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Ana|ysis for S||p Flow Over a S|ng|e 2 Theoretical Model for the Problem

Free Disk With Heat Transfer Let (u,v,w) be the velocity components in the cylindrical co-
ordinates(r, 6,2), respectively, and be the temperature. Assum-

ing that temperature is a function of the axial coordinatenly,

Aytac Arikoglu the following similarity variables are introducéd]:
Ibrahim Ozkol U=QrF(Q), v=QrG(0), w=VQuH(Q),
p=-pQuP() andT({) = (t—t)/(tr — L) (1)

Faculty of Aeronautics and Astronautics, Istanbul

Technical University, 34469 Maslak, Istanbul, Turkey where, =2V /v is the dimensionless axial coordinate. To solve

the problem in a bounded domain, we use the following depen-
dent and independent variables introduced by Bep2dn

=% 2

F(Q)=c*(é), G(O=c’g(d), HEQ)=-cd1-hE] 3

1 Introduction . : i
. . . ) Then, the Navier—Stokes equations and the energy equation, by
In this study the equations of motion derived by von Karmaﬁeglecting dissipation terms, read:

[1], with Benton’s transformationg2] for the flow over a single

free disk is studied for the slip flow. The slip regime for the E17(8) = 12§ — g7(&) - £ (Hh (4)
Knudsen numbe(Kn) is valid in the range 0.3 Kn>0.01[3]. -, ,

For Kn<0.01 the no-slip condition is present and fam> 0.1 the £9'(8) = 21(H9(é) - £9'(HNh() 5
Navier—Stokes equations cannot be used since the flow field can- ,

not be assumed to be continuum. In our study, the slip and the &éh'(9) = 2f(¢) (6)

no-slip regimes that lie in the range 0:Kn>0 is considered. o ,
The subject of the rarefied gas dynamics can be conveniently T =PHT(J) @
defined as the study of gas flows in which the average value of tibere, Pr is the Prandtl number. Since the assumption of con-
distance between two subsequent collisions of a molecule, naméhuum media fails, rarefied gases cannot be investigated with
the mean free path, is not negligible in comparison with a chak.S. equations for a value of Knudsen number higher than 0.1
acteristic length of the structure considered. This type of flow [41]. For the range 0.2 Kn>0.01 the no slip B.C. cannot be used
commonly encountered in many engineering aspects such asd should be replaced with the following expresdi8h
high-altitude flight, micro-machines, vacuum technology, aerosol 2— o oU
reactors, etc. U =0 ®)
Mainly, requirement of high temperatures in the turbine stage of o dn

a gas turbine engine to achieve high thermal efficiencies, COO"WHereUt is the tangent velocityp is the normal direction to the

of the air is essential to ensure for extending the life of turbing.i . is the tangential momentum accommodation coefficient

disks and blades. It is vital to know how flow and thermal fieldand’)\ is the mean free path. Fatn<0.01 the viscous flow is '
are at every stage for a safe and effective work life, in the opergs;,ered and the no slip condition is valid. In our considerations
. L, . . e slip and the no-slip regimes of the Knudsen number that lies in
nation of temperature distribution, firstly the flow field must b‘fhe range 0. Kn>0 will be taken into account. By using Eq.

solved as precisely as possible. Since the governing equatiofss, \he houndary conditions for the problem can be introduced as
namely the momentum equations, are highly nonlinear al |'

coupled, it is hard to obtain exact analytical solutions for the fu lows:

problem. f(1)=wf’'(1), g(1)=c?-wcg' (1), h(1)=1 (9)
In 1921, von Karmail] discovered the self similar behavior of

the flow over a single free disk and solved the resulting ordinary f(0)=0, g(0)=0, h(0)=0 (10

differential equation system by using an approximate integrgere w=[(2-0)\QY2]/ o112 is the slip factor. And the B.C.’s
method. Latter, Cochraf4] obtained more accurate results byfor the, temperature are:
matching a Taylor series expansion near the disk with a series '
solution involving exponentially decaying functions far from the TO)=1, T(x)=0 (11
disk at a suitable mid point. Bentd@] improved Cochran's so- g jntegrating Eq.(7) with the first boundary condition in Eq.
lutions and solved the problem for the unsteady case. The probl ), the dimensionless temperature can be evaluated in terms of
of heat transfer was first considered by Millsaps and Polhaigen the ’axial part of the velocity field as follows:
for the values of Prandtl numbéPr) between 0.5 and 1.0. Then,
Sparrow and Gregg6] extended this work for a range of 0.1 , ¢ PBH )
< Pr< 100 by neglecting the dissipative terms in the energy equa- TQ=T(0) [ e o"7dg+1 (12)
tion. 0

In this study we used the differential transform metfipd M), where, 8 and 5 are dummy variables. The missing B.T.(0) is
which was introduced by Zholi7] in a study about electrical pptained from the far field B.C. given in E¢L1) as follows:
circuits. It is semianalytical-numerical technique depending on N
Taylor series that is promising for various types of differential i B
equations. With this technique, it is possible to obtain highly ac- T(0)=- 1/f ePloHmdngp (13
curate results or exact solutions for the differential or integro- 0
differential equation considerd@-—10).

3 The Solution

T ) .
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k Table 2 Variation of T'(0), f; and g, with respectto @ (N=60)

F(k) = > [FOF(k=1) = GGk 1) = IF(HH(k=1)]

k(k=1)715 © T'(0) f; %
14 o0 032586039 1182244779 1536776526
01 0333496950 1096913972 1422174786
L 02 0336780900 1038943086  1.339504645
= == = 05  —0334652873 0942790947 1191324451
G = k= 1)2 [2FGKk-D-IGOHK-D] (15 17 ~0320432993 0875499819 1.076800290
i=0 20 -0292997980 0.825074692 0.983003210
50  -0244046155 0783417800 0.898674732
_ g 100 0205049245 0765039980 0.858998126
H(o = -F (k) (16) 200  -0.168829630 0.753582150 0.833355187

where, k=2 andF(k), G(k), andH(k) denote to the differential

transforms off(¢), g(¢), and h(§), respectively. To evaluate the

dependent variables, we need to know the missing B.C(8) The solutions are given here up@i£°), however, one can easily
andg’(0). In many studies, such 442, the shooting method is Obtain higher ordered terms. After evaluatif(g), g(¢), andh(¢),
used to determine unknown B.C.’s. Instead of using the shootiffég original dependant variabl&${), G(£), andH({) are obtained
method, we obtained the values %tk), é(k) and ﬁ(k) for k by using Eqs(2) and(3). If necessaryP({) can be obtained from

=2.3.... N in terms off'(0) andg’ (0), which will be called ag, € following equation:
andg; respectively, then by using the B.C.’s given in E§) for P(0) - Po=H()H2-H'(2) (22
£=1, we evaluated,, g4, andc numerically. This is much faster
and cost efficient than the numerical techniques since it is not . .
iterative. With the new defined ones, the B.C.’s given in @) 4 Results and Discussion
for £=0 are transformed as follows: The variation of the flow field parameteFs (0), G’(0), and
~ ~ ~ ~ ~ H(e) =—c with respect to the slip factor are given below in Table
F0)=0, G(0)=0, H(0)=0, F()=f,andG(1)=0 1 with comparison t¢13]. The other parameters, which dre g;,
(17)  andT'(0) are reported in Table 2.
By using the recurrence relations in Eqs4)—(16) and the trans- Y\/el et\'/alllj\lat%% Ehe resglts in Tablesf 1 a”_l(_j §| agdthFitgtsH 1-10 I?y
. . ~ = ~ calculatingN=60 terms. One can see from Table at the results
o a0 e fr (0. (0, anch( are n good areemen
tion rule in[8], the series solutions are obtained from: Elg]' While evaluating the thermal f'e“.j’ we took.Pr.=0.71, which
’ is the value of Prandtl number for air. By continuing the same
N N N procedure, the thermal field can be computed for other Prandtl
(9= 2 FRE 99 =2 G, h@X HKE (18)  numbers.
k=0 k=0 k=0 Figures 1 and 2 show that the magnitudes of the surface skin
where,N is the number of terms to be calculated. By calculating:mion in radial and circumferential directions decrease with an
up toN=6, we get: increase inw. This is quite natural since, the slip factor, is the
' ratio of slip to viscous effects. As a consequence and as it can be
f(&) = f16— 2(f2+ gD &2+ 31,(f2 + g0) € — T (17f1 + 18f393 observed from Fig. 4, the inflow rate at infinity decreases since the
4 1 4 22 4 1 6 radially outwards boundary layer loses its thickness and is fed by
+ 01 & + 15 1(61F7 + 74707 + 1397) € — 5oa( 19717 the fluid stream in axial direction.

+2825%7 + 889F2g” + 3509 &5 + - -- (19) As one can see from Fig. 3, the_minimum value T6(0) is not
reached atw=0. We calculated this value as=0.2836 and the
GELT %zgl(fi +g)) e+ ﬁflgl(fi + Q) - ﬁgl(sgfi value correspondlng to this point ﬁS(O)z—O._337462. This value
- . L . - . of the slip fat_:tor is of great importance since the heat transft_ar
+58f707 + 507) € + 5,55(101(65f1 + 82797 + 1797))€°+---  from the rotating disk is directly related to the temperature gradi-

(20) ent at{=0. We can state that the maximum cooling of the rotating
disk is reached at this value of the slip factor if the ambient fluid
_ _ 12 g2 e g2 23 1 4 2.2 is colder than the rotating disk. The magnitudes of the radial and
h(§) = 2f,& - 3(f1+ gD &+ §Fa(fl + g1 & — 555(17F7 + 18f1gy the circumferential velocities just above the rotating disk are
+ g‘l‘)§4+ ﬁfl(elf‘lu 74f§g§ + 13g‘l‘)§5- ﬁo(lgnj‘j given be!ow in Figs. 5 and 6. . . .
4o - 5 The highest value of the radial velocity on the surface is
+ 2825107 + 88%1g] + 3507 %+ .. (21)  0.128440 and this value is reachedwsat1.1586. This value of the

Table 1 Variation of the flow field parameters due to o with comparison to Ref. [13] (N=60)

© F’(0) F'(0) [13] G'(0) G'(0) [13] H(e) H(e) [13]

0.0 0.510232619 0.51023262 —0.615922014 —0.61592201 0.88447411 0.8844742
0.1 0.421453639 0.42145364 —0.605835241 —0.60583524 0.88136423 0.8813642
0.2 0.352581007 0.35258101 —0.583676764 —0.58367676 0.87395729 0.8739572
0.5 0.223848209 0.22384821 —0.502809702 —0.50280970 0.84239263 0.8423926
1.0 0.127923645 0.12792364 —0.394927595 —0.39492760 0.78947720 0.7894772
2.0 0.061010098 0.06101010 —0.273370132 —0.27337013 0.71031331 0.7103134
5.0 0.018588527 0.01858853 —0.143388209 —0.14338821 0.58376463 0.5837646
10.0 0.006812558 0.00681256 —0.081030089 —0.08103009 0.48758465 0.4875846
20.0 0.002361594 0.00236159 —0.043788462 —0.04378846 0.39997581 0.3999758
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Fig. 1 Variation of F'(0) with @
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Fig. 5 Variation of the radial velocity with respect to w at ¢

slip factor may be necessary and important practically, if the aim _ o ] _
is to use the disk as a centrifugal fan. As one can see from Fig. 6,This is natural, since the rotating disk acts like a centrifugal fan

the maximum circumferential velocity on the surface iswatO,

and owing to the centrifugal forces, throws the fluid that sticks on

where the no-slip condition is present. This is a result of the negh-A fluid stream compensates this thrown fluid, which is in the

tive gradient of the circumferential velocity indirection above
the disk. Variations of, G, H, andT for several values ob are
given below in Figs. 7-10.

From Figs. 7-9, the decreasing effect of the slip factoon
velocity field can be easily seen. In the limit case» o, when the

axial direction. Wherw increases, less amount of fluid can stick
and the rotating disk loses its efficiency to transfer its circumfer-
ential momentum to the fluid particles. The fluid loses circumfer-
ential velocity therefore the centrifugal forces that throw the fluid
outwards decrease. Since the disk throws less fluid away, less

flow is entirely potential, the rotating disk has no effect on rotagmount of fluid stream in the axial direction exists. _
ing the fluid particles, therefore, the velocity field is constant and From Fig. 10, one can conclude that as the slip faeion-

equal to zero.
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creases]({) tends to vary linearly. This is a result of the fact that

as w increasesH(¢) decrease and in the limit case @f—~, H

=0 can be taken. From E§?), this leads to the following case:
lim T"(0) =0 (23

where, the solution is a line and for large valueswgfit can be

approximately taken asf({)=T’'(0){+1 to ease the computa-

tions, if necessary.
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Fig. 6 \Variation of circumferential velocity with respect to w at
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Fig. 7 Radial component of the velocity for several values of
w
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Fig. 8 Circumferential component of the velocity for several

values of Fig. 10 Variation of temperature for several values of w, Pr

=0.71

5 Conclusion simplified and tractable manner with high accuracy. This study
. . L | iver from the similar ies in literatur lving tem-
In this study, the slip flow over a rotating infinite disk is conaSO diverges from the similar studies in literature by solving te

sidered. DTM is used as the solution technique after the domairPi%rature field for the slip flow over a rotating disk.
transformed to a bounded one. Velocity and thermal fields afgsferences

evaluated accurately. Numerical and graphical results are give ) . .

and the effect of slip to the flow field variables is discussed inﬂ] ,'fAiLT]aniTgpliélé_g;;r Laminare und Turbulente Reibung,” 2. Angew. Math.
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