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The largest eigenvalue of the adjacency matrix of networks is a key quantity determining several
important dynamical processes on complex networks. Based on this fact, we present a quantitative,
objective characterization of the dynamical importance of network nodes and links in terms of their effect
on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be
affected by degree-degree correlations and network community structure. We discuss how our charac-
terization can be used to optimize techniques for controlling certain network dynamical processes and
apply our results to real networks.
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In recent years, there has been much interest in the study
of the structure of networks arising from real world sys-
tems, of dynamical processes taking place on networks,
and of how network structure impacts such dynamics [1].
The largest eigenvalue of the network adjacency matrix
(which we denote �) is the key quantity determining a
variety of different dynamical processes on networks. For
example, (i) for a heterogeneous collection of chaotic and/
or periodic dynamical systems coupled by a network of
connections, the critical coupling strength [2] for the emer-
gence of coherence is proportional to 1=�; (ii) in a class of
percolation problems on directed networks [closely related
to the problem of epidemic spreading [3] ], the condition
for the emergence of a giant component also involves � [4].
For other examples where � plays a similar role, see
Refs. [5–7].

In many situations it might be desirable to control dy-
namical processes that take place on networks. For ex-
ample, in epidemic spreading, one would like to increase
the threshold for epidemic transmission. In percolation,
one might like to identify the key nodes holding the net-
work together and protect them (e.g., in the transportation
network or the Internet) or disrupt them (e.g., in the case of
a terrorist network or pathogen protein network). Such
strategies would greatly benefit from a quantitative char-
acterization of the effect of the removal of the different
nodes or edges in the network. We will define the dynami-
cal importance of nodes and edges as the relative change in
the largest eigenvalue of the network adjacency matrix
upon their removal. This provides an objective quantifica-
tion of the relative importance of the different elements of
the network that could potentially be used to formulate
control strategies for those network processes that are
governed by the largest eigenvalue of the network adja-
cency matrix. We also will describe an efficient way to
approximate the dynamical importance.

We consider a network as a directed graph withN nodes,
and we associate to it a N � N adjacency matrix whose
elements Aij are positive if there is a link going from node i
to node j with i � j and zero otherwise (Aii � 0). We
denote the largest eigenvalue of A by �, where Au � �u
and vTA � �vT with u and v denoting the right and left
eigenvectors of A. According to Perron’s theorem [7], of all
the eigenvalues of A, the one with largest magnitude is real
and positive and the components of the corresponding
eigenvectors u and v all have the same sign (which we
choose to be positive). It is often the case that � is well
separated from the second largest eigenvalue. We define
the dynamical importance of edge i! j, Iij, as the amount
���ij by which � decreases upon removal of the edge,
normalized by �:

 Iij � �
��ij
�

: (1)

Similarly, the dynamical importance of node k is defined in
terms of the amount ���k by which � decreases upon
removal of the node (or equivalently removal of all edges
into and out of node k):

 Ik � �
��k
�

: (2)

We will now use a perturbative analysis in order to
provide approximations Î to the dynamical importance I
in terms of u and v. We first consider the importance of an
edge Iij. Let us denote the matrix before the removal of the
edge by A and after the removal by A��A, the largest
eigenvalue of A� �A by �� �� and its corresponding
right eigenvector by u� �u. For large matrices, it is
reasonable to assume that the removal of a link or node
has a small effect on the spectral properties of the network,
so that �u and �� are small. Left multiplying

PRL 97, 094102 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 SEPTEMBER 2006

0031-9007=06=97(9)=094102(4) 094102-1 © 2006 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357319991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.97.094102


 �A� �A��u� �u� � ��� ����u� �u� (3)

by vT and neglecting second order terms vT�A�u and
��vT�u, we obtain �� � vT�Au=vTu. Upon removal of
edge i! j, the perturbation matrix is ��A�lm �
�Aij�il�jm, and therefore

 Î ij �
Aijviuj
�vTu

: (4)

We now examine the effect of removing node k. Upon its
removal, the perturbation matrix is given by ��A�lm �
�Alm��lk � �mk�. However, in this case we cannot assume
�u is small as we did before, since �uk � �uk (the left
and right eigenvectors have zero kth entry after the removal
of node k). Therefore, we set �u � �u� ukêk, where êk is
the unit vector for the k component, and we assume �u is
small. Left multiplying Eq. (3) by vT and neglecting
second order terms vT�A�u and ��vT�u, we obtain
�� � �vT�Au� ukvT�Aêk�=�vTu� vkuk�. Using the
expression for �A, we get vT�Au � �2�ukvk and
ukvT�Aêk � �ukvk. Considering the network to be large
(N � 1), we assume ukvk 	 vTu and obtain

 Î k �
vkuk
vTu

: (5)

The commonly used eigenvector centrality [8] of node k
is defined as the eigenvector component uk. Although
closely related to it, Ik and Iij take into account the possible
asymmetry of A and are defined in such a way that they
quantify the relative change in � upon removal of the node
or link. For a review of other measures of node importance,
see [1] and references therein.

We will now present examples of the dynamical impor-
tance of nodes in simulated and real networks. We consider
unweighted networks (i.e., the nonzero elements Aij are
identically one), but we emphasize that our considerations
also apply to weighted networks. In considering the simu-
lated examples, we will try to mimic the often complex
structure of real world networks. This complexity is evi-
denced by the fact that the degree distribution in a large
number of examples has been found to be highly hetero-
geneous [often following a power law in the so-called
scale-free networks [9] ], where the out degree and in
degree are defined by dout

i �
PN
j�1 Aij and din

i �PN
j�1 Aji. In the case of an undirected network A � AT

and din
i � dout

i � di. The ‘‘degree distribution’’ P�din; dout�
is defined as the probability that a randomly chosen node
has degrees din and dout [in the undirected case we write
P�d� to denote the corresponding degree distribution].
Furthermore, it has been observed that the degrees at the
ends of a randomly chosen edge often have positive or
negative correlations [referred to as assortative or disas-
sortative mixing by degree [10], respectively]. For ex-
ample, the ratio

 � � hdin
i d

out
j ie=hdii

2
e; (6)

where h. . .ie denotes an average over edges, hQijie �P
i;jAijQij=

P
i;jAij, is larger (smaller) than 1 in assortative

(disassortative) networks.
A mean field approximation, Aij / dout

i din
j , yields � � 1,

ui � dout
i , and vi � din

i , and thus Îk � dout
k din

k =
�
PN
k�1 d

out
k din

k �. We will denote this reference importance
by Î0

k. [For an undirected network this is equivalent to
ranking nodes by their degree [11].]

Our first examples consist of networks with positive and
negative degree-degree correlations. We choose (some-
what arbitrarily) to examine networks in which the in and
out degrees at each node are uncorrelated, P�din; dout� �

Pin�din�Pout�dout�, and have the same distribution, Pin�d� �
Pout�d� � P̂�d�. The networks are generated by first pre-
scribing a target degree sequence �din

i ; d
out
i �. In order to

generate networks with a power law degree distribution,
P̂�d� / d��, we will use, following [12], the sequence of
expected degrees c�i� i0 � 1��1=���1� for the in degrees,
and a random permutation of this sequence for the out
degrees, where i � 1; . . . ; N, and c and i0 are chosen to
obtain a desired maximum and average degree. From these
sequences, the adjacency matrix is constructed by setting
Aij � 1 for i � j with probability proportional to dout

i din
j

and zero otherwise (Aii � 0) [this is a generalization of the
model in Chung et al. [12] ]. Finally, the following [based
on a simplification of the method in Ref. [10] ] is repeated
until the network has the desired amount of degree-degree
correlations as evidenced in the value of �: two edges are
chosen at random, say connecting node i to node j and
node n to node m, and are replaced with two edges con-
necting node i to nodem and node n to node j if s�din

n dout
m �

din
i d

out
j � d

in
n d

out
j � d

in
i d

out
m �< 0, and are left alone other-

wise. Setting s � �1 or �1 we produce assortative or
disassortative networks, respectively.

We construct two different asymmetric networks of size
N � 2000 following the algorithm above with � � 2:5,
and c, i0 chosen such that hdi � 50 and dmax � 350. For
networks (i) and (ii) we used s � �1 and s � �1, respec-
tively, until a desired value of � was reached. This resulted
in values of � of 1.6 and 0.69 for networks (i) and (ii),
respectively.

In Fig. 1 we show on a logarithmic scale (base 10) our
approximation to the node dynamical importance Îk versus��������������
din
k d

out
k

q
for networks (i) (open circles) and (ii) (boxes),

and the reference importance Î0
k (solid line). We see that for

the assortative network there is a rough monotonic relation
between Îk and

��������������
din
k d

out
k

q
, while for the disassortative case a

functional relationship even less clear and the nodes with

low value of
��������������
din
k d

out
k

q
have importance comparable to the

highly connected nodes (since, due to the disassortativity,
they act as bridges connecting the hubs). In both cases Ik

and its approximation by Îk [Eq. (5)] are essentially the
same to within the size of the plotted points in the figure
(this will also apply to Fig. 2).
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Our next example is motivated by the fact that it is
sometimes observed that real networks can be subdivided
into more or less well defined communities which have
different statistics, and thus potentially different dynamical
importance. As a simple model of such situation, we
specify a division of the nodes in the network into two
groups of the same size, A and B, (A [ B � f1; 2; . . . ; Ng,
A \ B � ;), and then we construct a network following
the steps above with s � �1, but only rewire the edges if
all the nodes in consideration belong all to group A (i, j, n,
m 2 A). The effect of this division is to create a subnet-
work (group A) with a correlation that is larger than that for
the whole network.

In Fig. 2 we show the node dynamical importance Ik for
this network (dots) and the uncorrelated reference I0

k (solid
line). We see that the dynamical importance captures the
subdivision existing in the network. Nodes in the assorta-
tive region A are more dynamically important than nodes

with the same connectivity
��������������
din
k d

out
k

q
outside of this region.

This shows that the node dynamical importance can de-
pend on the subdivision of the network into communities,
and suggests that in networks with strong community
subdivision the node dynamical importance could be
weakly correlated with the degree.

We will now consider the dynamical importance of the
nodes in the undirected yeast protein interaction network
[13,14] (N � 2361), the directed Kiel University email
network [15] (N � 64 385), and the undirected internet

autonomous systems (AS) network [16] (N � 21 885).
(Each one of these networks is an incomplete sample of
a larger network. For the purpose of illustrating our ideas,
we study the dynamical importance of the reported nodes.)
The dynamical importance of the nodes in these three
networks is shown as a function of

��������������
dindout
p

in a double
logarithmic scale (base 10) in Figs. 3(a)–3(c). The points
were calculated from Eq. (5), except the rightmost point in
Fig. 3(b), for which our assumption vkuk 	 vTu was not
satisfied and for which we calculated Ik directly from the
definition. Otherwise, the approximation Îk yielded good
results, except for a relatively small bias towards larger
values for vkuk=vTu
 0:1. This is illustrated in Fig. 3(d),
which shows that, in spite of the deviation of Îk from Ik, the
relationship is still monotonic, and hence does not affect
the relative ranking of nodes.

A striking characteristic of the three plots is that, al-
though there is a correlation between dynamical impor-
tance and the connectivity measured by dindout, there are
huge variations of importance among nodes of comparable
connectivity. In particular, for the directed email network
[Fig. 3(b)], many poorly connected nodes (dindout 
 1� 5)
have a dynamical importance vastly larger than some of the
most connected nodes (dindout 
 104). This suggests that,
when enough information about the network is available,
the dynamical importance of nodes should be a key ele-
ment in the formulation of optimum immunization
strategies.

We will now show how knowledge of the dynamical
importance of nodes can be used to optimally reduce � in
order to control various dynamical processes as discussed
above. For the three networks presented above, we succes-
sively remove either (i) the most dynamically important
nodes [as determined by Eq. (5)], (ii) the nodes with the
highest value of dindout, or (iii) random nodes. (After
removing a node, we recalculate the importance and the
degrees.) In Fig. 4 we show ��m�=��0� as a function of m,
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FIG. 2 (color online). Node dynamical importance Ik for the
two-community network described in the text (dots) and the
uncorrelated reference I0

k (solid line).
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FIG. 3 (color online). Logarithm of the dynamical importance

Îk as a function of the logarithm of
��������������
din
k d
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q
for (a) the yeast

protein interaction network [13,14], (b) the Kiel University email
network [15], and (c) the internet (AS) network [16]. The solid
lines are I0

k . (d) shows Îk vs Ik for the AS network. The solid line
is the identity.
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FIG. 1 (color online). Node dynamical importance Ik and Î0
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(solid line) as a function of log10�d
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k � for an assortative

network (open circles), and a disassortative network (�).
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where m is the number of removed nodes and ��m� is the
largest eigenvalue of the resulting network. We see that
using the dynamical importance (solid lines) greatly im-
proves the results over using the degree (short dashed
lines). These two methods are, of course, much more effi-
cient than removing nodes randomly (long dashed lines).

We now offer some additional general comments.
(i) The perturbation technique used to obtain Eq. (5) also
can be used to estimate the increase of � upon addition of a
new node and its links or the addition or change in the
weight of one link. If we are allowed to add a new node
with a prescribed number of in and out links or to increase
the weight of a link by a specified amount, this approach
can determine how to proceed so as to maximally increase
� [as in a case in which one would like to promote
synchronization [2] ]. (ii) The perturbation analysis can
also be applied to weighted networks that have some
negative weight links (Aij < 0 for some i, j). In particular,
if the number of negative weight links is not too great, � is
still real and positive and the components of u and v are
still positive. In that case, Eq. (4) shows that removing such
a link increases � and, furthermore, one can use it to
determine the best negative weight link to remove if one
wishes to most increase �. (iii) Another use of Eq. (5)
might be to determine from a given network a reduced
simpler network with fewer nodes, but almost the same
dynamics (in the sense of having almost the same �). This
could be done by successive removal of the nodes of lowest
Ik [as in the idea of the ‘‘k core’’ [17] ], and offers a po-
tential tool for facilitating the understanding of the dynam-
ics on a complex network. (iv) As compared to degree-
based node ranking, the approximation Îk of Eq. (5) re-
quires computation of the eigenvectors u and v and hence
more complete network information.

In conclusion, we have presented an objective, quanti-
tative measure of the dynamical importance of edges and
nodes in a network. The dynamical importance of a node or
edge measures how the largest eigenvalue, which controls

various important dynamical processes in networks,
changes upon removal of the given node or edge. We
have shown how knowledge of the dynamical importance
of nodes can be used to optimize strategies to control
dynamical processes dependent on the largest eigenvalue
of the adjacency matrix of the network.
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