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In this work we examine the time-resolved, instantaneous current response for the spinless Falicov–
Kimball model at half-filling, on both sides of the Mott–Hubbard metal-insulator transition, driven by
a strong electric field pump pulse. The results are obtained using an exact, nonequilibrium, many-body
impurity solution specifically designed to treat the out-of-equilibrium evolution of electrons in time-
dependent fields. We provide a brief introduction to the method and its computational details. We find
that the current develops Bloch oscillations, similar to the case of DC driving fields, with an additional
amplitude modulation, characterized by beats and induced by correlation effects. Correlations primarily
manifest themselves through an overall reduction in magnitude and shift in the onset time of the current
response with increasing interaction strength.

© 2010 Elsevier B.V. All rights reserved.
We examine the time-domain current response for the spinless
Falicov–Kimball (FK) model at half-filling. This model provides a
relatively simple test-bed for understanding the physics of corre-
lated electron systems. In particular, the model possesses a Mott–
Hubbard metal-insulator transition (MIT) at half-filling, as well as
non-Fermi liquid behavior [1]. The appeal of this model for the
present study rests on the exact, nonequilibrium, many-body im-
purity solution that has been developed for the situation where
the electrons are subject to time-dependent driving fields [2–4].
Here, the field, or pump pulse, that drives the system out of equi-
librium is modeled as a large amplitude electric field with a char-
acteristic Gaussian profile. In principle the field may take any form,
and we also choose to study fields modified through the inclu-
sion of a harmonic modulation. This additional modulation leads
to noticeable changes in the time-resolved current response of the
system.

Nonequilibrium dynamical mean-field theory (DMFT) is em-
ployed to obtain the real-time dynamics for the FK model on the
hypercubic lattice in infinite dimensions (d = ∞) [2–4]. The Hamil-
tonian in equilibrium takes the form

Heq = − t∗
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The FK model describes the hopping of conduction electrons that
experience an on-site interaction U with another species of local-
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ized electrons where Uc = √
2 t∗ is the critical interaction strength

for the MIT at half-filling. Throughout this work, the energy unit
is taken to be t∗ . At half-filling, the average localized electron
occupation 〈wi〉 = 0.5 and the chemical potential μ = U/2. The
nonequilibrium DMFT formalism proceeds in essentially the same
manner as the iterative approach applied in equilibrium [5] where
all quantities now have two time indices.

The driving term is modeled by a spatially uniform electric field
along the (1,1,1, . . .) hypercubic body diagonal. This choice sim-
plifies evaluation of the noninteracting Green’s function (GF) [2,3].
The field takes the form

E(t) = Eo cos
(
ω(t − to) + φ

)
exp−(t−to)2/σ 2

.

The influence of this driving field enters through the associated
vector potential A(t) in the Hamiltonian gauge using a Peierls’ sub-
stitution [6]. The time-resolved current response of the system is
the velocity weighted average of the equal-time lesser GF [2,3]
〈
ji(t)

〉 = −ie
∑

k

vi
(
k − eA(t)

)
G<

k (t, t),

where all velocity components vi are equal for the chosen driv-
ing field direction. In the nonequilibrium DMFT formalism the sum
over momentum can be converted to a two dimensional integral
over two “band energies” distributed with a Gaussian joint density
of states on the hypercubic lattice. The velocity components also
can be expressed in terms of these band energies [3]. The contin-
uous matrix operators of the nonequilibrium DMFT formalism are
approximated by discretizing the Keldysh contour. Quadratic ex-
trapolation of results to zero “step size” on the contour ensures
that sum rules for the spectral moments are satisfied within a few
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percent for strong correlations and high fields [7]. This quadratic
extrapolation based on Lagrange interpolation also produces accu-
rate results for current.

The Gaussian distribution in both band energies makes Gaus-
sian quadrature an ideal method for dealing with the two dimen-
sional Hilbert transform that yields the local GF. In this study the
results for the local GF and local self-energy were obtained by av-
eraging the Hilbert transform over quadratures with N = 54 and
N = 55 points in each dimension for a total of 5941 quadrature
points. This represents the most computationally intensive portion
of the algorithm, but also provides an opportunity for paralleliza-
tion as the evaluation of the integrand of the transform is inde-
pendent for every quadrature point.

In practice, the integrand for each quadrature point, obtained
from a matrix inversion and two matrix multiplies, is a dense,
complex matrix whose size depends on the discretization of the
Keldysh contour. For the cases considered here, reasonable accu-
racy for the spectral moments following quadratic extrapolation
could be achieved using matrices ranging in size up to 4100×4100
elements [3]. This provides a rather severe “bottleneck” to efficient
scaling, using the master-slave model, if each slave were to com-
municate its results directly with the master. Instead, a recursive
binary gather [8] has been employed which involves a progressive
binary division of the slaves and inter-slave communication to ac-
cumulate the results of the quadrature integration for the Hilbert
transform. Additional details about the numerical issues associ-
ated with this method may be found in Refs. [8–10]. Note that in
this form the parallel code scales reasonably well on a number of
different platforms [3,8–10] with the limitation coming from the
serial portion of the code where the impurity solver determines
the local, double-time self-energy. The results presented from this
study have been obtained from calculations performed on typically
∼ 1000–1500 processors with ∼ 30–40 nonequilibrium DMFT iter-
ations to achieve convergence of the self-energy.

Fig. 1 shows the time-resolved current response for the FK
model at half-filling, and for various interaction strengths, sub-
jected to a pump pulse with parameters Eo = 20, to = 0, σ = 5,
ω = 0, and φ = 0. Bloch oscillations are visible clearly in each
panel, especially within the insets showing the current response
near the center of the pump pulse at t = 0. The frequency of these
Bloch oscillations, proportional to the electric field strength E for
DC driving fields [2,3], varies as a function of time due to changes
in the field strength associated with the Gaussian profile of the
pump pulse. An additional amplitude modulation, characterized
by beats in the current response, also appears with a frequency
proportional to the interaction strength U . The Bloch oscillations
and amplitude modulation appear more regular for interactions
strengths U > Uc than for the case of a DC driving field. This
behavior likely results from the large amplitude of the Gaussian
pump pulse that reduces the effective damping from electron cor-
relations, especially near the center of the pump pulse. However,
damping effects are manifest in the general reduction in the mag-
nitude of the current response and a shift in the onset of the
current response to higher time delays with increasing correlation
strength, progressing from Fig. 1(a) to Fig. 1(d).

The results in Fig. 2 show the response for a pump pulse with
parameters Eo = 20, to = 0, σ = 5, ω = 0.5, and φ = 0. The pump
pulses in this study are assumed to be phase-locked (the phase φ

does not vary from pulse to pulse or this could be viewed as the
“single-shot” response). While one clearly sees Bloch oscillations,
they appear far more irregular than those presented in Fig. 1. This
is presumably due to the additional harmonic modulation of the
pump pulse, especially for U > Uc (see Fig. 2(b)). For weak cor-
relations, the onset of the current occurs in a region where field
is strong enough, although still quite small compared to the max-
imum at t = 0. The additional amplitude modulation appears for
Fig. 1. Time-resolved current response of the FK model with interaction strengths
(a) U = 0.5, (b) U = 1.0, (c) U = 1.5, and (d) U = 2.0 for a system subject to
an electric field pulse whose profile, plotted in arbitrary units, is shown in panel
(a) (Eo = 20, to = 0, σ = 5, ω = 0, φ = 0). The inset in each panel highlights the
current response near the maximum in the field profile at a time delay t = 0 (be-
tween time delays t = −2.5 and 2.5). (Color online.)

U < Uc in Fig. 2(a), but this behavior is apparent only within the
relatively narrow central peak of the pump pulse. The damping
leads to a more irregular evolution of the Bloch oscillations with
increasing correlation strength compared to the results in Fig. 1;
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Fig. 2. Time-resolved current response of the FK model with interaction strengths
(a) U = 0.5 and (b) U = 2.0. The profile of the electric field pulse, plotted in arbi-
trary units, is shown in panel (a) (Eo = 20, to = 0, σ = 5, ω = 0.5, φ = 0). The inset
in the two panels highlights the current response between time delays t = −2.5
and 2.5. (Color online.)

however, there remains a general reduction in the magnitude and
onset of the current response with increased correlations, even
more pronounced than that shown in Fig. 1.

The results presented from the current model capture the for-
mation of Bloch oscillations in the time-resolved current response
of a correlated system subject to a particularly strong pump pulse
with a Gaussian profile. Of course, this behavior is quite similar
to the results presented for DC driving fields [2,3], but the field
strength is greatly increased to ease issues associated with conver-
gence and extrapolation in the present study. The time-resolved
current is one of the most readily accessible response functions
that can be used to characterize the out-of-equilibrium behavior
of a correlated electron system subject to time-dependent fields.
Using the same data generated from these calculations, one also
can access the time-resolved photoemission response [11,12] that
provides a more direct measure of the redistribution of spectral
weight and rearrangement of electronic states that should char-
acterize the nonequilibrium correlated system in a pump-probe
experiment.
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