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The motion of an inertial particle in a viscous streaming flow of Reynolds number
order 10 is investigated theoretically and numerically. The streaming flow created by
a circular cylinder undergoing rectilinear oscillation with small amplitude is obtained
by asymptotic expansion from previous work, and the resulting velocity field is used
to integrate the Maxey–Riley equation with the Saffman lift for the motion of an
inertial spherical particle immersed in this flow. It is found that inertial particles
spiral inward and become trapped inside one of the four streaming cells established
by the cylinder oscillation, regardless of the particle size, density and flow Reynolds
number. It is shown that the Faxén correction terms divert the particles from the fluid
particle trajectories, and once diverted, the Saffman lift force is most responsible
for effecting the inward motion and trapping. The speed of this trapping increases
with increasing particle size, decreasing particle density, and increasing oscillation
Reynolds number. The effects of Reynolds number on the streaming cell topology
and the boundaries of particle attraction are also explored. It is found that particles
initially outside the streaming cell are repelled by the flow rather than trapped.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795857]

I. INTRODUCTION

Techniques for separating, focusing, and transporting small-sized particles in an aqueous en-
vironment have matured in recent years, motivated primarily by technology needs such as drug
delivery, cell processing, and microfluidic devices. Some of the most notable and effective meth-
ods are based on lasers,1–3 ultrasonics,4, 5 dielectrophoresis,6, 7 and inertial hydrodynamic effects.8, 9

Another appealing option for particle manipulation is based on the notion of steady streaming. A
streaming flow is a relatively weak but large-scale steady response of a fluid to non-linear interactions
– the Reynolds stresses – in a primary oscillatory flow. Such a flow can arise in both viscous and
acoustic environments. The promise of such a flow for trapping and manipulating microparticles
has recently been demonstrated by a number of recent studies. Lutz et al.10, 11 created streaming
eddies around a cylinder fixed in a microchannel through which fluid was oscillated, and showed that
particles both lighter and heavier than the surrounding fluid could be trapped; Lieu et al.12 recently
characterized the trapping in the vicinity of other obstacles, and a cavity, as well. These studies also
showed that trapping was less effective when the particle was much much smaller than the cylinder.

Marmottant and Hilgenfeldt13 exhibited controlled vesicle deformation and lysis using a single
oscillating microbubble mounted on the wall of a microchannel. The shear force on the vesicles
due to the streaming flow was strong enough to deform and rupture them. They also demonstrated
microparticle transport based on a controlled fluid motion created through combinations of oscillating
bubbles.14, 15 Wang et al.16 have recently demonstrated the size-selective trapping and release of
microparticles through a superposition of bubble-induced streaming and Poiseuille flow.

a)Author to whom correspondence should be addressed. Electronic mail: eldredge@seas.ucla.edu

1070-6631/2013/25(3)/033602/21/$30.00 C©2013 American Institute of Physics25, 033602-1

Downloaded 02 Jun 2013 to 152.15.236.17. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



033602-2 Chong et al. Phys. Fluids 25, 033602 (2013)

x/R

y/
R

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

δDC/R

δAC/R

(a) (b)
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

−4

10
−2

10
0

10
2

10
4

10
6

ε = A/R

R
e

Re
s  = O(1)

2 boundary layers
  (Stuart, Riley)

1 boundary layer
(Schlichting, Wang, Holtsmark et al)

No boundary layer
(Holtsmark et al)

Wake flows
(no theory)

No boundary layer
(Stokes)

FIG. 1. (a) Lagrangian streamlines (top half) and instantaneous Stokes-layer vorticity (bottom half) of canonical streaming
pattern for Re ! 1 and Res " 1 (here, Re = 80). (b) Streaming regimes (adapted from Wang20).

These recent works demonstrate the excellent opportunities for particle manipulation using
streaming flows. In this work, we are interested in obtaining a deeper understanding of the behavior
of a canonical streaming flow (the flow generated by an oscillating circular cylinder), and particularly,
the interaction of small inertial particles with such a flow. Though it is known that particles can be
trapped by the streaming, relatively little is known about the nature or conditions under which this
trapping is possible. Here, our objective is to provide more physical intuition and to determine the
dependence on various parameters, such as Reynolds number, and particle size, and relative density.

The study of steady streaming dates to Lord Rayleigh, who found the existence of a steady flow in
Kundt’s tube.17 Early experimental studies of viscous streaming in the vicinity of a circular cylinder
(and other obstacles) were conducted by Andrade18 who mounted the cylinder in an apparatus through
which air was driven sinusoidally. Smoke was used to visualize the cloverleaf pattern of streaming
cells. Schlichting19 examined the same flow, generated in this case by an oscillating cylinder in
an otherwise quiescent medium. His study was notable for providing a theoretical analysis of the
flow, based on an expansion in the ratio ε of small oscillation amplitude A to cylinder radius R. The
analysis was performed in a reference frame attached to the oscillating body, so that the fluid at
infinity is in uniform oscillation. Schlichting matched the inner flow solution – in which the relevant
length scale is the thickness of the oscillatory (Stokes) boundary layer, δAC = (ν/$)1/2, where ν

is kinematic viscosity and $ is angular frequency of oscillation – with a corresponding expansion
of the outer flow. The leading-order outer potential flow drives the Stokes layer near the cylinder,
which applies a second-order correction to the outer flow due to displacement, which in turn affects
the boundary layer at the next order, and so on. It is useful to note that the thickness of the Stokes
layer is directly related to the Reynolds number based on cylinder radius: δAC/R = 1/Re1/2, where
Re = $R2/ν.

The steady component of the flow enters at second order, driven by the mean Reynolds stress
of the leading-order Stokes layer. This steady flow is divided into four equal quadrants about the
cylinder by the axis of oscillation and the axis transverse to this oscillation (see Figure 1(a), which
also depicts the vorticity in the Stokes layer). Each quadrant exhibits a streaming cell, segregated
from the outer flow by a dividing streamline at distance δDC off the surface of the cylinder. The
Reynolds stresses decay exponentially with distance from the cylinder surface, so the fluid outside
the boundary layer is set in steady motion indirectly, effectively dragged along by the inner flow.
The composite of these inner and outer flows represents the streaming flow.

Schlichting’s analysis provided an intuitive understanding of the flow that subsequent analy-
ses have improved upon, but not significantly altered. Wang20 argued that body curvature, which
Schlichting neglected, should have an important influence on the boundary layer behavior; however,
this influence is only felt at second order and higher in the oscillatory portion, and third order
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and higher in the steady portions of the flow, as revealed by Wang’s matched asymptotic analysis.
Holtsmark et al.21 also performed an asymptotic expansion in small amplitude ratio, but did not
treat the inner and outer flows separately; rather, they solved for the entire flow about the cylinder at
each order of accuracy. The results of Holtsmark et al.21 contain those of Schlichting19 and Wang20

when one carries out an expansion of these results in powers of Re−1/2, assuming that Re ! 1;
however, the Holtsmark group’s result holds equally well for moderate and small Re, for which the
oscillatory boundary layer is absent. Raney, Corelli, and Westervelt22 and later Bertelsen, Svardal,
and Tjøtta23 corrected each of these results for the Stokes drift, which accounts for the difference
between the steady Lagrangian streamlines (the mean paths followed by fluid particles) and the
Eulerian streamlines (which are obtained from the mean streamfunction). Since most experimental
measurements of the flow are based on tracking the motion of passive tracer particles, the Stokes
drift is inherent to such experimental results. As is apparent from the experiments from Holtsmark
et al.21 and corroborated by the drift-corrected theory,23 the relative thickness, δDC/R, of the inner
streaming cell exhibits a complex dependence on the Reynolds number, growing progressively larger
as Re gets smaller and without bound as Re → 37 (exhibited in Figure 4). Note that δDC/δAC > 1 at
all Reynolds numbers, as Figure 1(a) indicates at the particular case of Re = 80.

Though the Reynolds number, Re, defines the size of the driving mechanism (the Stokes layer),
the streaming flow itself is characterized by a streaming Reynolds number, Res = $A2/ν. Its
role is clear from the fact that the characteristic velocity of the streaming flow is Vs = ε$A, so
Res = Vs R/ν. Each of the analyses above was based on the assumption that Res " 1, whereupon
the steady streaming flow beyond the inner layer is essentially Stokes flow (through second order).
However, when Res ! 1, this outer flow exhibits its own boundary layer structure, with a character-
istic thickness of order R/Re1/2

s . Since δAC = R/Re1/2 and Res = ε2Re, then this second boundary
layer is much thicker than the Stokes layer (and the inner streaming cell, δDC). Both Riley24 and
Stuart25 revealed the existence of such a double boundary layer structure at large streaming Reynolds
number. Both authors used series expansions to arrive at this structure: Riley used the method of
matched asymptotic expansions, whereas Stuart relied on a more intuitive approach.

The various streaming regimes in the ε–Re parametric space were nicely summarized in a figure
by Wang,20 which is presented in somewhat modified form here in Figure 1(b). The streaming
theories all fall to the left of ε = O(1), as the right side of this line involves large-amplitude motions,
which, for Re ! 1 generate wake flows that resist analytical description, and for Re ! 1 are governed
by quasi-steady Stokes flow. The regime of small streaming Reynolds number lies below the line
that diagonally transects the figure.

In this work, we are primarily focused on the behavior of inertial particles (particles of finite size
whose density may differ from that of the surrounding fluid) in streaming flows for which Res ! 1,
ε " 1, and Re = O(10) – that is, the cases for which the theoretical treatment of Holtsmark
et al.21 is valid. We will assume that the particle is a rigid sphere, and sufficiently small such
that its “slip” Reynolds number, Rep = a|w|/ν (the Reynolds number based on the velocity of the
particle relative to the local undisturbed flow, w, and particle radius, a) and shear Reynolds number,
ReG = a2G/ν (the Reynolds number based on the velocity gradient, G) are both much less than
unity. The translation of a rigid sphere in this regime was originally treated separately by Basset,26

Boussinesq,27 and Oseen28 (and hence the equation governing its dynamics is sometimes called the
“BBO” equation). Later, Maxey and Riley29 proposed a corrected equation of motion for a small
rigid sphere in a nonuniform flow. We will make use of the equation derived in this latter work,
including the Saffman lift force term30 (and refer to it from hereon as the Maxey–Riley, or simply
“MR” equation) in order to calculate trajectories of inertial particles in the flows predicted by the
Holtsmark solution.

The problem statement of this study, as well as the methodology, will be described in Sec. II. In
the Appendix, we summarize the Holtsmark solution, along with the correction for Stokes drift and
for the change of reference frame to an oscillating circular cylinder in a quiescent flow. (This frame,
in contrast to the one in which the cylinder is fixed in an oscillating flow, will enable opportunities
for studying particle transport between multiple oscillators of possibly different frequencies in future
work.) The Maxey–Riley equation and our technique for integrating it is also described in Sec. II.
The motion of an inertial particle will be examined in Sec. III. The transient behavior of the inertial
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particle in the streaming cell, the dominant forces acting on the particle, and the trapping speed and
equilibrium trajectory will be examined in this section. Then, concluding remarks will follow in
Sec. IV.

II. PROBLEM STATEMENT AND METHODOLOGY

In this work, we study the motion of inertial particles in a flow generated by a two-dimensional
circular cylinder of radius R that undergoes rectilinear sinusoidal oscillations along the x axis with
amplitude A and angular frequency $,

X(t) = ex A sin $t (1)

in a quiescent incompressible medium of uniform density ρ f and kinematic viscosity ν. The y axis
represents the transverse direction in the plane of the cylinder cross-section, and the z axis is parallel
to the cylinder axis. A particle has radius a and density ρp, where it is assumed that a is much smaller
than the radius of the oscillating cylinder.

It is important to consider the wide range of time scales of this problem. Inertial particles
are transported approximately at the characteristic (drift-corrected) speed of the streaming flow,
Vs = ε$A, around a cell of characteristic size δDC. Though this size varies with Reynolds number,
as described above, it remains O(R) over a wide range of Re. Thus, the convective time for a particle
to orbit the streaming cell is of order δDC/Vs ∼ R/(ε$A) = 1/(ε2$), or ε−2 periods of oscillation,
and to discern long-term behavior of the particle, many such orbits must be captured. So in practice,
particle trajectories must be computed over hundreds to thousands of oscillation cycles.

The solution for the flow generated about a circular cylinder in an oscillatory free stream is
derived in the Appendix, and follows the derivation presented by Holtsmark et al.21 However, this
earlier work contains errors in the second-order oscillatory part of the solution, and we correct
these errors here. We also include a derivation of the Stokes drift of fluid particles in this flow. In
Sec. II A, we discuss how this solution is modified when the reference frame is changed to one in
which the cylinder is in motion and the fluid at rest at infinity.

A. A note on the change of reference frame

Ultimately, we seek the flowfield in a reference frame in which the cylinder is in oscillatory
motion and the fluid is at rest at infinity, which we term the “inertial” reference frame in this paper.
It is important to note that a fixed position in this frame appears to be in motion in the cylinder-fixed
reference frame used to obtain the solution of Holtsmark et al.21 However, it is more natural to
evaluate the solution at a fixed position in this latter frame. We need to account for this discrepancy,
and as we will see, this leads to both a first- and second-order correction when reconciling the two
frames. It is important that we carry out this analysis, because the motion of a particle with different
density from the surrounding fluid will, in general, undergo a slightly different motion relative to
the cylinder in the two different scenarios.

Let us denote the position of a fixed point in the inertial reference frame by x = (x, y) and
the same point mapped to the cylinder-fixed reference frame by ξ (t) = (ξ (t), η(t)). They are simply
related by

ξ (t) = x − X(t), (2)

where here, in dimensionless form, X(t) = exε sin t . It is straightforward to show that, in a non-
inertial frame in purely translational motion, the Navier–Stokes equations are unmodified (except
for an addition to the pressure field).31 The streamfunction, when evaluated at ξ (t), is related to its
counterpart in the inertial reference frame (denoted by ψ̃) by

ψ(ξ (t), t) = ψ̃(x, t) −
(

d
dt

X(t) × x
)

· ez = ψ̃(x, t) − εy cos t. (3)
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Equation (3) can be used directly to transform the solution of Holtsmark et al.21 to the inertial
reference frame. However, it is enlightening to consider the effect of this change of frame in
the context of the asymptotic expansion. Because the oscillations are assumed to be small, the
streamfunction in the cylinder-fixed frame – when evaluated sufficiently far from the cylinder so
that the modulated point remains outside the perimeter – can be expanded about the mean position,
ξ , of the moving evaluation point,

ψ(ξ (t), t) = ψ(ξ , t) + (ξ (t) − ξ ) · ∇ψ(ξ , t)) + O(|ξ (t) − ξ |2). (4)

However, by (2), ξ = x. That is, the mean location of the mapped point in the cylinder-fixed frame
has the same nominal coordinates as the point in the inertial frame. Thus, we simply have

ψ(ξ (t), t) = ψ(x, t) − ε sin t
∂

∂x
ψ(x, t) + O(ε3). (5)

(The leading order of the omitted terms reflects that these terms are linearly related to ψ , which itself
has leading order ε.) Thus, the relationship between streamfunction in the two frames – evaluated at
the same nominal (fixed) location in each frame – can be written as

ψ̃(x, t) = ψ(x, t) + εy cos t − ε sin t
∂

∂x
ψ(x, t) + O(ε3). (6)

Introducing the asymptotic expansion for ψ ,

ψ̃(x, t) = ε (ψ1(x, t) + y cos t) + ε2
(

ψ2(x, t) − sin t
∂

∂x
ψ1(x, t)

)
+ O(ε3). (7)

Thus, in order to compute the streamfunction in the inertial frame, the first-order streamfunction
obtained by Holtsmark et al.21 is modified by a term removing the velocity at infinity, and the
second-order streamfunction is effectively corrected by the leading-order effect of the modulated
field sampled by the moving evaluation point. The velocity field derived from this streamfunction
consists of similar corrections.

B. Calculation of inertial particle trajectories

We are primarily interested in this work in computing the trajectory, X p(t), of an inertial
particle. These trajectories will be computed by integrating the Maxey–Riley (MR) equation with
Saffman lift force,29, 32 which is based on the assumption of a rigid spherical particle with small slip
Reynolds number, Rep. We are therefore implicitly assuming that the motion of the particle does
not significantly affect the flow generated by the oscillating cylinder. Use of the Saffman lift force
is restricted by the condition of small slip Reynolds number (Rep " 1) and shear Reynolds number
(ReG " 1), as well as Rep " Re1/2

G . That these conditions are satisfied in the present simulations
can be demonstrated by examining a typical particle traversing the Stokes layer, where it experi-
ences the largest slip velocity and shear. For the typical case of this study, particle size, Reynolds
number and oscillation amplitude are a/R = 0.175, Re = 40, and ε = 0.2, respectively. At time t/T
= 325.5, when it is closest to the cylinder, |w| = 0.0268 and G = 0.695 and thus Rep = 0.184 " 1,
ReG = 0.836 < 1 and Rep " Re1/2

G . The Faxén correction terms cannot be ignored in our study, as
their contribution is notable in the regions of significant vorticity, where the particle remains for
most of its trajectory. We ignore the gravity terms, and are therefore left with

dX p

dt
= V p, (8)

m p
dV p

dt
= −6πρ f νa

[
V p(t) − u(X p(t), t) − 1

6
a2∇2u(X p(t), t)

]
+ m f

Du
Dt

∣∣∣∣
X p(t)

− 1
2

m f

(
dV p

dt
− Du

Dt

∣∣∣∣
X p(t)

− d
dt

[
1
10

a2∇2u(X p(t), t)
])
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− 6π1/2ν1/2a2ρ f

∫ t

−∞

d/dτ
[
V p(τ ) − u(X p(τ ), τ ) − 1

6 a2∇2u(X p(τ ), τ )
]

√
t − τ

dτ

+ 4Kρ f a2 (ν |G|)1/2 sgn(G)
∣∣u − V p

∣∣ n, (9)

where

G = |u − V p|−2
[(

ux − Vp,x
)2 ∂ux

∂y
−

(
uy − Vp,y

)2 ∂uy

∂x

−
(
ux − Vp,x

) (
uy − Vp,y

) (
∂ux

∂x
− ∂uy

∂y

)]
(10)

and

n =
∣∣u − V p

∣∣−1 [
−

(
uy − Vp,y

)
ex +

(
ux − Vp,x

)
ey

]
. (11)

The symbols mp and mf denote, respectively, the mass of the inertial particle and the displaced
fluid. The vectors V p and u are, respectively, the velocity of the inertial particle and the fluid velocity.
The Saffman constant, K, is 1.615. It should be noted that G represents the coordinate-independent
shear rate – the n-directed gradient of the component of fluid velocity in the direction of relative
particle motion – as used by Tio et al.32 The operators d/dt and D/Dt denote the time derivatives
along their respective sets of characteristics,

du
dt

= ∂u
∂t

+ V p · ∇u,
Du
Dt

= ∂u
∂t

+ u · ∇u. (12)

The terms on the right hand side of (9) represent, respectively, the viscous Stokes drag, the fluid
acceleration force, the added mass, the Basset history force, and the Saffman lift force. The terms
involving the Laplacian of the fluid velocity are the Faxén corrections, which represent the effect of
non-uniform fluid velocity incident upon the inertial particle.

The Basset history force (sometimes described as the “memory term”) represents the cumu-
lative influence of the diffusion of vorticity from the particle during its total traveling history.
The computation of this term is extremely time consuming and memory intensive, and many
studies neglect it for simplicity. However, it may lead to a physically incorrect result to omit
the history term for a non-neutrally buoyant particle. Studies by Daitche and Tél,33 Candelier,
Angilella, and Souhar34, 35 and Mordant and Pintona36 have shown that the history term can have
a significant effect on the motion of an inertial particle and cannot generally be neglected. An
efficient technique for computing the history force term was recently proposed by van Hinsberg,
ten Thije Boonkkamp, and Clercx.37 The integration interval is divided into two sub-intervals.
The sub-interval involving more recent history is computed by trapezoidal integration; in the more
distant sub-interval, the Basset kernel t−1/2 is replaced with an exponential approximant, and a
recursive algorithm is constructed to minimize expense. We adopt this approach in the present
work.

Since the MR equation (9) evaluates the terms at the center of the inertial particle, it makes sense
to define the relative velocity, w = V p − u(X p), so that the relationship between time derivatives
is simply

Du
Dt

= du
dt

− w · ∇u. (13)

Furthermore, we can non-dimensionalize the variables using $ and R, as for the flowfield itself in
the Appendix. Thus, the dimensionless version of the MR equation (9) can be written as

(
ρp

ρ f
+ 1

2

)
dw

dt
= −9

2
Re−1

a w + (1 − ρp/ρ f )
du
dt

∣∣∣∣
X p(t)

− 3
2
w · ∇u

∣∣∣∣
X p(t)

−9
2
π−1/2Re−1/2

a

∫ t

−∞

d/dτ
[
w − 1

6 (a/R)2∇2u(X p(τ ), τ )
]

√
t − τ

dτ
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+3K Re−1/2
a |G|1/2 sgn(G)|w|n

+3
4

Re−1
a (a/R)2∇2u(X p(t), t) + 1

20
(a/R)2 d

dt
[
∇2u(X p(t), t)

]
, (14)

where Rea = $a2/ν = Re(a/R)2 is a particle-based Reynolds number. In terms of the direction,
ŵ = w/|w|, of the relative velocity, the direction of Saffman lift is

n = ŵ × ez (15)

and the generalized shear rate is represented compactly as

G = n · ∇u · ŵ. (16)

The inertial particle initially has the same velocity as the surrounding fluid, so that the initial
condition of this integro-differential equation is w(0) = 0. The Stokes drag and the Basset history
act as penalty terms, tending to drive w to zero when the particle’s velocity deviates from that of
the fluid; these terms, along with the Saffman lift, are only active when w is non-zero. The unsteady
term (the second term on the right-hand side) and Faxén corrections are the only inhomogeneous
terms in this equation, and we note that the first of these is absent for neutrally buoyant particles. The
third term on the right-hand side, due to the differences in the advection between a fluid and inertial
particle, is only significant when the particle traverses regions of steep change in fluid velocity. The
equation is integrated with a 4th-order Adams-Bashforth method with time step size 0.02. At each
time step, the fluid velocity, its gradient, and its time derivative are computed from the Holtsmark
solution (with a correction for change of reference frame, described above) at the instantaneous
location of the particle. Convergence of the time marching was tested by doubling and halving the
step size, and verifying that the results were insensitive.

The relevant dimensionless parameters of this problem, in addition to the oscillatory Reynolds
number Re and amplitude ratio ε, are the density ratio ρp/ρ f and particle size ratio a/R. In this work,
we will keep ε fixed at 0.2; this is a compromise between a sufficiently small amplitude for the
asymptotic solution to hold and practical integration times for computing particle trajectories.

Finally, we note that we do not add an additional force to account for the hydrodynamic influence
of the rigid cylinder on the particle. That is, the effect of the cylinder on the particle’s motion is felt
solely through the velocity field generated by the oscillating cylinder.

III. RESULTS

The trajectory, X p(t), of an inertial particle is computed by integrating equation (14) for the
inertial particle velocity, V p, based on the parameters of relative particle density ρp/ρ f, relative size
a/R and Reynolds number Re. Figure 2 depicts a visual comparison of the continuous inertial particle
trajectory and the trajectory sampled once per oscillation cycle, in this case for a neutrally buoyant
particle. The particle oscillates at the forcing frequency with an amplitude of approximately 0.03R.
As expected due to the small streaming velocity of order ε2, the overall migration speed is very slow.

Figure 3 depicts representative trajectories for a heavy, a neutrally buoyant, and a light particle
at Re = 40 for a particle of radius a = 0.175R. Each trajectory is sampled only once per cycle for
clarity purposes, and thus is actually a set of discrete points representing the Poincaré section of the
particle motion. Open blue circles denote the initial location, in this case at (x, y) = (2R, 2R), and
the mean Lagrangian streamlines are depicted for reference. Note that, at this Reynolds number, the
inner streaming cell has size δDC ≈ 4.6R.

The plots in Figure 3 indicate that particles undergo an inward spiral toward the center of the
streaming cell, regardless of their density relative to the fluid. Figure 3(d) shows that the trajectories
of an inertial particle and fluid particle starting from the same initial location deviate over one
oscillation cycle, with the inertial particle ultimately closer to the center of the streaming cell at
the end of the cycle. The hydrodynamic force vectors shown here are computed from the right-hand
side of (14), and thus are proportional to the rate of change of the relative velocity between the
inertial and fluid particles. They are generally directed away from the cylinder, consistent with the
deviation of the trajectories.
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FIG. 2. Inertial particle trajectory (solid line) and trajectory sampled once per cycle (shown as dots) for Re = 40,
a/R = 0.175, and ρp/ρf = 1.

This spiral trajectory is qualitatively similar to the trajectory of a microsphere in a micro-channel
reported in the experiments of Lutz et al.11 Figure 4 depicts a comparison of the final trapping position
predicted in the present study with the experimental results of Lutz et al.,11 at different Reynolds
numbers. The size δDC/R of the inner streaming cell is also shown, and exhibits the dependence on
Reynolds number reported above, increasing without bound as Re → 37. The position of trapping
predicted by the model agrees well with the experiments.

In order to determine whether the motion of an inertial particle shows a tendency to spiral
inward or outward, it is helpful to consider the instantaneous cross product of the local tangents to
the mean inertial and fluid particle trajectories, which we denote as α. If we assume that at some
recent instant the inertial particle moved at the same velocity as the fluid, then the tangent of the
mean inertial particle trajectory is approximately V p/|U0|, where U0 is a constant, representative
of the mean fluid particle velocity, U , during a certain interval. Then, we can define

α(t)ez = |U0|−2 (
V p(t) × U(t)

)
. (17)

By the definition (A32) of temporal mean, it is easy to verify that these mean velocities, V p and
U , represent Poincaré maps of inertial and fluid particle position, respectively, from one period to
the next, e.g., X p(t + T ) = X p(t) + T V p(t). Since all particles undergo clockwise orbits in the
streaming cell in the first quadrant, then α > 0 implies a tendency of the inertial particle to spiral
inward, α < 0 a tendency to spiral outward, and α = 0 a tendency to stay on the mean Lagrangian
streamline. Thus, the particle’s motion at a given instant can be explained by examining this quantity,
as Figure 5 illustrates. It is instructive to consider this expression at some instant t0 such that the
inertial and fluid particles have been constrained to follow the same trajectory for t ≤ t0, so α(t0) = 0,
and dα/dt expresses the tendency for these trajectories to deviate in the next instant.

First, it is straightforward to show that the temporal mean and derivative operations commute
with one another. Thus, at t0, we can write

dα

dt
ez = |U0|−2

(
dV p

dt
× U + V p × dU

dt

)

. (18)

Using a Taylor expansion about a reference position similar to that used in the Appendix for the
mean fluid particle velocity, it can be shown that the mean of the relative velocity is

w(t) = V p(t) − U(t) − wsd , (19)
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FIG. 3. Panels (a)–(c) Inertial particles trajectories (in dark gray, or blue), sampled once per cycle, for Re = 40, a/R = 0.175.
Initial locations depicted with circles. Lagrangian streamlines are depicted in light gray. (a) ρp/ρf = 1.05, (b) 1, (c) 0.95.
In (b), square symbols denote the instants t/T = 290 and 350. (d) Inertial (dark gray, or red) and fluid (light gray, or green)
particle trajectories over one oscillation cycle, t/T ∈ [317, 318] for ρp/ρf = 1. Arrows depict the total hydrodynamic force
vectors in Eq. (14). Dots denote inertial particle trajectory sampled once per cycle.

where the final term, wsd =
∫ t

w dτ · ∇u, represents the difference in Stokes drift between the
inertial and fluid particles. This term is smaller than the Stokes drift itself, and is therefore not
expected to serve a role in determining the inward or outward motion of the inertial particle, so we
neglect it in this discussion. Thus, we can equally well define dα/dt at t0 as

dα

dt
ez = |U0|−2

(
dw

dt
× U + w × dU

dt

)

. (20)

In the first term, we can replace dw/dt with the MR equation (14), and we note that the temporal
mean also commutes with the convolution operator in the Basset term. Thus, we end up with

dα

dt
ez = |U0|−2

[

Cu
dU
dt

× U − Csw × U − Ccw · ∇U × U

−Cb

∫ t

−∞

d/dτ
[
w − 1

6 (a/R)2∇2U(X p(τ ), τ )
]

√
t − τ

dτ × U

Downloaded 02 Jun 2013 to 152.15.236.17. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



033602-10 Chong et al. Phys. Fluids 25, 033602 (2013)

FIG. 4. Comparison of trapping position from current results (squares) and experiments (circles) of Lutz, Chen, and
Schwartz.11 Dashed and solid lines depict, respectively, inner streaming cell size δDC/R and inner streaming cell center
location.

+Clsgn(G)|G|1/2|w|n × U
(

C f 1∇2U + C f 2
d
dt

∇2U
)

× U + w × dU
dt

]

, (21)

where

Cu = 1 − ρp/ρ f

ρp/ρ f + 1/2
, Cs = (9/2)Re−1

a

ρp/ρ f + 1/2
, Cc = 3/2

ρp/ρ f + 1/2
,

Cb = (9/2)π−1/2Re−1/2
a

ρp/ρ f + 1/2
, Cl = 3K Re−1/2

a

ρp/ρ f + 1/2
, (22)

C f 1 = (3/4)Re−1
a (a/R)2

ρp/ρ f + 1/2
, C f 2 = (1/20)(a/R)2

ρp/ρ f + 1/2
.

U
_

U
_

 w
_

Vp

_

Vp

_

FIG. 5. Illustration of the tendency of a inertial particle to deviate from a Lagrangian streamline. Note that α < 0 in the
upper right portion of the streamline, and α > 0 in the lower left portion.
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t/T(a) (b)

α

t/T

dα
/d

t

FIG. 6. (a) History of α during the cycle t/T ∈ [290, 350] for Re = 40, a/R = 0.175, ρp/ρf = 1. (b) Contributions to dα/dt from
each term in Eq. (21): Stokes drag (solid black); convective term (dashed, cyan); Basset history (dashed-dotted, magenta);
Saffman lift (dashed-dotted-dotted, blue); Faxén corrections (dotted, green); w × dU/dt (solid light gray, or yellow).

Here, we examine the quantities α and dα/dt during the interval between t/T = 290 and 350 (between
two red squares in Figure 3(b)), when the inertial particle experiences the greatest tendency toward
the center of the streaming cell. As Figure 6(a) shows, the value of α remains essentially zero, except
for a short interval during which the particle is nearest to the cylinder. During this short interval, α

has a positive peak between t/T = 310 and 320, followed by a slightly negative value. This behavior
is evident in the particle trajectory in Figure 3(b). At the start of the interval, indicated by the
first red square, the inertial particle essentially follows the fluid particle trajectory until it reaches
the region in which the streamlines of the cell change curvature, from convex (bowed outward)
to concave (bowed inward). Here, the inertial particle moves significantly toward the center of the
streaming cell, consistent with the positive peak in α. When the particle has traversed this region
of concave streamlines, it undergoes a slight outward motion, associated with a slightly negative
value of α. Therefore, the inertial particle experiences the most inward motion toward the center
of the streaming cell in the portion of trajectory nearest to the cylinder, while it stays on the fluid
streamline on the portion farthest from the cylinder. This is evident in Figure 7, which depicts the
mean inertial particle trajectory superposed on the mean fluid trajectories, along with the total force

x/R

y/
R

FIG. 7. Hydrodynamic force (arrows) at sampled times along the inertial particle trajectory (dark solid line) during the
intervals t/T ∈ [0, 485] and t/T ∈ [1300, 1370] for Re = 40, a/R = 0.175 and ρp/ρf = 1. All portions of the inertial particle
trajectory not in these intervals are shown as a light gray line.
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FIG. 8. Saffman lift force (black arrow), relative particle velocity, w (light gray arrow, or green), and local profile of fluid
velocity, u, perpendicular to w (gray arrows, or blue) at t/T = 317.5 and t/T = 318. Velocity vectors are plotted with the same
scale. Solid line (red) denotes the inertial particle trajectory during the oscillation cycle t/T ∈ [317, 318]. Local fluid particle
trajectory, sampled once per period, shown with dots.

on the particle (that is, the right-hand side of Eq. (14) sampled at various instants). This force is
largest, and consistently directed toward the center of the streaming cell, when the particle is nearest
the cylinder, but its magnitude decreases dramatically when the particle is furthest from the cylinder.
With each successive orbit, this process is repeated, until finally the particle becomes trapped at the
center of the streaming cell.

Each contribution to dα/dt from Eq. (21) is depicted in Figure 6(b). The Faxén terms are the
earliest to contribute to positive α, and are countered by the Stokes drag, the convective term, and
the Basset history term, which all tend to resist this deviation from the fluid particle trajectory. The
Saffman lift initiates its role somewhat later, but ultimately contributes the most positive dα/dt, and
is therefore most responsible for the motion toward the center of the cell. Note that all terms are
significant, and none – including the Basset term – can be reliably ignored in the analysis.

The Saffman lift clearly plays an important role in the trapping of inertial particles, so we
examine it further. Figure 8 graphically depicts the instantaneous relationships between local fluid
velocity gradient, relative velocity w, and lift component. Two different instants within a single
oscillation cycle are shown. Generically, the Saffman lift is oriented in the gradient direction of
increasing velocity when the relative velocity is opposite that of the fluid velocity (i.e., when the
particle moves slower than the fluid). This is confirmed in each of the instants shown in Figure 8.
Indeed, the component maintains the same direction at both instants shown, since the components
of both w and shear rate change sign during the cycle. This ensures that there is a significant mean
in the Saffman lift.

It is also important to note that the Saffman lift is only operative when the relative particle
velocity, w, is non-zero. By (14), there are only two possible mechanisms by which w can become
non-zero when it starts at zero: the fluid acceleration term and the Faxén corrections. For a neutrally
buoyant particle, the unsteady term vanishes, and thus only the Faxén correction can cause an inertial
particle to initially deviate from its fluid trajectory. This is clearly the case here, as indicated by the
breakdown of contributions in Figure 6(b): the Faxén term is the earliest to divert the particle from
the trajectory of the fluid, as the particle enters the region of significant vorticity gradient. However,
once the particle has deviated, the role of the Faxén terms is secondary to that of the Saffman lift.

The final trapping point of the inertial particle is at the center of the Lagrangian streaming
cell, and is not dependent on the initial location. Indeed, inertial particles travel toward nearly the
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TABLE I. Time averaged forces applied on the inertial particle during the interval t/T ∈ [4200, 4700] for Re = 40,
a/R = 0.175, ρp/ρf = 1.

Lift Faxén Basset Convective Stokes Total

Fx/ρ f R4$2 5.65 × 10−3 −3.00 × 10−4 3.43 × 10−5 −3.98 × 10−3 −1.40 × 10−3 −4.49 × 10−7

Fy/ρ f R4$2 3.61 × 10−3 1.12 × 10−2 −2.41 × 10−4 2.59 × 10−4 −1.48 × 10−2 1.08 × 10−6

same point, regardless of their size, density, and initial position. We can understand this better by
inspecting the mean version of the MR equation (14). The mean fluid particle velocity, U , vanishes
at the center of this cell, and so too does dU/dt once an inertial particle reaches this center. However,
∇U and ∇2U do not vanish, and thus several of the forces remain active at the center of the streaming
cell, due to continuous motion from the oscillating cylinder. As Table I shows, all forces are small
in magnitude in this region, and the Saffman lift and Faxén corrections remain in balance with the
Stokes drag and convective term. Thus, the cell center is a fixed point of these mean equations. The
continuous trajectory actually converges to a limit cycle, traversed once per oscillation cycle. This
is evident in Figure 9, which depicts the limit cycle for neutrally buoyant inertial particles of various
size (or particle Reynolds number) and fixed Re. The limit cycle is approximately the same size
for all particles, and is nearly concentric with the streaming cell. The orbits have a nearly elliptical
shape with a major axis of length 0.25R and minor axis of length 0.05R (which are likely controlled
by ε) and are oriented nearly vertically.

A. Inertial particle trapping speed

It was revealed above that a inertial particle spirals inward due to the hydrodynamic forces
(primarily the Saffman lift), and eventually gets trapped near the center of the Lagrangian streaming
cell in a continuous limit cycle. In the trajectory sampled once per period, this particle converges to
a fixed point, and the speed with which it converges is of interest.

The complex mix of forces during the trapping is dependent upon all of the parameters of the
problem. Furthermore, the velocity of the particle during this trajectory is similar to that of the

x/R

y/
R

0.6 0.8 1 1.2 1.4
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0.8

1
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FIG. 9. The final limit cycle for inertial particles of various sizes: a/R = 0.1 (blue); a/R = 0.115 (red); a/R = 0.13 (green);
a/R = 0.145 (cyan); a/R = 0.16 (black); a/R = 0.175 (magenta), each plotted over one cycle for Re = 40, ρp/ρf = 1. Mean
Lagrangian streamlines shown in light gray for reference.
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FIG. 10. (a) The sampled history of the x position of an inertial particle (- - -) and an exponential fit to the envelope (—),
for Re = 40, ρp/ρf = 1, and a/R = 0.175. (b) Trapping timescale dependence on a/R, for Re = 40, ρp/ρf = 1. This figure
contains results for ε = 0.2

√
2 (green triangles), 0.2 (blue circles), 0.1 (red squares). (c) Trapping timescale dependence on

ρp/ρf for Re = 40, a/R = 0.175. (d) Trapping timescale dependence on Re for ρp/ρf = 1, with a/R varied so that $a2/ν is
fixed at 1.2.

fluid particle, Vs ∼ ε$A = ε2$R. However, the forces on the particle during trapping, notably the
Stokes drag and Saffman lift, have a mix of linear and non-linear dependence on velocity. Thus, one
expects that τ /T – the timescale of trapping, scaled by period T = 2π /$ – depends inversely on ε to
some power, but all parameters – ε, Re, a/R, and ρp/ρ f – determine the shape of the spiral trajectory.
Thus, the trapping timescale obeys

τ

T
= f (ε, Re, a/R, ρp/ρ f ). (23)

The dashed line in Figure 10(a) is the history of the x component of position of the inertial
particle (sampled once per period) and exhibits an asymptotic decay toward a steady position.
A criterion to establish convergence is that the difference between two consecutive peaks in this
sampled history falls below a threshold value (10−4). Once the inertial particle is determined to be
converged, the trapping timescale can be determined by fitting an exponential curve K exp (−t/τ ) to
the envelope of the history, as depicted by the solid line in Figure 10(a).

Three cases are investigated by varying one of the parameters (density, particle size and Reynolds
number), while fixing the remaining parameters. Figure 10(b) indicates that, as the size of the
particle (and thus, the particle Reynolds number, Rea = $a2/ν) increases, so too does the speed
of convergence toward the trapping point. This is due to the decreased resistance from the Stokes
drag in the MR equation. This term is proportional to the inverse of the particle Reynolds number,
whereas the Saffman lift is proportional to the inverse root, and is thus less affected by the increase.
This result is consistent with the experimental results of Lutz et al.,38 who found that very small
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particles are not trapped effectively. Note that Figure 10(b) also exhibits the dependence on ε. As
expected, the trapping speed is higher as ε increases.

Figure 10(c) shows that, as particle density increases, the convergence speed decreases. Inspec-
tion of (21) shows that all terms contributing to dα/dt, except for the unsteady term (with factor Cu),
are weakened by an increase in particle inertia. Though this unsteady term can enhance trapping as
density ratio increases (by virtue of centripetal acceleration), its effect for density ratios near unity is
more than compensated for by the decreased effectiveness of the Saffman lift and Faxén correction
terms, which are dominant in this regime.

Finally, Figure 10(d) shows that trapping speed also increases with increasing Reynolds number
when the particle Reynolds number is fixed. Since the particle Reynolds number is fixed, the viscous
resistance does not change. However, the underlying flow field has been altered by an increase in
Re, and particularly, the strengths of the vorticity and velocity gradients have increased. Thus, the
Faxén terms and the Saffman lift are enhanced by the stronger gradients, increasing the tendency
toward trapping.

B. Inner and outer streaming

The results thus far have focused on the behavior of inertial particles in the inner streaming cell.
At Reynolds number Re = 40, this cell has a thickness δDC ≈ 4.6R, so that the boundary of the cell
is on the periphery of the viewing window in Figure 3. However, this thickness shrinks to 0.82R at
Re = 80, so that the cell is more compact, as shown in Figure 11. It is natural, then, to explore the
behavior of inertial particles released from points outside the boundary of the streaming cell. This
region is characterized by mean Lagrangian streamlines that do not form closed loops, but rather,
direct fluid particles toward the cylinder in the 90◦ sectors centered on the y axis, and away from
the cylinder in the sectors centered on the x axis. Figure 11 depicts the trajectories of a neutrally
buoyant inertial particle of radius a/R = 0.175 released various points. The particle released from
a point well inside the inner streaming cell remains inside the cell and spirals toward a fixed point.
Particles released well outside the cell remain outside, and travel approximately along fluid particle
trajectories (expected due to the small velocity and vorticity gradients in this region).

x/R

y/
R

0 1 2 3 4
0

1

2

3

4

FIG. 11. Inertial particle trajectories at Re = 80 for particle of density ρp/ρf = 1 and radius a/R = 0.175, initially located at
(1.2R, 1.2R) (circle), (1.8R, 1.8R) (square), (2R, 2R) (triangle), (2.2R, 2.2R) (diamond). Lagrangian streamlines are in light
gray.
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IV. CONCLUSIONS

The behavior of inertial particles in a streaming flow generated by an oscillating circular
cylinder has been examined by integrating the Maxey–Riley equation with Saffman lift force in
an analytically obtained flow field. The flowfield consists of a primary oscillatory and secondary
streaming components, the latter of which consists of a set of four streaming cells surrounding the
cylinder. Inertial particles released in the inner streaming cell of this flow exhibit an inward spiral
toward a trapping point at the center of streaming cell. The most prominent force responsible for
trapping is the Saffman lift force – which itself is activated by the Faxén corrections that divert the
particle from the fluid particle trajectory – while viscous forces such as Stokes drag and the Basset
history term resist this trapping.

The trapping speed for inertial particles has also been investigated. It has been found that lighter,
larger particles are trapped faster, as are particles of a fixed density and particle Reynolds number at
larger flow Reynolds number; very small particles, in contrast, exhibit slow trapping speeds and are
not effectively trapped. These results have also shown that the particle is trapped at approximately
the same location – the center of the streaming cell – regardless of its size, density, or initial location
inside the cell. Particles initially outside the streaming cell, however, are repelled rather than trapped.
The predicted trapping locations agree well with previous experiments.

In our ongoing work on this topic, we are investigating the feasibility of transporting particles
between multiple oscillating cylinders by individually controlling their oscillation parameters – that
is, by modulating, or simply creating and destroying, the trapping locations. This will be the subject
of a future paper.
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APPENDIX: FLOW GENERATED BY CIRCULAR CYLINDER IN OSCILLATORY
FREE STREAM

The derivation summarized here follows that of Holtsmark et al.21 with some minor modifica-
tions made to the notation, and corrects some errors in the second-order oscillatory portion of their
solution. Additional consideration is given to the Lagrangian streamfunction and associated Stokes
drift, and this is adapted from the work of Longuet-Higgins39 and Raney, Corelli, and Westervelt.22

The cylinder is at rest and the fluid at infinity is in uniform oscillatory motion in the x direction,
with velocity U(t) = −A$cos ($t). We seek the solution of the two-dimensional vorticity transport
equation,

∂

∂t
(∇2ψ) + u · ∇(∇2ψ) = ν∇4ψ (A1)

subject to the conditions

ψ = 0,
∂ψ

∂r
= 0 at r = R, ψ → −A$r sin θ cos $t as r → ∞, (A2)

where the polar velocity components are defined as

ur = 1
r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (A3)

From hereon, the variables are scaled by R and $. We thereby arrive at the dimensionless form of
the problem

∇2
(

∇2 − Re
∂

∂t

)
ψ = Re u · ∇

(
∇2ψ

)
(A4)
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and

ψ = 0,
∂ψ

∂r
= 0 at r = 1, ψ → −εr sin θ cos t as r → ∞. (A5)

We introduce an asymptotic expansion in ε for the streamfunction,

ψ = εψ1 + ε2ψ2 + O(ε3) (A6)

and thereby develop a hierarchy of problems for ψ1, ψ2, etc. We will restrict our attention here to
the first two,

∇2
(

∇2 − Re
∂

∂t

)
ψ1 = 0, (A7)

ψ1 = 0,
∂ψ1

∂r
= 0 at r = 1, ψ1 → −r sin θ cos t as r → ∞

and

∇2
(

∇2 − Re
∂

∂t

)
ψ2 = Re u1 · ∇

(
∇2ψ1

)
, (A8)

ψ2 = 0,
∂ψ2

∂r
= 0 at r = 1, ψ2 → 0 as r → ∞.

1. First-order solution

Equation (A7) for the first-order streamfunction is linear and homogeneous, and consists of a
superposition of solutions of the two-dimensional Laplace equation and heat equation. This first-
order solution comprises the forcing – via Reynolds stresses – for the second-order equation (A8).
It is interesting to note that, if the oscillatory motion of the cylinder were changed in sign (i.e.,
phase-shifted by π ), the second-order motion would be unaffected.

The solution of (A7) can be written as

ψ1(r, θ, t) = Re
(
.1(r )e−it) sin θ, (A9)

where the radial dependence can be split into two parts

.1(r ) = .
(1)
1 (r ) + .

(2)
1 (r ), (A10)

each of which represents the homogeneous solution of one of the two differential operators in (A7);
.

(1)
1 is the radial dependence of the solution of the Laplace equation and .

(2)
1 of the heat equation.

After applying boundary conditions, these solutions are, respectively,

.
(1)
1 (r ) = −r − C

r
, (A11)

.
(2)
1 (r ) = 2H (1)

1 (γ r )

γ H (1)
0 (γ )

= r

[
H (1)

0 (γ r )

H (1)
0 (γ )

+ H (1)
2 (γ r )

H (1)
0 (γ )

]

, (A12)

where C = H (1)
2 (γ )/H (1)

0 (γ ). Note that H (1)
1 and H (2)

1 are the first-order Hankel functions of the first
and second kind, respectively, and γ = (iRe)1/2. When streamfunction is expressed in the inertial
reference frame (in which the cylinder is in motion and the fluid at rest at infinity), the first term in
(A11) is cancelled by the first-order modification in the change of reference frame equation (7).

The velocity components associated with this first-order streamfunction are

ur,1 = Re
(
Ur,1(r )e−it) cos θ (A13)

and

uθ,1 = Re
(
Uθ,1(r )e−it) sin θ, (A14)
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where Ur,1 = .1/r and Uθ ,1 = −d.1/dr. It is straightforward to show (using recurrence relations
for Hankel functions) that

Ur,1(r ) = −1 − C
r2

+ H (1)
0 (γ r )

H (1)
0 (γ )

+ H (1)
2 (γ r )

H (1)
0 (γ )

, (A15)

Uθ,1(r ) = 1 − C
r2

− H (1)
0 (γ r )

H (1)
0 (γ )

+ H (1)
2 (γ r )

H (1)
0 (γ )

. (A16)

2. Second-order solution

The first-order solution can now be used to evaluate the forcing term in Eq. (A8) for ψ2. It can
be verified that this leads to a second-order solution of the form

ψ2(r, θ, t) = Re
(
.s

2(r ) + .2(r )e−i2t) sin 2θ, (A17)

where the radial dependence of the steady solution is

.s
2(r ) = − r4

48

∫ ∞

r

f0(τ )
τ

dτ + r2

16

∫ ∞

r
τ f0(τ ) dτ

+ 1
16

(∫ r

1
τ 3 f0(τ ) dτ +

∫ ∞

1

f0(τ )
τ

dτ − 2
∫ ∞

1
τ f0(τ ) dτ

)

+ 1
r2

(
− 1

48

∫ r

1
τ 5 f0(τ ) dτ − 1

24

∫ ∞

1

f0(τ )
τ

dτ + 1
16

∫ ∞

1
τ f0(τ ) dτ

)
, (A18)

where

f0(r ) = iRe2

4
1
r

(

.1
d.

(2)∗
1

dr
− .

(2)∗
1

d.1

dr

)

. (A19)

The radial dependence of the oscillatory portion is

.2(r ) = iπ

4λ2 H (1)
1 (λ)

(
H (1)

2 (λr )
∫ r

1
τ K2(λτ )g0(τ ) dτ + K2(λr )

∫ ∞

r
τ H (1)

2 (λτ )g0(τ ) dτ

)

+ 1

λ3 H (1)
1 (λ)

[(
H (1)

2 (λr ) − r−2 H (1)
2 (λ)

) ∫ ∞

1

g0(τ )
τ

dτ + r−2
∫ ∞

1
τ H (1)

2 (λτ )g0(τ ) dτ

]

− 1
4λ2

(
r2

∫ ∞

r

g0(τ )
τ

dτ − r−2
∫ ∞

1

g0(τ )
τ

dτ + r−2
∫ r

1
τ 3g0(τ ) dτ

)
, (A20)

where λ =
√

2γ , K2(λτ ) = H (1)
1 (λ)H (2)

2 (λτ ) − H (2)
1 (λ)H (1)

2 (λτ ), and

g0(r ) = − iRe2

4r

(

.
(1)
1

d.
(2)
1

dr
− .

(2)
1

d.
(1)
1

dr

)

. (A21)

We note that (A20) corrects errors in the solution presented by Holtsmark et al.21

The velocity components of the second-order solution are, correspondingly,

ur,2 = Re
(

2.s
2

r
+ 2.2

r
e−i2t

)
cos 2θ (A22)

and

uθ,2 = −Re
(

d.s
2

dr
+ d.2

dr
e−i2t

)
sin 2θ . (A23)
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The second-order reference frame correction in (7) can be expressed in a complex form similar
to the expressions for ψ1 and ψ2. We can show, using the decomposition (A9) and rotating the
x-derivative to polar coordinates, that the correction is

− sin t
∂ψ1

∂x
= −Re

[
i
4

(
.1

r
− d.1

dr

) (
1 − e−i2t)

]
sin 2θ . (A24)

This correction has the same azimuthal dependence as the second-order streamfunction (A17), and
contributes both a mean and an oscillatory part (at twice the forcing frequency). In other words, the
corrected form of the second-order streamfunction in the inertial reference frame can be obtained
by making the replacements

.s
2 → .s

2 − i
4

(
Ur,1 + Uθ,1

)
, .2 → .2 + i

4

(
Ur,1 + Uθ,1

)
. (A25)

The second-order velocity components are correspondingly corrected.
It is interesting to note that this steady portion of the flow has an associated vorticity field that

decays algebraically with distance, in contrast to the exponential decay of the oscillatory part of
the flow. Though it is difficult to show this with the solution (A18) presented here, the matched
asymptotic analysis of Schlichting19 reveals that the mean vorticity is ω ∼ 3ε2r−2 sin 2θ as r → ∞.
This reflects the fact that the dominant steady streaming in the outer region is Stokes flow, and
therefore a solution of ∇2ω = 0.

3. Fluid particle streaming and the Lagrangian streamfunction

The steady portion of the streamfunction solved for in Subsection A 2 of the Appendix represents
the mean Eulerian streamlines of the flow, as depicted in Figure 12(a). Fluid particles do not follow
these streamlines in the mean, however. The velocity U of a fluid particle can be expressed in terms
of the fluid velocity as

U(t) = u(x0 +
∫ t

0
U dτ, t), (A26)

where x0 is the location of the fluid particle at t = 0. Over one cycle, the excursion of the fluid
particle from x0 is small, and it is therefore possible to expand about this point:

U(t) ≈ u(x0, t) +
∫ t

0
U dτ · ∇u(x0, t). (A27)
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FIG. 12. (a) Mean Eulerian streamlines, and (b) mean Lagrangian streamlines, for Re = 40.
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Then, we can one again write the asymptotic expansions in ε for the fluid velocities,

u = εu1 + ε2u2, (A28)

U = εU1 + ε2U2, (A29)

and substitute them into Eq. (A27) and order in powers of ε. As a result, we obtain

U1 = u1, (A30)

U2 = u2 +
∫ t

0
u1 dτ · ∇u1. (A31)

We define the temporal mean, (·), in this work over one period of oscillation as

f (t) = 1
T

∫ t+T

t
f (τ ) dτ. (A32)

Note that u1, and thus U1, has zero mean. However, the mean of (A31) is

U2 = u2 +
∫ t

0
u1 dτ · ∇u1. (A33)

Thus, the mean second-order motion of the fluid particle (that is, the leading-order mean motion)
requires a correction: the Stokes drift. One can show, using the incompressibility of u1 and the
relation g

∫ t f dτ = − f
∫ t g dτ for periodic functions f and g, that this correction can be written as

∫ t

0
u1 dτ · ∇u1 = 1

2
∇ ×

(

u1 ×
∫ t

0
u1 dτ

)

. (A34)

Thus, the correction to streamfunction is readily available, and one can define the Lagrangian
streamfunction – which defines the mean integral curves of fluid particles – as

ψ L = ψ s
2 + 1

2

(

u1 ×
∫ t

0
u1 dτ

)

· ez . (A35)

This streamfunction has the same θ dependence as ψ s
2 . After the reference frame transformation in

Sec. II A is made to the first and second order velocities, the radial dependence of the Lagrangian
stream function can be expressed as

.L (r ) = .s
2(r ) + 1

2
Im

[

− C
r2

+ H (1)
2 (γ r )

H (1)
0 (γ )

]

+ 1
2

Im

[(
C
r2

− H (1)
2 (γ r )

H (1)
0 (γ )

) (
H (1)

0 (γ r )

H (1)
0 (γ )

)∗]

.

(A36)
The third term of Eq. (A36) represents the Stokes drift, the difference between mean Eulerian
streamlines and Lagrangian (fluid particle) streaming. The Lagrangian stream function is exhibited
in Figure 12(b), which reveals the fluid particle’s trajectory.
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