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1 Introduction
In this study the equations of motion derived by von Karm

f1g, with Benton’s transformationsf2g for the flow over a singl
free disk is studied for the slip flow. The slip regime for
Knudsen numbersKnd is valid in the range 0.1.Kn.0.01 f3g.
For Kn,0.01 the no-slip condition is present and forKn.0.1 the
Navier–Stokes equations cannot be used since the flow field
not be assumed to be continuum. In our study, the slip an
no-slip regimes that lie in the range 0.1.Kn.0 is considered.

The subject of the rarefied gas dynamics can be conven
defined as the study of gas flows in which the average value o
distance between two subsequent collisions of a molecule, na
the mean free path, is not negligible in comparison with a c
acteristic length of the structure considered. This type of flo
commonly encountered in many engineering aspects suc
high-altitude flight, micro-machines, vacuum technology, aer
reactors, etc.

Mainly, requirement of high temperatures in the turbine stag
a gas turbine engine to achieve high thermal efficiencies, co
of the air is essential to ensure for extending the life of tur
disks and blades. It is vital to know how flow and thermal fie
are at every stage for a safe and effective work life, in the op
tion of the rotary type machine systems. For an accurate det
nation of temperature distribution, firstly the flow field must
solved as precisely as possible. Since the governing equa
namely the momentum equations, are highly nonlinear
coupled, it is hard to obtain exact analytical solutions for the
problem.

In 1921, von Karmanf1g discovered the self similar behavior
the flow over a single free disk and solved the resulting ordi
differential equation system by using an approximate inte
method. Latter, Cochranf4g obtained more accurate results
matching a Taylor series expansion near the disk with a s
solution involving exponentially decaying functions far from
disk at a suitable mid point. Bentonf2g improved Cochran’s so
lutions and solved the problem for the unsteady case. The pro
of heat transfer was first considered by Millsaps and Polhausef5g
for the values of Prandtl numbersPrd between 0.5 and 1.0. The
Sparrow and Greggf6g extended this work for a range of 0
,Pr,100 by neglecting the dissipative terms in the energy e
tion.

In this study we used the differential transform methodsDTMd,
which was introduced by Zhouf7g in a study about electric
circuits. It is semianalytical-numerical technique depending
Taylor series that is promising for various types of differen
equations. With this technique, it is possible to obtain highly
curate results or exact solutions for the differential or inte
differential equation consideredf8–10g.
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2 Theoretical Model for the Problem
Let su,v ,wd be the velocity components in the cylindrical

ordinatessr ,u ,zd, respectively, andt be the temperature. Assu
ing that temperature is a function of the axial coordinatez only,
the following similarity variables are introducedf1g:

u = VrFszd, v = VrGszd, w = ÎVvHszd,

p = − rVvPszd andTszd = st − t`d/st0 − t`d s1d

where,z=zÎV /n is the dimensionless axial coordinate. To so
the problem in a bounded domain, we use the following de
dent and independent variables introduced by Bentonf2g:

j = e−cz s2d

Fszd = c2fsjd, Gszd = c2gsjd, Hszd = − cf1 − hsjdg s3d
Then, the Navier–Stokes equations and the energy equatio
neglecting dissipation terms, read:

j2f9sjd = f2sjd − g2sjd − jf8sjdh s4d

j2g9sjd = 2fsjdgsjd − jg8sjdhsjd s5d

jh8sjd = 2fsjd s6d

T9szd = PrHT8szd s7d
where, Pr is the Prandtl number. Since the assumption of
tinuum media fails, rarefied gases cannot be investigated
N.S. equations for a value of Knudsen number higher than
f11g. For the range 0.1.Kn.0.01 the no slip B.C. cannot be us
and should be replaced with the following expressionf3g:

Ut =
2 − s

s
l

]Ut

]n
s8d

whereUt is the tangent velocity,n is the normal direction to th
wall, s is the tangential momentum accommodation coeffic
and l is the mean free path. ForKn,0.01 the viscous flow
recovered and the no slip condition is valid. In our considera
the slip and the no-slip regimes of the Knudsen number that l
the range 0.1.Kn.0 will be taken into account. By using E
s8d, the boundary conditions for the problem can be introduce
follows:

fs1d = vf8s1d, gs1d = c−2 − vcg8s1d, hs1d = 1 s9d

fs0d = 0, gs0d = 0, hs0d = 0 s10d

where,v=fs2−sdlV1/2g /sn1/2 is the slip factor. And the B.C.
for the temperature are:

Ts0d = 1, Ts`d = 0 s11d
By integrating Eq.s7d with the first boundary condition in E
s11d, the dimensionless temperature can be evaluated in ter
the axial part of the velocity field as follows:

Tszd = T8s0dE
0

z

ePre0
bHshddhdb + 1 s12d

where,b andh are dummy variables. The missing B.C.T8s0d is
obtained from the far field B.C. given in Eq.s11d as follows:

T8s0d = − 1YE
0

`

ePre0
bHshddhdb s13d

3 The Solution
In solving Eqs.s4d–s6d with the B.C.’ss9d ands10d, we applied

DTM at j=0. By using the theorems inf8g, the differential trans5.

form of Eqs.s4d–s6d can be evaluated as follows:
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F̃skd =
1

ksk − 1dol=0

k

fF̃sldF̃sk − ld − G̃sldG̃sk − ld − lF̃sldH̃sk − ldg

s14d

G̃skd =
1

ksk − 1dol=0

k

f2F̃sldG̃sk − ld − lG̃sldH̃sk − ldg s15d

H̃skd =
2

k
F̃skd s16d

where,kù2 and F̃skd, G̃skd, and H̃skd denote to the differentia
transforms offsjd, gsjd, and hsjd, respectively. To evaluate t
dependent variables, we need to know the missing B.C.’sf8s0d
andg8s0d. In many studies, such asf12g, the shooting method
used to determine unknown B.C.’s. Instead of using the sho

method, we obtained the values ofF̃skd, G̃skd and H̃skd for k
=2,3,… ,N in terms off8s0d andg8s0d, which will be called asf1
andg1 respectively, then by using the B.C.’s given in Eq.s9d for
j=1, we evaluatedf1, g1, andc numerically. This is much fast
and cost efficient than the numerical techniques since it is
iterative. With the new defined ones, the B.C.’s given in Eq.s10d
for j=0 are transformed as follows:

F̃s0d = 0, G̃s0d = 0, H̃s0d = 0, F̃s1d = f1 andG̃s1d = g1

s17d
By using the recurrence relations in Eqs.s14d–s16d and the trans

formed boundary conditions in Eq.s17d, F̃skd, G̃skd, andH̃skd for
k=2,3,… ,N are evaluated. Then, using the inverse transfo
tion rule in f8g, the series solutions are obtained from:

fsjd = o
k=0

N

F̃skdjk, gsjd = o
k=0

N

G̃skdjk, hsjdo
k=0

N

H̃skdjk s18d

where,N is the number of terms to be calculated. By calcula
up to N=6, we get:

fsjd = f1j − 1
2sf1

2 + g1
2dj2 + 1

4 f1sf1
2 + g1

2dj3 − 1
144s17f1

4 + 18f1
2g1

2

+ g1
4dj4 + 1

1152f1s61f1
4 + 74f1

2g1
2 + 13g1

4dj5 − 1
86400s1971f1

6

+ 2825f1
4g1

2 + 889f1
2g1

4 + 35g1
6dj6 + ¯ s19d

gsjd = g1j − 1
12g1sf1

2 + g1
2dj3 + 1

18f1g1sf1
2 + g1

2dj4 − 1
1920g1s53f1

4

+ 58f1
2g1

2 + 5g1
4dj5 + 1

5400f1g1s65f1
4 + 82f1

2g1
2 + 17g1

4dj6 + ¯

s20d

hsjd = 2f1j − 1
2sf1

2 + g1
2dj2 + 1

6 f1sf1
2 + g1

2dj3 − 1
288s17f1

4 + 18f1
2g1

2

+ g1
4dj4 + 1

2880f1s61f1
4 + 74f1

2g1
2 + 13g1

4dj5 − 1
259200s1971f1

6

+ 2825f1
4g1

2 + 889f1
2g1

4 + 35g1
6dj6 + … s21d

Table 1 Variation of the flow field parameters d

v F8s0d F8s0d f13g G8s0

0.0 0.510232619 0.51023262 20.6159
0.1 0.421453639 0.42145364 20.6058
0.2 0.352581007 0.35258101 20.5836
0.5 0.223848209 0.22384821 20.5028
1.0 0.127923645 0.12792364 20.3949
2.0 0.061010098 0.06101010 20.2733
5.0 0.018588527 0.01858853 20.1433
10.0 0.006812558 0.00681256 20.0810
20.0 0.002361594 0.00236159 20.0437
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The solutions are given here up toOsj6d, however, one can eas
obtain higher ordered terms. After evaluatingfsjd, gsjd, andhsjd,
the original dependant variablesFszd, Gszd, andHszd are obtaine
by using Eqs.s2d ands3d. If necessary,Pszd can be obtained fro
the following equation:

Pszd − P0 = Hszd2/2 − H8szd s22d

4 Results and Discussion
The variation of the flow field parametersF8s0d, G8s0d, and

Hs`d=−c with respect to the slip factor are given below in Ta
1 with comparison tof13g. The other parameters, which aref1, g1,
andT8s0d are reported in Table 2.

We evaluated the results in Tables 1 and 2 and Figs. 1–1
calculatingN=60 terms. One can see from Table 1 that the re
obtained forF8s0d, G8s0d, andHs`d are in good agreement w
f13g. While evaluating the thermal field, we took Pr=0.71, wh
is the value of Prandtl number for air. By continuing the s
procedure, the thermal field can be computed for other Pr
numbers.

Figures 1 and 2 show that the magnitudes of the surface
friction in radial and circumferential directions decrease with
increase inv. This is quite natural sincev, the slip factor, is th
ratio of slip to viscous effects. As a consequence and as it c
observed from Fig. 4, the inflow rate at infinity decreases sinc
radially outwards boundary layer loses its thickness and is fe
the fluid stream in axial direction.

As one can see from Fig. 3, the minimum value forT8s0d is not
reached atv=0. We calculated this value asv=0.2836 and th
value corresponding to this point asT8s0d=−0.337462. This valu
of the slip factor is of great importance since the heat tra
from the rotating disk is directly related to the temperature g
ent atz=0. We can state that the maximum cooling of the rota
disk is reached at this value of the slip factor if the ambient
is colder than the rotating disk. The magnitudes of the radia
the circumferential velocities just above the rotating disk
given below in Figs. 5 and 6.

The highest value of the radial velocity on the surfac
0.128440 and this value is reached atv=1.1586. This value of th

to v with comparison to Ref. †13‡ „N=60…

G8s0d f13g Hs`d Hs`d f13g

14 20.61592201 0.88447411 0.8844742
41 20.60583524 0.88136423 0.8813642
64 20.58367676 0.87395729 0.8739572
02 20.50280970 0.84239263 0.8423926
95 20.39492760 0.78947720 0.7894772
32 20.27337013 0.71031331 0.7103134
09 20.14338821 0.58376463 0.5837646
89 20.08103009 0.48758465 0.4875846
62 20.04378846 0.39997581 0.3999758

Table 2 Variation of T8„0…, f1 and g1 with respect to v „N=60…

v T8s0d f1 g1

0.0 20.32586039 1.182244779 1.536776526
0.1 20.333496950 1.096913972 1.42217478
0.2 20.336780900 1.038943086 1.33950464
0.5 20.334652873 0.942790947 1.19132445
1.0 20.320432993 0.875499819 1.07680029
2.0 20.292997980 0.825074692 0.98300321
5.0 20.244046155 0.783417800 0.89867473
10.0 20.205049245 0.765039980 0.85899812
20.0 20.168829630 0.753582150 0.83335518
ue

d

220
352
767
097
275
701
882
300
884
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slip factor may be necessary and important practically, if the
is to use the disk as a centrifugal fan. As one can see from F
the maximum circumferential velocity on the surface is atv=0,
where the no-slip condition is present. This is a result of the n
tive gradient of the circumferential velocity inz direction above
the disk. Variations ofF, G, H, andT for several values ofv are
given below in Figs. 7–10.

From Figs. 7–9, the decreasing effect of the slip factorv on
velocity field can be easily seen. In the limit casev→`, when the
flow is entirely potential, the rotating disk has no effect on ro
ing the fluid particles, therefore, the velocity field is constant
equal to zero.

Fig. 1 Variation of F8„0… with v

Fig. 2 Variation of G8„0… with v

Fig. 3 Variation of T8„0… with v
Fig. 4 Variation of H„`… with v
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This is natural, since the rotating disk acts like a centrifuga
and owing to the centrifugal forces, throws the fluid that stick
it. A fluid stream compensates this thrown fluid, which is in
axial direction. Whenv increases, less amount of fluid can s
and the rotating disk loses its efficiency to transfer its circum
ential momentum to the fluid particles. The fluid loses circum
ential velocity therefore the centrifugal forces that throw the
outwards decrease. Since the disk throws less fluid away
amount of fluid stream in the axial direction exists.

From Fig. 10, one can conclude that as the slip factorv in-
creases,Tszd tends to vary linearly. This is a result of the fact t
as v increases,Hszd decrease and in the limit case ofv→`, H
=0 can be taken. From Eq.s7d, this leads to the following case

lim
v→`

T9szd = 0 s23d

where, the solution is a line and for large values ofv, it can be
approximately taken as:Tszd>T8s0dz+1 to ease the comput
tions, if necessary.

Fig. 5 Variation of the radial velocity with respect to v at z
=0

Fig. 6 Variation of circumferential velocity with respect to v at
z=0

Fig. 7 Radial component of the velocity for several values of

v
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5 Conclusion
In this study, the slip flow over a rotating infinite disk is co

sidered. DTM is used as the solution technique after the dom
transformed to a bounded one. Velocity and thermal fields
evaluated accurately. Numerical and graphical results are
and the effect of slip to the flow field variables is discusse
detail. The point that is worth noticing in this paper is that rob
ness of the DTM since it solves nonlinear-coupled equations

Fig. 8 Circumferential component of the velocity for several
values of v
Fig. 9 Axial component of the velocity for several values of v
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simplified and tractable manner with high accuracy. This s
also diverges from the similar studies in literature by solving
perature field for the slip flow over a rotating disk.
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