
Model Abstraction for Formal Veri�cation
�

Yee-Wing Hsieh Steven P. Levitan

Department of Electrical Engineering

University of Pittsburgh

Abstract

As the complexity of circuit designs grows, design-
ers look toward formal veri�cation to achieve better
test coverage for validating complex designs. However,
this approach is inherently computationally intensive,
and hence, only small designs can be veri�ed using this
method. To achieve better performance, model ab-
straction is necessary. Model abstraction reduces the
number of states necessary to perform formal veri�ca-
tion while maintaining the functionality of the original
model with respect to the speci�cations to be veri�ed.
As a result, model abstraction enables large designs to
be formally veri�ed. In this paper, we describe three
methods for model abstraction based on semantics ex-
traction from user models to improve the performance
of formal veri�cation tools.

1 Introduction

Traditional methods of validating a design are
based on test vector simulation. Although this method
of design validation is simple, it has its inherent draw-
backs. First, it is tedious to generate test vectors to
test a particular design speci�cation, and often the
test vectors used only cover a limited state-space. Sec-
ond, to generate the test vectors, the designer must
know implementation details to set the simulator to
a speci�ed state to test a speci�c event. Third, it is
di�cult to verify asynchronous events such as reset,
abort, bus request, etc. Finally, it is di�cult to ver-
ify safety and liveliness properties of a design through
test vector simulation.

Formal veri�cation provides much better test cov-
erage and does not have the inherent drawbacks of
test vector simulation. However, validating a design
using formal veri�cation methods is inherently com-
putationally intensive, and, as a result, only small de-

1This research was supported, in part, by the National Sci-
ence Foundation under Grant MIP-9102721

signs can be veri�ed. To handle large designs, model
abstraction is necessary. Model abstraction takes a
model and replaces it with a high-level description of
a non-deterministic automaton that encapsulates the
behavior of the model it replaces. Using this high-level
abstract representation, model abstraction reduces the
number of states necessary to perform formal veri�ca-
tion and thus reduces the state-space to be explored
by formal veri�cation tools such as COSPAN [1].

In previous papers [2] we focused on semantic ex-
traction of VHDL models for formal veri�cation. We
have implemented a semantic extraction tool based
on control/data-
ow analysis techniques to automati-
cally extract memory semantics in the VHDL models.
The focus of this paper is our model abstraction tech-
niques based on the semantics of the VHDL models
obtained from semantic extraction. Our model ab-
straction approach reduces the state-space using three
techniques: key value extraction, model partitioning
through min/max data-
ow analysis and data abstrac-
tion through relational algebra.

The remainder of the paper is organized as follows.
First, we brie
y review previous work on model ab-
straction for formal veri�cation. Next, we describe
the motivation for semantic extraction for model ab-
straction. Afterwards, we describe our model abstrac-
tion techniques made possible by examining VHDL
semantics extracted from the control/data-
ow anal-
ysis of the original VHDL model. Finally, we present
experimental results and conclusions.

2 Related Work

Model reduction transforms the veri�cation prob-
lem to an equivalent problem in a smaller state-space.
Reduction is generally achieved by replacing processes
in the model by smaller processes that have similar or
identical communication behavior [3].

The two main approaches in model checking are
logic-based (e.g., CTL [4]) and automaton-based (e.g.,

1



!-automata [5]). !-automaton reduction is achieved
through property-dependent localization reductions, in
which the parts of design model which are irrelevant
to the property being checked are automatically ab-
stracted away [6]. In COSPAN, localization reduction
is applied dynamically and the model is adjusted by
advancing its \free fence" of induced primary inputs,
in order to discard spurious counterexamples to the
stated query. However, our experiments showed that
the automatic reduction algorithm works best if the
user speci�es a reduction starting point. This may
include some components of the model that probably
would be necessary for analysis or some components
that could be excluded. This implies that the de-
signer needs to know the relationships and dependen-
cies among components in a model. More importantly,
the reduction is achieved by exploring the state-space
of the unabstracted machine, which could be time con-
suming for large designs.

CTL based approaches, on the other hand, use a
state minimization procedure to obtain a reduced pro-
cess that is equivalent to the original process with re-
spect to observation via its inputs and outputs [7].
The reductions preserve the truth value of all formu-
las in a suitable logic. The minimization techniques
are fairly strict in terms of the required relations be-
tween the original and reduced processes. However,
the user must supply an abstraction mapping, which
implies that the reduction process is not automatic.

Unlike the automatic !-automaton reduction ap-
proach, our model abstraction approach performs ab-
straction by examining the semantics of the model it-
self, not the state-space of some implementation of the
model. The abstractions obtained through our model
abstraction techniques are homomorphic [5] to the
original model with respect to the speci�ed queries. In
fact, we believe, our model abstraction approach could
be applied in conjunction with either the !-automaton
reduction approach or the CTL based approach.

3 Semantic Extraction

The memory semantics of a model ultimately de-
termine the state-space explored by formal veri�cation
tools. Therefore, in order to determine which signals
or which parts of the original model to abstract, we
must �rst use semantic extraction to identify the parts
of the model that exhibit memory semantics.

One may argue, why not simply synthesize the cir-
cuit to obtain the set of signals implemented using
registers or 
ip-
ops? The problem with this method
is that synthesis tools often utilize optimization tech-

niques to minimize hardware resources which may in-
troduce more registers or merge two or more signals
into a single register. Such optimizations make seman-
tic extraction and model abstraction di�cult. Fur-
thermore, the end result of the synthesis step may
hide some semantics for proper model abstraction.

Therefore, we use semantic extraction to directly
obtain a set of abstraction candidates, that is pieces
of the original design, which might speed up the veri�-
cation process if they were mapped into more abstract
models. We then must evaluate the gain of each of the
abstraction candidates to determine the set of signals
or the parts of the original model on which to perform
abstraction. Finally, we perform model abstraction to
drive the veri�cation process.

We have implemented a VHDL semantic extrac-
tion tool that analyzes both concurrent and sequen-
tial VHDL models [2]. The semantic extraction tool is
based on data-
ow analysis techniques in compiler de-
signs for code optimization. The semantic extraction
method identi�es an abstract state-space that is inde-
pendent of synthesis optimizations. The remainder of
this paper focuses our model abstraction techniques
using the semantics extracted from VHDL models.

4 Model Abstraction

Our model abstraction approach derives abstrac-
tions based on the semantics of the model from the
behavioral VHDL description. The abstraction tech-
nique operates on three main principles: key value
extraction, model partitioning and data abstraction.

Both the key value extraction and data abstrac-
tion techniques reduce the state-space by identify-
ing signals and variables which may be replaced by
symbolic or abstract data types with much smaller
ranges. For each abstraction candidate identi�ed a
non-deterministic �nite automaton is generated such
that every state in the abstraction is mapped to a state
in the corresponding part of the model it replaces.

On the other hand, the model partitioning tech-
nique reduces the state-space by removing parts of a
model not related to the speci�cation to be veri�ed.
It also reduces the state-space by identifying parts of
a model which may be replaced by non-deterministic
�nite generators to provide stimuli for the rest of the
model.

The resulting abstract models can replace the origi-
nal model for formal veri�cation, provided that each of
the abstractions is homomorphic to the corresponding
part of the original model that it replaces with respect
to the speci�cations to be veri�ed [5].

2



4.1 Key Value Extraction

For control dominated systems, the properties to
be veri�ed are often related to whether the system is
at a speci�ed state under a particular set of condi-
tions. Therefore, it may be su�cient to simply verify
the system when the conditions are met and when
the conditions are not met. For example, if we want
to verify whether the system moved from state � to
state �0 under the condition that variable v is equal to
constant c, we need to verify the system when v = c

and when v 6= c. More precisely, all the possible val-
ues for variable v can be partitioned into three cate-
gories: (v = c), (v < c) and (v > c) 1 An abstraction
for variable v (denoted by v̂) is the set of key values:
fc,k1,k2g, where k1 represents all value less than con-
stant c and k2 represents all value greater than con-
stant c. The state-space for variable v is reduced from
every possible value v can take to three key values.

To extract key values for a variable v in a model,
we examine every conditional expression where vari-
able v is referenced (either directly or indirectly) and
we build a relation for each variable in the conditional
expression. For example, if a comparison is made be-
tween the variable v and constant c, then v̂ has key
value c and the following relation R:

v̂ =

8<
:

c if v = c

k1 if v < c

k2 if v > c

In addition to the conditionals, key values for a vari-
able v may be extracted from assignments where con-
stants are assigned to variables. Often, such constant
assignments set initial values for the variables. For
example, it is a common practice to reset counters to
0.

The abstraction for variable v is therefore the union
of all key values from all the conditional expressions
where variable v is referenced plus any intermediate
symbolic key values derived from the product of all
relations for the variable. For example, if the variable
v is referenced in the following two conditional expres-
sions: (v = c1) and (v = c2), the result is the following
two relations:

v̂1 =

8<
:

c1 if v = c1

k1;1 if v < c1

k1;2 if v > c1

1It is important to note that each of the six comparison op-
erations (=, 6=,<,>,�,�) partitions values for a variable v into
the three categories: (v = c), (v < c) and (v > c).

v̂2 =

8<
:

c2 if v = c2

k2;1 if v < c2

k2;2 if v > c2

Assume c1 < c2, then the product of the two relations
is

v̂ =

8>>>><
>>>>:

k1 if v < c1

c1 if v = c1

k2 if c1 < v < c2

c2 if v = c2

k3 if v > c2

Here, each constant ki is a symbolic constant that cov-
ers a range of values for v. As a result, v̂ has key values
fc1,c2,k1,k2,k3g, where k1 < c1 < k2 < c2 < k3.

4.1.1 Model Characteristics

As mentioned in the previous section, key values may
be extracted from variable assignments of the form:

v := c;

Often, such constant assignments set initial values for
the variables. If the variable has an assignment of the
form:

v := v + c;

the variable has the characteristics of a sequencer or
counter. A variable v1 can inherit key values from
another variable v2 if the variable has an assignment
of the form:

v1 := v2;

or has an assignment of the form:

v1 := v2 + c;

In the �rst case, v̂1 (i.e., the abstraction for variable
v1) simply inherits key values from v̂2. In the second
case, v̂1 inherits key values from v̂2 with constant c
folded into each of the key values from v̂2.

If a variable has the characteristics of a counter
or sequencer, we construct a non-deterministic �nite
automaton (NFA) based on the key values selected
for the variable. In order to cover the entire state-
space of the variable, the NFA must generate (accept)
real constants extracted from the model and symbolic
constants derived from the relations for the variable.
Speci�cally, each key value corresponds to a state in
the NFA. All symbolic constants ki covering a range
of values are non-deterministic states, while the rest
are deterministic states. All transitions from non-
deterministic states are non-deterministic transitions,
while all transitions from deterministic states are de-
terministic transitions. Only non-deterministic states

3



have transitions onto themselves which represent the
transition through the range of values symbolically
covered.

To illustrate the construction of the NFA, we now
examine the refresh counter model shown in Figure 1.
The refresh counter generates a pulse for a refresh
memory request (rfsreq) whenever the DMA controller
is in the refresh state rfs. In this model, the refresh
counter (rfscnt) is 7 bits wide with 128 possible states.
From the model the signal rfscnt has key value 0 due
to constant assignment (rfscnt <= \0000000") and has
key values 1, k1 and k2 due to the conditional expres-
sion (rfscnt <= \0000001"). The symbolic constant k1
represents values less than 1, or in this case, 0. The
symbolic constant k2 represents values greater than 1,
or in this case, 2 through 127. The signal rfscnt also
has counter characteristics due to the assignment (rf-
scnt <= rfscnt + 1). Therefore, the key values for the
signal rfscnt is the set f0,1,kgwhere symbolic constant
constant k represents values other than 0 and 1.

process
begin

wait until ((clk’event) and (clk = ’1’));
if (resetp = ’1’) then

rfscnt <= "0000000";
else

rfscnt <= rfscnt + 1;
end if;

end process;

process
begin

wait until ((clk’event) and (clk = ’1’));
if ((resetp = ’1’) or (state = rfs)) then

rfsreq <= ’0’;
elsif (rfscnt = "0000001") then

rfsreq <= ’1’;
end if;

end process;

Figure 1: VHDL Model for a Refresh Counter

0 1

k

Figure 2: NFA for the Abstract Refresh Counter

The NFA for the signal rfscnt is shown in Figure 2.
States 0 and 1 are deterministic states while state k is
a non-deterministic state. The transitions from state 0

to state 1 and state 1 to state k are deterministic tran-
sitions, which are represented by the solid arrows in
the �gure. The transition from state k back to state
k and state k to state 0 are non-deterministic tran-
sitions, which are represented by the dashed arrows
in the �gure. The non-deterministic transition from
state k back to state k symbolically covers values in
the range from 2 to 127.

To summarize, key value extraction reduces the
state-space by replacing signals or variables with sym-
bolic data types with much smaller ranges. Along with
the generated NFA, the resulting abstraction can re-
place its original counterpart for veri�cation.

4.2 Model Partitioning

In addition to key value extraction, model abstrac-
tion may be achieved through model partitioning.
Model partitioning takes a portion of a model and
replaces it with an abstract model. For example, if a
portion of a model does not a�ect (i.e., is independent
from) the rest of the model with respect to the proper-
ties to be veri�ed, it may be advantageous to abstract
that portion of the model away. Partitioning relevant
portions of the model can be achieved by analyzing the
signal 
ow graph generated from the model. Here, the
nodes of the signal 
ow graph are operations and the
edges are signals or variables. Starting from the prop-
erties to be veri�ed (e.g., verify the value of variable
v), we traverse the 
ow graph recursively in reverse
order, from outputs to inputs, and label those nodes
and edges visited on the way. The labeled branches
of the signal 
ow graph are property dependent, while
the unlabeled branches of the signal 
ow graph are
property independent and may be abstracted away.

For some properties, it may not be important how
a particular signal or variable is evaluated, but the
status or the completeness of the coverage is all that
matters. In those cases, it may be possible to ab-
stract away the portion of the model that generates
the signal or variable. For example, if a system has an
error detection module and the properties being veri-
�ed depend on the status of the error detector, (e.g.,
one can't verify properties if an error is detected), it
may be su�cient to abstract away the error detection
part of the circuit and �x the status of the error de-
tection so that properties can be veri�ed without it.
On the other hand, if we want to verify error han-
dling properties of the model, it may be more appro-
priate to generate errors randomly. In this case, it
may be su�cient to exercise the range of error status
non-deterministically and verify the properties with-
out the error detection part of the circuit. This type of

4



abstraction can be performed through min/max par-
titioning of the signal 
ow graph.

In this way, we use partitioning to identify signals
with a small range but high cost in terms of the size of
the state-space from all the branches generating this
signal. The non-deterministic �nite generators replace
the partitioned model by providing stimuli for the rest
of the model.

4.3 Data Abstraction

For some systems, abstraction using key value ex-
traction and model partitioning alone may be ine�ec-
tive. Data abstraction may be necessary to reduce the
size of the state-space. Data abstraction is a very dif-
�cult problem. However, in some systems the actual
values of some variables are not important, but the
relations between the variables are all that matters.
For example, no key values can be extracted from the
conditional expression of the form:

(v1 < v2)

However, if the values of the two variables are not
important, an abstraction can be made based on the
relation between the two variables. Speci�cally, the
two variables can be abstracted as follows:

v̂1 =

8<
:

k1 if v1 < v2

k2 if v1 = v2

k3 if v1 > v2

v̂2 =

8<
:

k3 if v1 < v2

k2 if v1 = v2

k1 if v1 > v2

Here, k1, k2 and k3 are symbolic constants that repre-
sent the set of value pairs (v1; v2) such that (v1 < v2),
(v1 = v2) and (v1 > v2), respectively.

The number of relations or comparisons between
a set of variables depends on the number of equality
operators, the number of inequality operators and the
grouping of equalities.

As this variable comparison technique suggests, this
type of abstraction depends only on the relative com-
parisons between variables. Di�erent variable sizes
would still yield the same abstraction. On the other
hand, as the number of variables grows, the number
of comparison permutations grows exponentially. In
some cases, this type of abstraction may be too costly.

Thus, data abstraction reduces the state-space in
a similar way to key value extraction, however, using
abstract values rather than constants.

5 Model Abstraction Experiments

In this section, we describe the abstractions made
manually on a DMA controller, a HDLC serial commu-
nication controller and a car seat controller using the
three model abstraction techniques presented above.
Each experiment is presented in detail to illustrate the
abstraction analyses performed on the semantics ex-
tracted automatically from the VHDL models. These
abstraction analyses will be automated in our model
abstraction tool.

To demonstrate the di�erences in the state-space
size and performance, the original and the abstract
models were veri�ed separately using the same envi-
ronment model and reference model [1]. The results
of veri�cation runs for the original and the abstract
models are shown in Table 1. The state-space sizes
presented in the table are the state-spaces for both the
system model and the environment model reported by
COSPAN from each respective veri�cation run.

Speci�cation State Space CPU Time1 (seconds)
Veri�ed Original Abstract Original Abstract

DMA Controller

Mem. Ref. 1.05e+15 2.47e+13 496.58 30.20
Data Ack. 7.04e+14 1.65e+13 1353.03 83.08

HDLC Controller

Under Flow 4.05e+32 2.36e+22 (55208.1)2 135.10

RX Valid 3.65e+34 2.21e+24 (58912.6)2 10.12

Car Seat Controller

Mem. Pos. 6.91e+19 1.79e+08 (3053191.0)2 24920.2

Table 1: Model Abstraction Experiments

For the DMA controller, an abstraction was made
on the refresh counter part of the circuit using the key
value extraction method. The model for the refresh
counter was shown previously in Figure 1. The refresh
counter is a 128-state deterministic automaton. We
reduced the state-space for this refresh counter by ab-
stracting the counter into a 3-state, non-deterministic
�nite automaton (NFA), shown in Figure 2. The re-
sulting abstract DMA controller model yields a 42 fold
reduction in state-space, which enables the two system
properties: memory refresh and data acknowledge to
be veri�ed with a 16 fold improvement in veri�cation
performance.

The HDLC serial communication controller consists
of two separate circuits: the transmitter and the re-
ceiver. The block diagrams of the transmitter and
receiver are shown in Figure 3. The two circuits op-
erate independently except for a serial communica-
tion medium. The controller uses cyclic redundant

1veri�cation runs performed using SUN SPARC5 with 64M
bytes main memory and 732M bytes swap space.

2veri�cation run terminated due to insu�cient swap space.

5



check (CRC) to detect errors induced by noise in the
communication medium. In the CRC error detec-
tion method [8], the transmitter generates an n-bit
sequence, known as a frame check sequence (FCS)
based on a k-bit frame or message. The resulting
frame consists of k + n bits and is divisible by some
predetermined polynomial. The receiver then divides
the incoming frame by the same polynomial. If the
remainder is zero, no error is detected. The HDLC
serial communication controller uses the frame check
polynomial (x16 + x12 + x5 +1) or 16 bit frame check
sequence.

abur

sdi

srstn

ca
ck

ck

c_sdo

tx_fazi

tx_crc

sh
psdo

ifn
sdo
oe

dtt
uerr

ab

rstl
d_crc
sh

tx_pisomb
vd
dl

rstn

srstn

pi<7:0>

ck

ab
ca

srst srstn

pd<7:0>
last

frm
shift

abrt
br

srstn

pd(0)

fcsis0

ck

ck
srstn

rx_reg

rx_crc

fabrt
fend
vd

ferr
ovr

pdo<7:0>
ca
sdi

ck

rstn

srr

srstn

rx_sipo

srst srstn

Figure 3: HDLC Controller Block Diagram

From min/max model partitioning, both the trans-
mitter and receiver CRC part of the circuit were de-
termined to be strong candidates for abstraction. In
the abstraction we eliminate the CRC part of circuit
completely. To check the CRC error handling prop-
erties, we non-deterministically generate CRC errors
at the receiver's CRC output (fcsis0). On the other
hand, to check the other properties, we statically force
fcsis0 not to generate any errors. The resulting ab-
stract HDLC controller model yields 10 orders of mag-
nitude in state-space size reduction, which enables sys-
tem properties: under 
ow error and receive valid data
to be veri�ed within 135.1 and 10.12 seconds, respec-
tively. More importantly, the veri�cation run on the
original controller was terminated prematurely due to
insu�cient swap space.

The block diagram for the car seat controller is
shown in Figure 4. The car seat controller has 3
up/down counters, 3 registers, 1 comparator, 1 mul-
tiplexor and a �nite state machine controlling all the

components. The current seat position is stored in the
three 8-bit up/down counters (c1,c2,c3). The memory
position is stored in the three 8-bit registers (p1,p2,p3).
In the manual mode, the seat position is controlled by
the six signals (fthtup,fthtdn,rhtup,rhtdn,dirfwd,dirbk).
In the memory mode, the multiplexor selects one
of the axis's current position c and corresponding
memory position p from (c1,c2,c3) and corresponding
(p1,p2,p3), respectively. The 8-bit comparator calcu-
lates the direction of movement by comparing the two
positions c and p. The car seat is moved one axis at
a time until the current position matches the memory
position in all three axes.

up/dn
cnt

up/dn
cnt

up/dn
cnt

p1

p3

p2

c1

c3

c2

motor1

motor2

motor3

u/d1

u/d2

u/d3

c/h1

c/h2

c/h3

lt
gt

p
c

reg

reg

reg

muxcomp

select

init

fthtup
fthtdn
rhtup
rhtdn
dirfwd
dirbk

memsw

fsm

clk
store

Figure 4: Car Seat Controller Block Diagram

The VHDL model for the 8-bit up/down counter is
shown in Figure 5. From the conditional expression
(c 6= 255) in the model we obtain the key values (k1,
255, k2) where the symbolic constant k1 represents
numbers less than 255 and the symbolic constant k2
represents numbers greater than 255. Similarly from
conditional expression (c 6= 0) in the model we obtain
the key values (k3, 0, k4) where the symbolic constant
k3 represents numbers less than 0 and the symbolic
constant k4 represents numbers greater than 0. From
the signal assignment (c <= 0;) we obtain the key
value 0. Since signal c is an 8 bit signal, the lowest
and highest numbers an 8 bit binary number could
represent are 255 and 0, respectively. Therefore, only
key values (0, k2, k3, 255) are valid. Merging the two
symbolic constants k2 and k3, we obtain the three key
values (0, k5, 255) where the symbolic constant k5

represents numbers 1 to 254.
The current seat position can be stored in mem-

ory. This is achieved by storing the contents of the
three up/down counters (c1,c2,c3) into three corre-
sponding registers (p1,p2,p3). These are assignments
of the form:

v1 := v2;

6



process (clk,pc)
begin

end process;

if (pc = ’0’) then

elsif ((clk’event) and (clk = ’1’)) then
if (count = ’1’) then

end if;
else

if (p /= 0) then

end if;
end if;

end if;
end if;

c <= 0;

if (c /= 255) then
c <= c + 1;

c <= c - 1;

if (direction = ’1’) then

Figure 5: VHDL Model for the Up/Down Counter

Therefore, each of the three registers inherits the key
value extracted from the three up/down counters.
Since the comparison operation is of the form:

(v1 < v2)

we abstract each up/down counter and register com-
parison pair (i.e., (c1,p1), (c2,p2) and (c3,p3)) into
three symbolic comparison relations: (c < p), (c = p)
and (c > p). Each of the three counter/register com-
parison pairs is independent, so the abstraction we
made for a counter/register comparison pair applies
to all three cases. Expanding the comparison rela-
tions with the key values for counters and registers,
we obtain the comparison cases shown in Table 2.

c < p c = p c > p

0 < 0
p

0 = 0 0 > 0p
0 < k5 0 = k5 0 > k5p
0 < 255 0 = 255 0 > 255
k5 < 0 k5 = 0

p
k5 > 0

� k5 < k5 � k5 = k5 � k5 > k5p
k5 < 255 k5 = 255 k5 > 255
255 < 0 255 = 0

p
255 > 0

255 < k5 255 = k5
p

255 > k5

255 < 255
p

255 = 255 255 > 255

Table 2: Comparison Relations Between c and p

Eliminating those comparison relations that are not
valid, we are left with those relations marked with a
(
p
). Since the symbolic constant k5 represents num-

bers 1 to 254, the three relations marked with an (�)
are also valid. From these relations, we construct ab-
stractions for the up/down counter and comparator.

The comparison relations and the corresponding ab-
stractions for the counter and comparator are shown
in Table 3.

c p relation direction count

0 0 = don't care 0

0 k5 < up 1

0 255 < up 1

k5 0 > down non-det.

k5 k5 < = > non-det. non-det.

k5 255 < up non-det.

255 0 > down 1

255 k5 > down 1

255 255 = don't care 0

Table 3: Abstractions for the Up/Down Counter and
Comparator

For the comparator, the abstraction is simply the
comparison relations between the two key values for
counter c and the register p. However, if the counter c
and the register p are both k5, we can not determine
the comparison relation between the two because the
symbolic constant k5 could be any number 1 to 254.
As a result, three possible comparison relations ex-
ist when both c and p have key value k5. A non-
deterministic �nite automaton shown in Figure 6 is
used to solve this uncertainty problem. When both c

and p have key value k5, it either non-deterministically
generate a count up or count down signal. As a result,
the abstraction for the comparator covers all possible
seat movements from any current position to a speci-
�ed memory position.

updn eq

Figure 6: NFA for the Comparator

Previously, we mentioned the abstraction for the
up/down counter (signal c) contains the three key
values (0, k5, 255). Semantic analysis also showed
that the model has characteristics of a sequencer or
counter, as indicated by the signal assignments (c <=
c+1;) and (c <= c�1;). Therefore, the abstraction for
the up/down counter also contains a non-deterministic
�nite automaton as shown in Figure 7. Since the two
signal assignments increment and decrement by a con-
stant, the NFA for the counter has transitions between
key values in ascending and descending order. Specif-
ically, the counter would count from key value 1 up to
k5 and from 255 down to k5 deterministically in one

7



clock cycle. On the other hand, the counter would
count from key value k5 down to 1 and from k5 up
to 255 non-deterministically. The counter would non-
deterministically remain at key value k5 which could
cover numbers 1 to 254. This non-deterministic au-
tomaton is necessary in order to cover all possible cases
for the counter.

up down

updown

up/down

pc

updown

k 2550

Figure 7: NFA for Up/Down Counter

The result of the abstractions on the up/down
counters, registers and comparator yield 11 orders of
magnitude in state-space size reduction. The system
property move the car seat from current position to

memory position was veri�ed in under 26219 seconds
using the abstract model of the car seat controller.
On the other hand, the veri�cation run using origi-
nal model failed to complete after 3053191 seconds or
848.1 hours due to insu�cient swap space.

In summary, these experiments have shown that our
model abstraction technique of using key value extrac-
tion, model partitioning and data abstraction are ef-
fective in reducing state-space and hence improve the
performances of veri�cations tools. More importantly,
these abstraction techniques enables us to verify mod-
els not possible without abstractions.

6 Conclusions and Future Work

In this paper we have shown that in order to
improve the performance of formal veri�cation tools
such as COSPAN, model abstraction is necessary.
Our model abstraction approach reduces the state-
space using key value extraction, model partitioning
through min/max data-
ow analysis and data abstrac-
tion through relational algebra. The model abstrac-
tion is made possible by examining VHDL semantics
extracted from the control/data-
ow analysis of the
original VHDL model. Experiments have shown that
these abstractions techniques are e�ective in reduc-
ing the state-space and hence improving the perfor-
mance of veri�cation runs. It is important to note
that these abstraction techniques could be applied in
complement to the !-automaton reduction approach.

We are currently implementing an automatic model
abstraction tool based on model abstraction tech-
niques presented in this paper. A set of abstractions
will be generated by analyzing the semantics extracted
from the VHDL models using our existing seman-
tic extraction tool. Each abstraction will be evalu-
ated based on a performance cost matrix to determine
which subset of abstractions should be selected to re-
place parts of a model to drive the veri�cation process.

The future work in this research includes expand-
ing our semantic extraction method to identify higher
level semantics to perform abstraction of high-level
models. Also, we plan to apply these abstraction tech-
niques to CTL based model checkers such as Vis [9].

Acknowledgments The authors would like to
thank Dr. Robert Kurshan of Lucent Technologies at
Bell Laboratories for providing us with the COSPAN
formal veri�cation tool.

References

[1] Z. Har'El and R. P. Kurshan, COSPAN User's

Guide. AT&T Bell Laboratories, February 1993.

[2] Y.-W. Hsieh and S. P. Levitan, \Control/data-
ow
analysis for vhdl semantic extraction," in Proc. of

The 4th Asia-Paci�c Conference on Hardware De-

scription Languages, pp. 68{75, August 1997.

[3] K. L. McMillan, Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[4] E. M. Clarke and E. A. Emerson, \Design and syn-
thesis of synchronization skeletons using branching
time temporal logic," in Proc. of the Workshop on

Logics of Programs, pp. 52{71, May 1981.

[5] R. P. Kurshan, Formal Veri�cation of Coordinat-

ing Processes. Princeton University Press, 1994.

[6] E. M. Clarke and R. P. Kurshan, \Computer aided
veri�cation," IEEE Spectrum, pp. 61{67, June
1996.

[7] D. E. Long, Model Checking, Abstraction, and

Compositional Veri�cation. PhD thesis, Dept. of
Electrical Engineering, Carnegie Mellon Univer-
sity, 1993.

[8] W. Stallings, Data and Computer Communica-

tions. Macmillan Publishing Company, 1988.

[9] R. K. Brayton, et al., Vis: A system for veri�ca-
tion and synthesis. In Proc. of Conference on For-

mal Methods in Computer-Aided Design, Novem-
ber 1996.

8


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


