacks. For instance, in systemssGCd2k+1

the largest charge, which is localized on the central base pair
q0, decreases as 1/sk+1d sthe charge is equal to 0.5,,0.33,
0.25, and 0.20 whenk increases from 1 to 4d. If the surround-
ing medium is not taken into account, all diagonal matrix
elements are of the same value and the charge distribution

TABLE I. Hole charge delocalization insGCdn sequences. The effects of
polar environment are neglected.

Sequence sGCd3 sGCd5 sGCd7 sGCd9

q0 0.5 0.333 0.25 0.2
q±1 0.25 0.25 0.213 0.181
q±2 0.083 0.125 0.131
q±3 0.037 0.069
q±4 0.019

Sequence sGCd2 sGCd4 sGCd6 sGCd8

q±1 0.5 0.362 0.272 0.216
q±2 0.138 0.175 0.167
q±3 0.054 0.092
q±4 0.026
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does not depend on the magnitude of electronic couplingV.
Thus the results are very similar to those obtained by Basko
and Conwell.9

However, this situation changes dramatically when the
solvation effects are included. Table II shows the correspond-
ing charges obtained using the models A and B. First, the
hole charge is almost completelysmore than 98%d confined
to a single pair. Less than 1% of the charge is found on each
nearest site. All the more distant base pairs do not carry any
charge. This result is independent of the length of ap stack.
Both models give a very similar picture for the charge dis-
tribution. Note that in systems with an even number of base
pairs, the charge distribution is not symmetric. For instance,
in the dimersGCd2 the charge can be distributed ass0.99,
0.01d or s0.01, 0.99d. Obviously, both states are of the same
energy. In sGCd2k+1 the ground state of the radical cation
corresponds to a state where the hole is localized on the
middle base pair. Starting with a different density matrix, one
can also obtain states where the charge is confined to other
sites. Let us consider the stacksGCd5. In the ground state, the
hole is on the thirdsmiddled site. The calculated energies of
states, where the charge is localized on the first and the sec-
ond base pairs, are very close to that of the ground statesthe
difference is about 0.02 kTd. This estimation suggests that a
hole can be localized on any base pair within thep stack.
The same result is also obtained for othersGCdn systems.
Thus we can conclude that the solvation effects lead to very
localized hole states, which can reside on anysGCd pair.

This conclusion is at variance with the result obtained by
Basko and Conwell.9 They conclude that the shape of the
hole wave function is not essentially different from the one
obtained without taking into account solvation effects, and

the hole is spread over three to five sites. The main reason
for this disagreement can be explained as follows. A solva-

tion correction toH̃ii due to the chargeqi calculated within
the cylindrical model is comparable to that caused by
charges on neighboring pairsfthe parameterszi

j, j
=0,1, . . . ,k, in Eq. s1d varies slowly with jg.9 In turn, the
weak dependence ofzi

j on j is due to the fact that the dis-
tances between charges on the axis of the cylinder and the
polar medium are essentially longer than the distance be-
tween adjacent pairs, 3.4 Å. This model appears to be rather
crude, and it is not supported by the results of molecular-
dynamics simulations of DNA18,19 or even by the more ex-
tended electrostatic models using a heterogeneous dielectric
medium.2,6–8 As expected, the calculation carried out using
z0=z1=z2=1.0 leads to quite delocalized hole states in
sGCdn. For instance, we obtain that insGCd5 q0=0.476,q±1

=0.251,q±2=0.011.
The electronic couplingV between base pairs is known

to be a parameter, which essentially determines the delocal-
ization of the hole wave function. As already discussed in the
literature14,20,21 electronic couplings between base pairs are
very sensitive to conformational changes of the DNA. There-
fore, it is worthwhile to consider how the variation of the
couplingV will affect the hole distribution in a stack. While
V=0.08 eV seems to be very reasonable, we carry out calcu-
lations of sGCd5 with larger values of this parameter. Table
III compares charges calculated withV=0.08, 0.16, 0.24, and
0.32 eV. Note that the results obtained within both solvation
models are in good agreement. As expected, the hole delo-
calization increases with the electronic coupling; however,
the charge remains essentially confined to a single site with

TABLE II. Hole charge distribution insGCdn sequences. The effects of a polar environment are included within
the models A and B.

Sequence
Model

sGCd3 sGCd5 sGCd7 sGCd9

A B A B A B A B

q0 0.988 0.981 0.987 0.980 0.987 0.980 0.987 0.980
q±1 0.006 0.010 0.006 0.010 0.006 0.010 0.006 0.010
q±2, q±3, q±4 0.000 0.000 0.000 0.000 0.000 0.000

Sequence
Model

sGCd2 sGCd4 sGCd6 sGCd8

A B A B A B A B
q0 0.994 0.990 0.988 0.980 0.987 0.980 0.987 0.980
q±1 0.006 0.010 0.006 0.010 0.006 0.010 0.006 0.010
q±2, q±3, q±4 0.000 0.000 0.000 0.000 0.000 0.000

TABLE III. Hole charge distribution insGCd5 calculated using different values of the electronic couplingV sin
eVd. The effects of a polar environment are included within the models A and B.

V
sin eVd

Solvation model

0.08 0.16 0.24 0.32

A B A B A B A B

q0 0.987 0.980 0.947 0.922 0.868 0.830 0.727 0.724
q±1 0.006 0.010 0.026 0.039 0.063 0.083 0.124 0.131
q±2 0.000 0.000 0.001 0.000 0.004 0.002 0.013 0.007
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one exception obtained atV=0.32 eV. In this instance, the
hole charge is found to be remarkablys,30%d delocalized.
However, a strongly overestimated value of the electronic
coupling was employed for the calculationfV=0.32 eV is by
a factor of four larger than the value of 0.078 eV obtained by
averaging coupling matrix elements, calculated for different
mutual position ofsGCd pairs15g.

Besides the solvation term there is another effect result-
ing in the hole confinement to one base pair. This is an in-
ternalsstructurald reorganization of nucleobases caused by an
excess charge. This effect was recently considered in detail
by Olofsson and Larsson.10 They found that spatially well-
localized hole states are energetically stabilized due to the
internal reorganization of nucleobases. Obviously, the inter-
nal reorganization term will reinforce the hole localization to
a single base pair.

CONCLUSIONS

s1d A simple scheme has been proposed for estimating the
solvation effects within the tight-binding Hamiltonian
and related methods employed for modeling of charge
transfer in DNA. We showed how the corresponding
linear-response parameters can be derived from solva-
tion energies calculated for several charge distributions
in DNA using accurate computational approaches. Two
models were considered:sAd where the correction to

H̃ii depends only on the charge localized on the same
site, andsBd where, in addition, the effect of the reac-
tion field due to adjacent base pairs is accounted for.
We found that both schemes give similar results.

s2d The effects of polar surroundings on the hole distribu-
tion in DNA were studied. At variance with previous
results9 we conclude that hole states insGCdn se-
quences are localized on individual base pairs. The sol-
vation effects suppress essentially the charge delocal-
ization in DNA, leading to radical cation states
confined to a singlesGCd site. The result remains un-
changed when considerable deviations of the electronic
coupling from its average value are accounted for.

Thus, our statement on the hole confinement to one site
appears to be quite robust and independent of other
terms included in the Hamiltonian.

It is not very uncommon that a hole delocalization over sev-
eral base pairs is assumed, at least implicitly, when interpret-
ing experimental data on one-electron oxidation of DNA or/
and considering possible mechanisms of charge migration in
DNA.1 Our results may be helpful by justifying such expla-
nations.
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