
Research Article
Forecasting Nonlinear Chaotic Time Series with Function
Expression Method Based on an Improved Genetic-Simulated
Annealing Algorithm

Jun Wang,1 Bi-hua Zhou,1 Shu-dao Zhou,2 and Zheng Sheng2

1National Key Laboratory on Electromagnetic Environmental Effects and Electro-Optical Engineering, PLA University of Science and
Technology, Nanjing 210007, China
2College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

Correspondence should be addressed to Jun Wang; wangjun19007@163.com

Received 15 October 2014; Revised 11 March 2015; Accepted 11 March 2015

Academic Editor: Francois B. Vialatte

Copyright © 2015 Jun Wang et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated
annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal
with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation
which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness
function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler
maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the
method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is
also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

1. Introduction

Chaos is a universal complex dynamical phenomenon that
exists in various natural and social systems, such as com-
munication, atmosphere, economics, and biology. Chaos
phenomenon is generated by determinate equations but the
appearance follows an apparently unpredictable nonperiodic
stochastic pattern, and it is aperiodic, bounded, determin-
istic, and sensitive to the initial state. So the prediction of
chaotic time series is very useful to evaluate characteristics of
dynamical systems and is important to the research of chaos.
The prediction of chaotic time series has been widely studied
over the years. It is proved that short-term prediction of
chaotic time series is possible by exploiting the deterministic
dynamics in chaotic systems [1–6]. In general, the forecast of
chaotic series implies two processes.The first step is to use the
immediate past behavior of the time series to reconstruct state
space [7]. Estimating the proper embedding dimensions and
delaying time is the main work of state space reconstruction.

The self-correlation method [8], mutual informationmethod
[9], false nearest neighbors (FNN) algorithm [10], and C-
C algorithm [11] have been introduced to reconstruct the
state space.The second step is to build the forecasting model.
Lots of techniques are proposed to build various models in
many literatures, such as artificial neural networks [12–16]
and polynomial fitting [17, 18]. Each of them has drawback
and advantage; no method is superior to all other methods
under every evaluating criterion. The paper proposes a novel
and simple predictive model named the function expression
method to forecast chaotic time series. In fact, there aremany
methods to establish the proper function expression. Zhang
and Xiao [17] proposed a continued fractions method to give
explicit expression. Zhou et al. [18] presented a multivariate
local polynomial kernel estimator to approximate polyno-
mial. Although those mathematical methods can predict
accurately, they are too complex to predict the complex
high dimensional chaotic systems, and the convergence
speed is not high enough. The paper proposes an improved
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Figure 1: The general procedure of chaotic time series forecasting.

genetic-simulated annealing algorithm to establish the best
approximation to the real dynamic equation. The genetic
algorithm has a strong capability of global optimization
and has been used in many forecasting problems [19–23].
However, it is easily trapped into the local-best solution,
and the quality of solutions is decreased a lot. We find that
the simulated annealing algorithm [24, 25] has strong ability
to jump out of the local-best solution and search for the
best solution, but the local search ability is relatively poor.
Therefore, incorporating the simulated annealing algorithm
into the genetic algorithm is an ideal way that combines the
global optimization ability of GA with the local search ability
of SA; GA is developed to rapidly search for an optimum
or near-optimum among the solution space, and then SA is
utilized to seek a better one on the basis of that solution.
In addition, the fitness function and the genetic operators
are also improved to further improve the performance of
optimization. The performance of the proposed method is
verified by some simulations, and the results demonstrate the
outstanding optimization capability and higher forecasting
precision compared with other methods such as traditional
genetic algorithm (GA) [1], continued fractions (CF) method
[17], and neural network (NN) [16].

The remaining sections of this paper are organized as
follows. In Section 2, the general forecasting principle of
chaotic time series is presented. Section 3 elaborates the
IGSA algorithm and the detailed forecasting procedure. The
simulated numerical results are given in Section 4. The effect
of noise in the chaotic time series is presented in Section 5.
In Section 6, the discussions upon the proposed method are
given. The paper ends with conclusions in Section 7.

2. General Forecasting Principle

The system state of a chaotic system and its delayed versions
can be described in (1), where 𝑡 is a scalar index for the time
series, 𝜏 is the time delay, and𝑚 is the embedding dimension.
Consider

𝑋⃗ (𝑡) = [𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , . . . , 𝑥 (𝑡 − (𝑚 − 1) 𝜏)] . (1)

We want to determine the dependence of the state value
𝑥(𝑡) on its previous state values. Takens EmbeddingTheorem
[7] guarantees that the system’s state information can be
recovered from a sufficiently long observation of the output
time series. According to the theorem, the system state
follows the existence of a smoothmap𝑇 : 𝑅

𝑚

→ 𝑅 satisfying

𝑥 (𝑡) = 𝑇 (𝑥 (𝑡 − 𝜏) , 𝑥 (𝑡 − 2 ⋅ 𝜏) , . . . , 𝑥 (𝑡 − 𝑚 ⋅ 𝜏)) . (2)

Thus, once the state space has been reconstructed from
the time series, the chaotic time series can be forecasted by

establishing the functional relation 𝑇(⋅) with the proposed
IGSA algorithm.

Measurements from a chaotic system are not restricted
to a unique variable, but situations in which several vari-
ables are observed from the same system are common. In
this case, we need to deal with multivariate time series
{[𝑥(𝑡
𝑖
), 𝑦(𝑡
𝑖
), . . . , 𝑧(𝑡

𝑖
)]}, 𝑖 = 1, . . . , 𝑁. The model of connec-

tion between the different variables can be written in (3),
where 𝐻(⋅) is the model to be determined. Consider

𝑥 (𝑡) = 𝐻 (𝑦 (𝑡 − 𝜏) , . . . , 𝑦 (𝑡 − 𝑚 ⋅ 𝜏) , . . . , 𝑧 (𝑡 − 𝜏) , . . . ,

𝑧 (𝑡 − 𝑚 ⋅ 𝜏)) .

(3)

The general principle of using IGSA method to establish
the optimum function expression to forecast chaotic series
time is shown in Figure 1.

3. Function Expression Established by IGSA

In this section, the IGSA algorithm is proposed to estab-
lish the functional relation. The genetic algorithm is an
evolutionary method that mimics the process of natural
selection. GA generates solutions to optimization problems
using techniques inspired by natural evolution, such as
selection, crossover, and mutation. During each generation,
a proportion of the existing population is selected to breed
a new generation through a fitness-based process. Crossover
is a process of taking more than one parent solution and
producing a child solution from them. It is analogous to
reproduction and biological crossover. Mutation is used to
maintain genetic diversity from one generation of a pop-
ulation of genetic algorithm chromosomes to the next. It
is analogous to biological mutation. Mutation alters one or
more gene values in a chromosome from its initial state. The
purpose of mutation is preserving and introducing diversity.
Hence GA can come to better solution by using mutation.

The processes of establishing the best equation by GA
can be described as follows. The GA algorithm selects the
initial population of potential equations from the initial
population of individuals that best fit the real data. The
strongest strings choose a mate for reproduction whereas
the weaker strings become extinct. The newly generated
equations are subject to mutations that change fractions of
information. The evolutionary steps are repeated until the
optimum equation is established. Although GA can search
the optimization solution quickly, the quality of the solution
needs to be improved because it is liable to be trapped in
local optima.The IGSA algorithm gets over the shortcomings
of GA and incorporates the simulated annealing algorithm.
The annealing process is usually simulated using a Monte
Carlo procedure. In this procedure, the thermal motion of
atoms in contact with a heat bath at a given temperature is
simulated. The procedure is simply stated here [24]: Given
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Table 1: Encoding rule of equation strings.

Second coordinate First coordinate Pair

Operator term

1 1 +
1 2 −

1 3 ×

1 4 ÷

Constant term 2 𝑘 ∈ [−𝜆, 𝜆] 𝑘

Variable term

1 𝑥(𝑡 − 1 ⋅ 𝜏)

3
.
.
.

.

.

.

𝑖 𝑥(𝑡 − 𝑖 ⋅ 𝜏)

1 𝑦(𝑡 − 1 ⋅ 𝜏)

4
.
.
.

.

.

.

𝑖 𝑦(𝑡 − 𝑖 ⋅ 𝜏)

.

.

.

.

.

.

.

.

.

a configuration of the elements of the system, randomly dis-
place the elements on a time by a small amount and calculate
the resulting change in the energy, Δ𝐸. If Δ𝐸 < 0 then
accept the displacement and use the resulting configuration
as the starting point for the next iteration. If Δ𝐸 ≥ 0 then
the displacement is accepted with probability shown in (4),
where 𝑇 is the current temperature and 𝑘

𝑏
is Boltzmann’s

constant. Repetition of this step continues until equilibrium
is achieved. For more detailed information on the simulated
annealing, please refer to [24, 25]. Consider the following:

𝑃 (Δ𝐸) = exp(−
Δ𝐸

𝑘
𝑏
𝑇

) . (4)

In addition, the fitness function and genetic operators
are also improved to further improve the efficiency of the
exploration. The whole graphical procedure of the IGSA
algorithm is illustrated in Figure 2.

The detailed procedures of using IGSA algorithm to
establish the best functional relation are described as follows.

Step 1 (set the encoding rules). In order to encode the
symbolic form of the equation strings into a numerical
structure, the encoding utilizes coordinate pairs, and the
detailed rules are listed in Table 1. The second coordinate

indicates an argument or operator in the equation. If the
second coordinate is 1, then the pair represents operator.
For example, the pair (𝑝, 1) represents an operator in the
equation string, and the values of 𝑝 range from 1 to 4
to represent the four basic arithmetic operators, addition,
subtraction, multiplication, and division, respectively. If the
second coordinate is 2, then the pair represents constant term.
For example, the pair (𝑘, 2) represents the real argument 𝑘 of
the equation. If the second coordinate is greater than 2, then
the pair represents the variable of the equation. For example,
the pair (𝑖, 3) represents the element 𝑥(𝑡 − 𝑖 ⋅ 𝜏) in the time
series, and (𝑖, 4) represents the element 𝑦(𝑡 − 𝑖 ⋅ 𝜏) in the time
series.

Step 2 (initialize). The precursor process is the generation
of initial population of individuals as a basis for future
generations. As the encoding rule of the equation is special,
in order to make the decoded individual form the equation,
there are several rules when building the initial individuals.

The first two elements of the individual must be constant
or variable terms, and the last one must be an operator.

Given one location in the individual the number of
nonoperators (constant or variable terms) on the left must be
greater than the number of operators.

The total number of nonoperators in the individual must
be the total number of operators plus one.

Step 3 (calculate the fitness value). In order to make the
difference of the individual fitness obvious, the simulated
annealing stretching operation is introduced to calculate the
fitness value of individual. The improved fitness value of the
𝑖-individual is computed as

Newfitness (𝑖) =
exp (Fitness (𝑖) /𝑇)

∑
𝑁

𝑖=1
exp (Fitness (𝑖) /𝑇)

⋅ 𝑁, (5)

where 𝑁 is the total length of the training set, 𝑇 = 𝐺(𝑇
0
),

𝑇
0
is the initial temperature, and 𝐺 is the annealing mode.

With the iteration going on, the temperature decreases and
the superiority of the better individual is reinforced, so that
the probability of selecting the better individuals is higher
and the probability of selecting the worse individuals is lower.
For the short-term predictability of unique and multivariate
time series, Fitness(𝑖) is computed in (6) and (7), respectively.
Consider

Fitness (𝑖) = 1 −
∑
𝑁

𝑡=𝑚⋅𝜏+1
[𝑥 (𝑡) − 𝑇

𝑖
(𝑥 (𝑡 − 𝜏) , 𝑥 (𝑡 − 2 ⋅ 𝜏) , . . . , 𝑥 (𝑡 − (𝑚 − 1) ⋅ 𝜏))]

2

∑
𝑁

𝑡=𝑚⋅𝜏+1
[𝑥 (𝑡) − (1/ (𝑁 − 𝑚 ⋅ 𝜏)) ⋅ ∑

𝑁

𝑡=𝑚⋅𝜏+1
𝑥 (𝑡)]
2

, (6)

Fitness (𝑖) = 1 −
∑
𝑁

𝑡=𝑚⋅𝜏+1
[𝑥 (𝑡) − 𝐻

𝑖
(𝑦 (𝑡 − 𝜏) , . . . , 𝑦 (𝑡 − (𝑚 − 1) ⋅ 𝜏) , . . . , 𝑧 (𝑡 − 𝜏) , . . . , 𝑧 (𝑡 − (𝑚 − 1) ⋅ 𝜏))]

2

∑
𝑁

𝑡=𝑚⋅𝜏+1
[𝑥 (𝑡) − (1/ (𝑁 − 𝑚 ⋅ 𝜏)) ⋅ ∑

𝑁

𝑡=𝑚⋅𝜏+1
𝑥 (𝑡)]
2

. (7)

Step 4 (make selection, crossover, and mutation genetic
operation). The three genetic operations are described in
detail as follows.

The Selection Operation. The selection operator chooses indi-
viduals that are used for crossover andmutation based on the
fitness of the individuals. Proportional selection operator is
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Figure 2: The whole graphical procedure of the proposed IGSA algorithm.

used to select the individuals, and the probability of selecting
𝑖-individual is proportional to its fitness value.Theprobability
is computed as

prob (𝑖) =
Newfitness (𝑖)

∑
𝑁

𝑘=1
Newfitness (𝑘)

. (8)

TheCrossover Operation. Once the mates are selected accord-
ing to their strength, the crossover operation between the
two parent individuals is carried out to generate two new
offspring. The crossover procedure starts determining ran-
domly one of the arguments, constant terms, or variables
terms of the time series in the first individual. If the next
element to the right of this randomly determined argument
is an operator, then only this argument is considered for
interchanging. If the next pair to the randomly selected
argument represents another argument, the part of the string
used for the crossover is that which is limited between the
randomly selected argument and that element of the string
where the numbers of nonoperators, 𝑁

𝑆
, and the number

of operators, 𝑁
𝑂
, between the randomly selected argument

and the element verify the relation 𝑁
𝑂

+ 1 = 𝑁
𝑆
. Notice

that the object of this procedure is to interchange self-
consistent parts between the equation strings in order to
avoid inconsistent mathematical expressions in the offspring.

The same operation is carried out for the second equation
string. Take the crossover procedure of the following equation
strings 𝐹

1
, 𝐹
2
of two parents for example; strings (2, 3) and

(3.6, 2) are the crossover points; the possible pairs of offspring
are 𝐹
1offspring, 𝐹

2offspring, where the bold pairs represent the
parts that have been crossed between the parent equations:

𝐹
1
= {(1.5, 2) , (1, 3) , (2, 3) , (1, 1) , (3, 1)} ,

𝐹
2
= {(3.6, 2) , (1, 3) , (1, 1) , (2, 3) , (4, 1)} ,

𝐹
1offspring = {(1.5, 2) , (1, 3) , (3.6, 2) , (1, 3) , (1, 1) , (1, 1) ,

(3, 1)} ,

𝐹
2offspring = {(2, 3) , (2, 3) , (4, 1)} .

(9)

The Mutation Operation. A mutation operation is taken to
yield solutions with new information. In order to preserve the
information of the top ranked individual, the mutation is not
applied to the best individual with the minimal fitness value
of the current iteration. Each element of a determined string
is changed by a mutation process with some probability. An
element is randomly selected and, depending on whether it
is a number, a variable, or an operator, if the element is an
operator, then the element is self-mutated; if the element is
a number or variable, then the element is self-mutated or
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÷

× +

2.0 x(t − 1) 1.2 y(t − 1)

Figure 3: The binary tree structure of the equation strings.

mutually mutated. Take 𝐹
2offspring for example; the possible

mutated string is 𝐹
2 off mut, where the bold pairs represent the

mutations. Consider

𝐹
2 off mut = {(1, 2) , (1, 3) , (2, 1)} . (10)

Step 5 (simulated annealing operation). After the mutation
operation, preserve the best individual of the current 𝑛th
iteration, and compare the fitness Fitness new of the best
individual of the 𝑛th iteration with the fitness Fitness old of
the best individual of the (𝑛 − 1)th iteration. If Fitness new
is better than Fitness old, then replace Fitness old with
Fitness new and accept the new best individual; the worst
individual of current iteration is also replaced with the
best individual; otherwise, displacement is accepted with
probability shown in (4), and the worst individual of the
current iteration is also replaced with the best individual of
the current iteration. Set the proper parameters related to SA,
and then the local search performance can be well performed
to avoid falling into a local optimum.

Step 6 (determine the best individual of the current iteration
and check whether the stopping criterion is met). If the
criterion is met then decode the optimum individual and
obtain the final equation expression; otherwise, continue the
iteration processes until the criterion is met or the maximum
iteration number is achieved. The decoding rule is defined as
follows to assemble the equation strings.

The operator term is placed after its two operands;
taking the following coded individual {(2.0, 2), (1.0, 3), (3, 1),
(1.2, 2), (1, 4), (1, 1), (4, 1)} for example, the decoded equation
strings are assembled in the binary tree structure shown in
Figure 3. The corresponding equation expression is decoded
as (2 ⋅ 𝑥(𝑡 − 1))/(1.2 + 𝑦(𝑡 − 1)).

4. Numerical Simulations of Forecasting
by the Function Expression

When the optimum function expression is established, the
forecasting model is built. In order to verify the feasibility
and effectiveness of the prediction of chaotic time series by
the function expression, the nonlinear chaotic time series
obtained from Quadratic map and Rossler map are adopted
as testing objects.

First take the simple unique time series Quadratic map
for example. The equation of Quadratic map is

𝑥
𝑛+1

= 𝑐 − 𝑥
𝑛

2

, (11)

where 𝑐 is a constant; here 𝑐 = 1.5, and the initial value
is 𝑥
1

= 0.8; 400-step values are generated from (11), and
the previous 100-step values are abandoned to diminish the
influence of the starting value; the 101–300 values are used
to train and establish the equation; the remaining 100-step
values are taken to test the forecasting performance. The
delaying time 𝜏 and embedding dimension𝑚 are determined
as 1, 2 by use of the method of minimummutual information
[9] and false nearest neighbors algorithm [10], respectively.
So the mapping model is

𝑥 (𝑛) = 𝑇 (𝑥 (𝑛 − 1) , 𝑥 (𝑛 − 2)) . (12)

The IGSA algorithm is performed to establish the function
equation, and the parameters of the algorithm are set as
follows. The number of generations 𝑁max = 5000. The
number of initial individuals 𝑁pop = 100. The length of the
individual is 19. The probability of mutation 𝑃mut = 0.1. The
initial temperature 𝑇

0
= 1000 (the initial temperature should

be set high enough to make the initial accepting probability
high). The annealing rate function is the chosen classical
annealing function [25] shown in

𝑇 (𝑛) =
𝑇
0

ln (1 + 𝑛)
. (13)

After iterations the final optimum individual is obtained:
{(2.000000, 3), (2.000000, 3), (1.000000, 3), (2.000000, 3),
(2.000000, 3), (2.000000, 3), (1.000000, 1), (2.000000, 1),
(2.000000, 3), (2.000000, 3), (2.000000, 3), (1.000000, 3),
(3.000000, 1), (2.000000, 1), (4.000000, 1), (3.000000, 1),
(4.000000, 1), (2.000000, 1), (3.000000, 1)}, and the simplified
form of the corresponding decoded function expression is

𝑥 (𝑛) = 𝑥
2

(𝑛 − 2) + 𝑥 (𝑛 − 1) − 𝑥
2

(𝑛 − 1) . (14)

It can be found that 𝑥
2

(𝑛 − 2) + 𝑥(𝑛 − 1) = 1.500000

(calculated accurately to sixth place of decimal) from the
Quadratic dynamic equation, so that (14) can be written as
follows:

𝑥 (𝑛) = 1.500000 − 𝑥
2

(𝑛 − 1) . (15)

It is obvious that (15) is very close to the realmap given by (11).
Using the independent 100-step values to test the forecasting
performance, the real time series generated by (11) and the
forecasting time series obtained from (15) are both plotted
in Figure 4. Figure 5 indicates the convergence process of the
method of IGSA during the iterations. It can be seen from
Figure 4 that the forecasting values are almost the same as the
real values. The mean square error (MSE) calculated by (16)
is 3.089628𝐸 − 11, and the value is very close to zero which
verifies the high forecast precision of the method. Consider

MSE =
1

100

400

∑

𝑛=301

[𝑥 (𝑛) − (1.500000 − 𝑥 (𝑛 − 1)
2

)]
2

, (16)

Fitness (best)

= 1 −

∑
400

𝑛=301
[𝑥 (𝑛) − (1.5000000 − 𝑥 (𝑛 − 1)

2

)]
2

∑
400

𝑛=301
[𝑥 (𝑛) − (1/100) ⋅ ∑

400

𝑛=301
𝑥 (𝑛)]

2
.

(17)
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Figure 5 indicates that the fitness value converges to the best
value with a high speed and the final best fitness value is
calculated as Fitnesstest = 1.000000 (accurately to sixth place
of decimal) by (17).

The complex multivariate chaotic Rossler system is also
used to test the performance of the proposedmethod. Rossler
map is described as

𝑑𝑥

𝑑𝑡
= − (𝑦 + 𝑧) ,

𝑑𝑦

𝑑𝑡
= 𝑥 + 0.2𝑦,

𝑑𝑧

𝑑𝑡
= 0.2 + 𝑧 ⋅ (𝑥 − 5) .

(18)

Time series of all variables (𝑥, 𝑦, 𝑧) are obtained from solving
(18) via 4th-order Runge-Kutta method. The integral step of
4th-order Runge-Kutta method is 0.01, the previous 10000-
step values are abandoned, and the following 3000-step values
of all variables are adopted to be the sample data, and the
1–2800 values are used to train and establish the equation;

0 20 40 60 80 100 120 140 160 180 200

0
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8

10

t

x
(t
)
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−2

−4
−6
−8

Figure 6: Real values of Rossler time series and short-term predic-
tion values.

the remaining 200-step values are taken to test and validate
the forecasting performance. The initial values of the vari-
ables are 𝑥

1
= −1, 𝑦

1
= 0, and 𝑧

1
= 1.

Take the 𝑥-variable for example, and the processes of
forecasting 𝑦-variable and 𝑧-variable are so similar that they
are not given here. The delaying time 𝜏 and embedding
dimension 𝑚 are determined as 1, 4 by use of the minimum
mutual information method and false nearest neighbors
algorithm, respectively. So the mapping model of 𝑥-variable
is

𝑥 (𝑡) = 𝐻 (𝑦 (𝑡 − 𝑢) , . . . , 𝑦 (𝑡 − 4 ⋅ 𝑢) , . . . , 𝑧 (𝑡 − 𝑢) , . . . ,

𝑧 (𝑡 − 4 ⋅ 𝑢)) .

(19)

Theparameters of the IGSAmethod are set as follows.The
number of generations 𝑁max = 5000. The number of initial
individuals𝑁pop = 120.The length of the individual is 19.The
probability of mutation 𝑃mut = 0.1. The initial temperature
𝑇
0
= 1000. The annealing rate function is (13).
The final optimum individual is got after iterations,

shown as follows: {(4.914803, 2), (−4.694566, 2),
(2.000000, 1), (2.000000, 4), (4.000000, 4), (2.000000, 1),
(3.000000, 1), (2.000000, 4), (4.000000, 4), (4.000000, 4),
(1.000000, 1), (2.000000, 1), (4.000000, 4), (1.000000, 5),
(1.000000, 1), (2.000000, 1), (5.713432, 2), (4.000000, 1),
(1.000000, 1)}, and the simplified form of the corresponding
decoded equation is

𝑥 (𝑡) = 9.784395𝑦 (𝑡 − 2) − 10.134447𝑦 (𝑡 − 4)

− 0.175026𝑧 (𝑡 − 1) .

(20)

It can be seen from (20) that the values of 𝑥-variable can
be extrapolated by the previous values of 𝑦-variable and 𝑧-
variable. The forecasting performance is verified by taking
the remaining 200-step values. The prediction values and
real values of Rossler time series are shown in Figure 6, and
it can be seen from Figure 6 that the forecasting values are
very close to the real values; the mean square error (MSE)
is 2.755001𝐸 − 03. Figure 7 indicates that the fitness value
converges to the best valuewith a high speed and the final best
fitness value is calculated as Fitnesstest = 0.999903 (accurately
to sixth place of decimal).
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Table 2: Fitness values for noisy time series with different SNR.

Fitness value
Chaotic system SNR value (dB)

50 40 35 30 25 20 15 10
Quadratic map 0.9908 0.9012 0.8452 0.8023 0.7473 0.6115 0.4396 0.2618
Rossler map 0.9862 0.8443 0.7629 0.7119 0.6592 0.5361 0.3587 0.2130
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Figure 7: Convergence process of IGSA during the iterations.

5. Effect of Noise in the Chaotic Time Series

As the actual chaotic systems always contain noise, in order
to test the influence of noise on the forecasting precision,
the noise-free time series of Quadratic and Rossler maps
were corrupted using Gaussian white noise with the different
signal-to-noise ratios (SNR) values (see Table 2). The fitness
values obtained by taking the same procedure described
earlier were also listed in the table.

It can be observed from Table 2 that the fitness values are
all decreased, and none of the forecasting precisions matched
the precision when noise-free data were used. However, it
can be found that the precisions are generally satisfactory
when the values of SNR are larger than 25 dB, and when the
SNR decreased, the fitness value was decreased a lot. It can
be concluded that the proposed method possesses a certain
capability of noise immunity and can effectively perform in
the noisy time series with large SNR values (in this case, the
SNR value should be larger than 25 dB). However, the limit
is also obvious that the precisions are not acceptable and the
method is not effective in a highly corrupted time series.

6. Discussion

In order to demonstrate that the proposedmethod is robust to
parameter variations and to evaluate the effect of parameter
variations, different parameters are also set to test the per-
formances of the method, such as the number of generations
and initial individuals and the probability ofmutation and the
initial temperature. The results are varied slightly. However,

the following rules of setting the parameters may prove
helpful to improve the efficiency and accuracy of themethod.

The initial temperature should be set high enough to
make the initial accepting probability high.The temperatures
from 50 to 3000 (50, 100, 200, 300, 400, . . . , 3000) are all
used to perform the method, and the results indicate that the
performance is improved when the temperature increased,
but the performance is kept constant until the temperature
reaches 1000, so in the paper the temperature is set to be 1000.

The number of initial individuals should be moderate; if
the number is too large, then the time consumption is huge; if
the number is too small, then diversity of the initial solutions
is limited which reduces the quality of solutions.

The number of the generations should also be moderate;
if the number is too large, then the time consumption is huge;
if the number is too small, then optimal solution may not be
searched out during the iterations.

The probability of mutation is typically kept small, and
then the diversity of the solutions is improved and the
speed of convergence is also kept high. If the probability is
large, then the number of iterations increases a lot and the
performance is reduced. The probability values from 0.01
to 0.3 are all used to perform the method, and the results
are varied slightly with the probability from 0.01 to 0.2.
Meanwhile, the performance is reduced when the probability
is larger than 0.2.

In order to assess the advantage and improvement of the
IGSA method, three representative methods (the traditional
genetic algorithm (GA) [1], continued fractions (CF) method
[17], and neural network (NN) method [16]) were chosen to
compare with the IGSAmethod.TheGAmethodwas applied
by Alvarez et al. [1] to forecast chaotic time series; though
the precision was high, the accuracy can still be improved
a lot as the traditional GA is easily trapped into the local-
best solution and the genetic operator can be also improved.
The CF method [17] was used by Zhang and Xiao to forecast
chaotic time series; it is a pure mathematical method of
polynomial approximants, and themain drawback is that it is
too complex to predict the complex high dimensional chaotic
systems. deOliveira et al. [16] used theNNmethod to forecast
chaotic systems; the results were almost satisfactory; however,
the performance of NN was highly related to the topology
structure and initial parameters, and it was easy to fall into
local optimal solution.

The best parameters of NN used to forecast Quadratic
and Rossler maps are listed in Table 3 referring to [16],
and the ideal architectures of NN are 2-4-2-1 and 4-8-4-
1 for forecasting Quadratic and Rossler maps, respectively.
The forecasting precisions of Quadratic and Rossler maps
evaluated by the differentmethods are listed in Tables 4 and 5,
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Table 3: Parameters of NN for forecasting Quadratic and Rossler maps, respectively.

Chaotic system
Parameters of NN

Input units
number

Hidden layer
number

First hidden layer
neurons number

Second hidden layer
neurons number

Output units
number

Quadratic map 2 2 4 2 1
Rossler map 4 2 8 4 1

Table 4: Forecasting precisions of Quadratic map calculated by IGSA, GA, CF, and NN methods.

Method IGSA GA NN CF
Fitness value 1.000000 0.999996 0.999796 0.998845
MSE value 3.089628E − 11 2.695395E − 06 3.190952E − 05 5.522902E − 04

Table 5: Forecasting precisions of Rossler map calculated by IGSA,
GA, and NN methods.

Method IGSA GA NN
Fitness value 0.999903 0.998318 0.981785
MSE value 2.755001E − 03 4.755993E − 02 0.514942
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Figure 8: Convergence process of IGSA, GA, and NN methods for
Quadratic map during the iterations.

respectively. The history of convergences for IGSA, NN, and
GA is illustrated in Figures 8 and 9.

By the way, Rossler map is too complex to predict by the
method of CF, and then the corresponding results are not
given here. It can be seen from Tables 3 and 4 and Figures 8
and 9 that the values of fitness and MSE are all satisfactory.
However, it is obvious that the results obtained by IGSA
are still improved; the fitness value is nearest to 1 and the
MSE value is the minimum; besides, the convergence speed
is also improved. In fact, it is not easy to further increase
the precision when the previous precision is very high; the
better values of the fitness value andMSE verifies the superior
performance of the proposed algorithm.
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Figure 9: Convergence process of IGSA, GA, and NN methods for
Rossler map during the iterations.

Though the proposed method can forecast chaotic time
series with high precision and efficiency, the limits are also
obvious: The method cannot be applied to the signals which
are produced by the complex high dimension systems; it is
also unsuitable to apply the method to the signals which
are corrupted with low SNR values. Besides, the sample
size should be large, and the accuracy and effectiveness of
forecasting the chaotic time series with high dimension are
decreased; the forecasting precision is decreased when the
data are noise-corrupted, and the forecasting results may be
ineffective when the SNR values of the noise are not high
enough.

7. Conclusion

In this paper, we propose a simple but energy-efficient
method to predict chaotic time series. The core thought
of prediction by the proposed method is adopting an
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improved genetic-simulated annealing algorithm to con-
struct the optimum function expression to approximate the
original dynamic equation of chaotic time series. Then the
prediction can be carried out by the constructed expression.
The IGSA algorithm incorporates the simulated annealing
operation into genetic algorithm to enhance the optimization
performance.The simulated annealing stretching operation is
introduced to calculate the fitness value and genetic operators
are also improved. Finally, two kinds of chaotic time series
are used as the testing objects to verify the accuracy and
effectiveness of the proposed method, and the corresponding
results indicate that performance of forecasting is efficient
and satisfactory. The forecast precisions of the simple unique
time series and complex multivariate time series are both
high enough. In order to evaluate the forecast performance
when the system is contaminated with noise, the white noises
with different SNR values are added; the results indicate that
the method possesses a certain capability of noise immunity
and can effectively perform in the noisy time series with
large SNR values. We also use other common methods
such as traditional genetic algorithm, continued fractions,
and neural network to do the same numerical simulations;
the compared results demonstrate the obvious superiority
and improvement of the proposed method. In general, the
proposed IGSA algorithm is a feasible, energy-efficient, and
promising method for chaotic time series prediction.
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