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Abstract— This paper revisits information complexity of
black-box convex optimization, first studied in the seminal work
of Nemirovski and Yudin, from the perspective of feedback
information theory. These days, large-scale convex program-
ming arises in a variety of applications, and it is important
to refine our understanding of its fundamental limitations.
The goal of black-box convex optimization is to minimize an
unknown convex objective function from a given class over
a compact, convex domain using an iterative scheme that
generates approximate solutions by querying an oracle for
local information about the function being optimized. The

information complexity of a given problem class is defined
as the smallest number of queries needed to minimize every
function in the class to some desired accuracy. We present a
simple information-theoretic approach that not only recovers
many of the results of Nemirovski and Yudin, but also gives
some new bounds pertaining to optimal rates at which iterative
convex optimization schemes approach the solution. As a bonus,
we give a particularly simple derivation of the minimax lower
bound for a certain active learning problem on the unit interval.

I. INTRODUCTION

Convex optimization problems of the form

min{f(x) : x ∈ X}, (1)

where f : R
n → R is a convex objective function and

X is a compact, convex subset of R
n, arise in such areas

as communications and signal processing, control, machine

learning, economics, and many others. For this reason, it is

important to have a clear understanding of the fundamental

limits on the efficiency of convex programming methods.1

A systematic study of these fundamental limits was

initiated in the 1970’s by Nemirovski and Yudin [2]. In

their framework, an optimization algorithm is a sequential

procedure that repeatedly queries a black-box oracle for

information about the function being optimized, each query

depending on the past information. The oracle may be deter-

ministic (for example, giving the value of the function and

its derivatives up to some order at any point) or stochastic.

This leads to the notion of information-based complexity,

i.e., the smallest number of oracle calls needed to minimize

any function in the class to a desired accuracy. The results

in [2] are very wide in scope and cover a variety of convex

programming problems in Banach spaces; finite-dimensional

versions are covered in [3] and [4].
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For deterministic oracles, Nemirovski and Yudin derived

lower bounds on information complexity of convex program-

ming using a “counterfactual” argument: given any algorithm

that purports to optimize all functions in some class F to

some degree of accuracy ε using at most T oracle calls, one

explicitly constructs, for a particular history of queries and

oracle responses, a function in F which is consistent with

this history, and yet cannot be ε-minimized by the algorithm

using fewer than T oracle calls (see also [3]). A similar

approach was also used for stochastic oracles.

Proper application of this method of resisting oracles

requires a lot of ingenuity. In particular, the stochastic

case involves fairly contrived noise models, unlikely to be

encountered in practice. In this paper, we will show that the

same (and many other) lower bounds can be derived using a

much simpler information-theoretic technique reminiscent of

the way one proves minimax lower bounds in statistics [5],

[6]. Namely, we reduce optimization to statistical estimation

and then relate the probability of estimation error to infor-

mation complexity using Fano’s inequality and a series of

mutual information bounds. These bounds highlight the role

of feedback in choosing the next query based on the past

observations. One notable feature of our approach is that it

does not require constructing particularly “strange” functions

or noise models. Moreover, we derive a “law of diminishing

returns” for a wide class of convex optimization schemes

which says that the decay of optimization error is offset by

the decay of the rate at which the algorithm can reduce its

uncertainty about the objective function.

Notation. Given a function f : X → R, where X ⊂ R
n is

compact and convex, we denote by f∗ its minimum value

over X: f∗ = infx∈X f(x). The subdifferential of f at x,

denoted by ∂f(x), is the set of all g ∈ R
n, such that f(y) ≥

f(x) + gT(y − x), ∀y ∈ R
n. Any such g is a subgradient

of f at x. When |∂f(x)| = 1, its only element is precisely

the gradient ∇f(x). Abusing notation, we write ∇f(x) for

an arbitrary subgradient of f at x (which always exists for a

convex f ). By ‖x‖p we denote the ℓp norm of x ∈ R
n; the ℓ2

norm will also be denoted by ‖·‖. By Bn
p we denote the unit

ball in R
n in the ℓp norm. The ℓ2-diameter of X is denoted

by DX. All spaces are assumed to be Borel measurable and

equipped with appropriate σ-fields. If Z is such a space, then

BZ will denote the σ-field. All functions between such spaces

are likewise assumed to be measurable.

II. CONVEX OPTIMIZATION WITH ORACLES

In the query model studied in [2] and here, we must

solve (1), where f comes from some class F and is initially
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unknown. Any procedure we use gathers information about

f by querying an oracle with points in X subject to certain

causality constraints. More precisely, we have the following:

Definition 1. A problem class is a triple P = (X,F ,O)
consisting of the following objects: (i) a compact, convex

problem domain X ⊂ R
n; (ii) an instance space F , which is

a class of convex functions f : X → R; and (iii) an oracle

O = (Y, P ), where Y is the oracle information space and

P (dy|f, x), dy ∈ BY, f ∈ F , x ∈ X, is a Markov kernel.

Definition 2. An oracle O = (Y, P ) is oblivious if there

exist a deterministic map ψ : F × X → U into some space

U and a Markov kernel Q(dy|u), dy ∈ BY, u ∈ U, such that

P (dy|f, x) = Q(dy|ψ(f, x)), dy ∈ BY, f ∈ F , x ∈ X.

Otherwise, O will be called nonoblivious.

Example 1. Let FLip be the set of all convex functions

f : X → R that are 1-Lipschitz, i.e., |f(x) − f(y)| ≤ ‖x−
y‖, ∀x, y ∈ X. Let Y = R × R

n and let P (dy|f, x) be a

point mass concentrated at (f(x),∇f(x)) for some ∇f(x) ∈
∂f(x). This oracle provides noiseless first-order information.

Example 2. Take FLip as above, but now suppose that the

oracle responds with Y = (f(x) +W,∇f(x) + Z), where

W ∈ R and Z ∈ R
n are zero-mean random variables with

bounded variances. Thus, any algorithm receives noisy first-

order information, and the oracle is oblivious.

Example 3. As an example of a problem class with a

nonoblivious oracle, let X = [0, 1], Y = {−1,+1}, F =
{fθ(x) = |x−θ| : θ ∈ X}. To define the oracle, suppose that

there exist some 0 < c,C < 1/2 and κ ∈ [1,∞), such that

c|x− θ|κ−1 ≤ |P (Y = 1|fθ, x) − 1/2| ≤ C|x − θ|κ−1,

where the first inequality holds for all x in a sufficiently small

neighborhood of θ. This oracle provides a noisy subgradient

of fθ at x, and the amount of noise depends on the distance

between x and θ. This problem class is related to active

learning of a threshold function on the unit interval [7], and

will be treated in detail in Section IV.

An algorithm for a given P = (X,F ,O) is a sequence of

mappings A = {At : X
t−1×Y

t−1 → X}∞t=1. The interaction

of A with O is described recursively as follows:

1) At time t = 0, a problem instance f ∈ F is selected by

Nature and revealed to O, but not to A.

2) At each time t = 1, 2, . . .:

• A queries O with xt = At(x
t−1, yt−1), where

(xτ , yτ ) ∈ X × Y is the algorithm’s query and the

oracle’s response at time τ ≤ t− 1.

• O responds with a random element yt ∈ Y according

to P (dyt|f, xt).

The error of A on f after T steps of operation is given by

errA(T, f)
△
= f(xT ) − min

x∈X

f(x) = f(xT ) − f∗.

Given ε > 0, t ≥ 1, and f ∈ F , let us define the event

Eε
t (A, f)

△
= {errA(t, f) ≥ ε}.

Definition 3. For any ε > 0 and δ ∈ (0, 1), the (ε, δ)-
computing time of A w.r.t. P , denoted by TA,P(ε, δ), is

TA,P(ε, δ)
△
= sup

f∈F
inf

{

τ ≥ 1 : ∀t ≥ τ,Pr(Eε
t (A, f)) ≤ δ

}

.

The ε-computing time, denoted by TA,P(ε), is

TA,P(ε)
△
= sup

f∈F
inf

{

τ ≥ 1 : ∀t ≥ τ,E errA(t, f) < ε
}

.

When the underlying problem class P is clear from context,

we will write simply TA(ε, δ) and TA(ε).

We remark that our framework encompasses statistical

estimation with L2 loss considered in [5]. To sketch the

reduction, consider the collection of densities {pθ : θ ∈ Θ},

where Θ is a subset of a Hilbert space. The non-oblivious

oracle response yt is defined as a random sample from pθ,

ignoring the query point xt ∈ Θ. The value of feedback has

thus been nullified. In contrast, it is precisely the sequential

nature of stochastic optimization and the diminishing value

of feedback at each step that distinguish this work from the

lower bounds based on the entire sample.

III. LOWER BOUNDS FOR ARBITRARY ALGORITHMS

We now describe our information-theoretic method for

determining lower bounds on the information complexity

of convex programming. The basic strategy is to show that

the minimum number of oracle queries is constrained by

the average rate at which each new query can reduce the

algorithm’s uncertainty about the function being optimized.

A. Reduction to statistical estimation

Consider a problem class P = (X,F ,O) and suppose that

the instance space F can be endowed with a “distance” d(·, ·)
with the following property: for any x ∈ X,

d(f, g) ≥ 2ε and f(x) < f∗ + ε⇒ g(x) > g∗ + ε. (2)

In other words, an ε-minimizer of a function cannot simul-

taneously be an ε-minimizer of a distant function. Note that,

similarly to [5], d need not satisfy properties of a metric. It

is easy to show that d satisfying (2) exists for any class F
of convex functions. For example, if we consider the class

FΘ
△
= {fθ(x) = ‖x− θ‖ : θ ∈ Θ}

for some Θ ⊂ X, then d(fθ, fθ′) = ‖θ−θ′‖ satisfies (2). Now

consider any finite F ′ = {f0, . . . , fN−1} ⊂ F , such that any

two distinct fi, fj ∈ F ′ are at least 2ε apart in d(·, ·). Given

the history (XT , Y T ) of queries and oracle answers up to

time T , let us define the estimator

M̂T (XT , Y T )
△
= arg min

m=0,...,N−1
[fm(XT ) − f∗

m]. (3)

Lemma 1. Fix some δ ∈ (0, 1/2) and ε > 0. Consider

any algorithm A with TA,P(ε, δ) = T . Let M be uniformly

distributed on {0, 1, . . . , N − 1}, and suppose that A is fed
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with the random problem instance fM ∈ F ′. If N > 4, then

the estimator M̂T defined in (3) satisfies the bound

I(M ; M̂T ) ≥ (1 − δ) logN − log 2 > 0. (4)

If N = 2, then

I(M ; M̂T ) ≥ log 2 − h2(δ) > 0, (5)

where h2(δ)
△
= −δ log δ − (1 − δ) log(1 − δ) is the binary

entropy function.

Remark 1. In the sequel, we will consider only the cases

when the set F ′ is either “rich”, so that N ≫ 4, or has only

two elements, so N = 2.

Proof. Consider an algorithm A with the claimed properties.

If A operates on any fm ∈ F ′, then the event Eε
T (A, fm)

will occur with probability at most δ. From (2), we must have

M̂T = m on the complement of Eε
T (A, fm). Therefore,

δ ≥ max
m=0,...,N−1

Pr(Eε
T (A, fm))

≥ max
m=0,...,N−1

Pr(M̂T 6= m)

≥ Pr(M̂T 6= M)

Suppose first that N > 4. Then we can invoke the following

version of Fano’s inequality [8]:

Pr(M̂T 6= M) ≥ 1 − I(M ; M̂T ) + log 2

logN
.

Rearranging, we get (4). When N = 2, we use a stronger

form of Fano’s inequality (see, e.g., Section 2.10 in [9]):

h2

(

Pr(M̂ 6= M)
)

≥ log 2 − I(M ; M̂T ).

Since δ 7→ h2(δ) is monotone increasing on [0, 1/2], we get

h2(δ) ≥ log 2 − I(M ; M̂T ). Rearranging, we get (5).

B. Information bounds

Lemma 1 gives a lower bound on I(M ; M̂T ). This lower

bound will be combined with the following upper bounds:

Lemma 2. Any estimator M̂ : X
T × Y

T → {0, . . . , N − 1}
[and, in particular, the estimator M̂T defined in (3)] satisfies

I(M ; M̂) ≤
T

∑

t=1

I(M ;Yt|Xt, Y t−1).

Suppose now that the oracle is oblivious (refer to Defini-

tion 2). Then each term in the above summation simplifies:

I(M ;Yt|Xt, Y t−1) = I(Ut;Yt|Xt, Y t−1) ≤ I(Ut;Yt),

where Ut = ψ(fM , Xt). Furthermore,

I(Ut;Yt) ≤ C∗ △
= sup

U∈UX,F

I(U ;Y ),

where the supremum is over all random variables U taking

values in UX,F = ψ(F ,X), and the mutual information is

between U and Y related via the Markov kernel Q(dy|u).
Remark 2. The last bound of the lemma is nontrivial only if

the number C∗ is finite. This number is the Shannon capacity

of the noisy channel induced by Q.

Proof. We begin by writing the following:

I(M ; M̂) ≤ I(M ;XT , Y T ) (6)

=

T
∑

t=1

I(M ;Xt, Yt|Xt−1, Y t−1) (7)

=

T
∑

t=1

[I(M ;Xt|Xt−1, Y t−1) + I(M ;Yt|Xt, Y t−1)] (8)

=

T
∑

t=1

I(M ;Yt|Xt, Y t−1), (9)

where (6) is a consequence of the data processing inequality;

(7) and (8) use the chain rule; and (9) uses the fact that

M → (Xt−1, Y t−1) → Xt is a Markov chain. Moreover,

for an oblivious oracle we can write I(M ;Yt|Xt, Y t−1) =
I(M,Ut;Yt|Xt, Y t−1) because, given Xt and M , Ut is

completely determined via Ut = ψ(fM , Xt). Therefore,

I(M,Ut;Yt|Xt, Y t−1)

= I(Ut;Yt|Xt, Y t−1) + I(M ;Yt|Ut, X
t, Y t−1)

= I(Ut;Yt|Xt, Y t−1),

where the first step is by the chain rule and the second step

is due to the fact that, for an oblivious oracle, M → Ut →
Yt is a Markov chain, conditionally on (Xt, Y t−1). Since

(Xt, Y t−1) → Ut → Yt is also a Markov chain, we have

I(Ut;Yt|Xt, Y t−1) ≤ I(Ut;Yt) ≤ C∗,

and the lemma is proved.

These bounds can be particularized to specific oracles. For

example, consider a noisy oblivious first-order oracle

Y = (f(x) +W,∇f(x) + Z),

where W ∈ R and Z ∈ R
n are zero mean and mutually

independent. For concreteness, we will assume that W ∼
N(0, σ2) and Z ∼ N(0, σ2In), where In is the n×n identity

matrix. Then we have the following bound:

Lemma 3. For the above noisy first order oracle, we have

I(Ut;Yt) ≤
1

2σ2

{

var fM (Xt) + E‖∇fM (Xt)‖2
}

. (10)

If all fm ∈ F ′ have the same minimum value c∗, then

I(Ut;Yt) ≤
1

2σ2

{

E
[

(fM (Xt) − c∗)2
]

+ E‖∇fM (Xt)‖2
}

(11)

Finally, if the oracle only supplies the noisy value of the

subgradient, Y = ∇f(x) + Z , then we will have

I(Ut;Yt) ≤
1

2σ2
E‖∇fM (Xt)‖2. (12)

Proof. Let us denote by Ut = (fM
t ,∇M

t ) the noiseless first-

order information fM
t = fM (Xt) and ∇M

t = ∇fM (Xt),
and by Yt = (V 0

t , V
1
t ) the noisy observation of Ut: V

0
t =

fM
t +Wt, V

1
t = ∇M

t +Zt. By the independence of Wt and
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Zt, we have

I(Ut;Yt) ≤ I(fM
t ;V 0

t ) + I(∇M
t ;V 1

t ).

We will separately bound I(fM
t ;V 0

t ) and I(∇M
t ;V 1

t ), using

the fact that mutual information I(A;B) between any two

random variables A and B can be written as

I(A;B) = D(PB|A‖PB′ |PA) −D(PB‖PB′), (13)

where B′ is any random variable such that PB ≪ PB′ . For

I(fM
t ;V 0

t ), use (13) with A = fM
t , B = fM

t + Wt, and

B′ = c+Wt, where c is an arbitrary constant. Then

I(fM
t ;V 0

t ) ≤ min
c∈R

E
[

D
(

N(fM
t , σ2)

∥

∥N(c, σ2)
)]

=
1

2σ2
min
c∈R

E
[

(fM (Xt) − c)2
]

=
1

2σ2
var fM (Xt).

Similarly, for I(∇M
t ;V 1

t ) use (13) with A = ∇M
t , B =

∇M
t + Zt, and B′ = Zt. Then

I(∇M
t ;V 1

t ) ≤ E
[

D
(

N(∇M
t , σ2Id)

∥

∥N(0, σ2Id)
)]

=
1

2σ2
E‖∇fM (Xt)‖2.

In both cases, we have used the well-known formula for the

divergence between two normal distributions. Adding up the

two estimates, we get (10). To obtain (11), use c = c∗ to

overbound var fM (Xt) by E[(fM (Xt)− c∗)2]. The proof of

(12) is similar to that of (10).

From now on, we will adhere to the following notation:

• FΘ, for any Θ ⊆ X, is the parametric class {fθ(x) =
‖x− θ‖ : θ ∈ Θ}

• M is the uniformly distributed random variable describ-

ing the choice of a problem instance from a given set

{f0, . . . , fN−1}
• M̂T is the estimator defined in (3)

• (Xt, Yt) is the query/answer pair at time t
• Ut, when the oracle is oblivious, is the deterministic

response at time t: Ut = ψ(fM , Xt)
• W,Wt ∼ N(0, σ2) and Z,Zt ∼ N(0, σ2In), always

• V 0
t and V 1

t are noisy versions of the function value

fM (Xt) and the subgradient ∇fM (Xt) at time t

C. A general information-theoretic lower bound

We now give a general information-theoretic lower bound

for any problem class and any oblivious oracle, provided the

Shannon capacity C∗ of its noisy channel Q is finite.

Theorem 1. Consider a problem class P = (X,F ,O) with

an oblivious oracle. Given ε > 0, define the packing number

N(F , d, ε) △
= max

{

N ≥ 1 :

∃f0, . . . , fN−1 ∈ F : d(fi, fj) ≥ 2ε, ∀i 6= j
}

.

Then, for any ε such that N(F , d, ε) > 4 and any δ ∈

(0, 1/2), the following bounds hold for any algorithm A:

TA,P(ε, δ) ≥ 1

C∗ [(1 − δ) logN(F , d, ε) − log 2] ; (14)

TA,P(ε) ≥ 1

C∗

[

2

3
logN(F , d, 3ε) − log 2

]

. (15)

Proof. Let Fε = {f0, . . . , fN−1} ⊂ F , N = N(F , d, ε),
be a maximal packing set in F . Given δ ∈ (0, 1/2) and an

algorithm A with TA,P(ε, δ) = T , apply Lemma 1 to get

I(M ; M̂T ) ≥ (1 − δ) logN − log 2.

By Lemma 2, I(M ; M̂T ) ≤ TC∗. Combining these two

bounds, we get (14). Now, if A satisfies TA,P(ε) = T for

some ε > 0, then by Markov’s inequality it will also satisfy

sup
f∈F

Pr
(

E3ε
t (A, f)

)

≤
supf∈F E errA(t, f)

3ε
<

1

3

for all t ≥ T . Thus, TA,P(3ε, 1/3) ≤ T , and applying the

same argument as above we get (15).

Example 4. Let X = Bn
∞ and F = FLip. Let Λε be a

maximal 2ε-packing of X in ℓ2. A simple volume counting

argument shows that |Λε| ≥ v−1
n (1/ε)n, where vn =

vol(Bn
2 ). Then for any two distinct functions fθ, fθ′ ∈ FΛε

we will have d(fθ, fθ′) = ‖θ−θ′‖ ≥ 2ε, so N(FLip, d, ε) ≥
v−1

n (1/ε)n. Theorem 1 then gives the following lower bound

for any algorithm A and any oblivious oracle with C∗ <
+∞: TA(ε) = Ω (n log(1/ε)). For noiseless first-order

oracles, the same lower bound follows from a binary search

argument, and can be achieved using the (computationally

infeasible) method of centers of gravity [2], [3]. In order to

achieve this bound with a noisy oracle, an algorithm must

pose queries that reduce the uncertainty by an amount that

is independent of ε. This is possible with certain kinds of

oracles, and will be treated in the full version of this paper.

D. Lipschitz convex functions and noisy first-order oracles

If the oracle provides noisy first-order information, the

logarithmic lower bound of Example 4 can be tightened sig-

nificantly. We exhibit several applications of Lemmas 1-3 to

F = FLip and an oracle that supplies first-order information

corrupted by additive white Gaussian noise. The ε-computing

times in these examples have quadratic dependence on 1/ε
but differ in their dependence on the dimension. Special cases

of these results for linear functions in n = 1 can be found,

for example, in [10]. It should be pointed out that rates other

than Ω(ε−2) are possible due to 1) non-Gaussian noise or 2)

different rates, depending on the smoothness of functions in

F , at which the information I(M ;Yt|Xt, Y t−1) is reduced

as Xt approaches a minimizer.

In what follows, we will distinguish two types of oracles:

the gradient-only oracle provides the gradient information,

while first-order oracle provides both the gradient and the

function value. We have the following general bounds:

Theorem 2. Consider a problem class P = (X,FLip,O)
with an oblivious first-order or gradient-only noisy oracle.

Let N be the size of a maximal (DX/c)-packing of X in ℓ2 for
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some c ≥ 1, and assume N > 4. Then, for any ε ≤ DX/2c
and any δ ∈ (0, 1/2), the following bounds hold for any

algorithm A:

TA(ε, δ) ≥ [(1 − δ) logN − log 2]σ2

2c2ε2
· D2

X

D2
X

+ 1

for the first-order noisy oracle, and

TA(ε, δ) ≥ [(1 − δ) logN − log 2]σ2

2c2ε2
·D2

X

for the gradient-only noisy oracle.

Remark 3. Upper bounds on stochastic gradient descent –

an algorithm which only uses the gradient information – are

of the form O
(

G2D2
X
/ε2

)

, where G2 is an upper bound on

the expected squared norm of the noisy gradient [4]. As we

show below, this is matched by our lower bounds. Indeed,

G2 ∝ nσ2 for the additive Gaussian noise with variance

σ2. For the unit sphere we thus obtain Ω(nσ2/ε2); for the

unit hypercube we obtain Ω
(

n2σ2/ε2
)

for the gradient-only

oracle.

Remark 4. The bound on fM (Xt) in the proof below can be

tightened: the information given by the value of the function

falls below the information given by the gradient once the

query point Xt is 1/DX-close to the minimum. It is not

clear if this indicates a faster (in terms of n) initial speed

of optimization for the hypercube if the function value is

used. Analysis which considers the dynamics of the process

is carried out in Section IV.

Proof of Theorem 2. Set γ = 2cε
DX

. Let Θ = {θ0, . . . , θN−1}
be a maximal (DX/c)-packing set of X and define F ′ =

γFΘ = {fm = γfθm
: θm ∈ Θ}. Clearly, d(γfθ, γfθ′)

△
=

γ‖θ−θ′‖ satisfies (2), and d(fm, fm′) ≥ 2ε for all fm, fm′ ∈
F ′. Note that fm(x) = γ‖x− θm‖ ≤ 2cε and ‖∇fm(x)‖ ≤
γ = 2cε

DX

for any fm ∈ F ′ and x ∈ X (the last bound holds

with equality when x 6= θm). Applying Lemma 3, we get

I(Ut;Yt) ≤
2cε2

σ2

(

1 +D−2
X

)

for first-order oracle. The term 1+D−2
X

drops down to D−2
X

for the gradient-only oracle. Combining Lemmas 1 and 2,

(1 − δ) logN − log 2 ≤ 2Tc2ε2

σ2

(

1 +D−2
X

)

for the first-order oracle and, again, 1 +D−2
X

becomes D−2
X

for gradient-only oracles. Rearranging yields the result.

Corollary 1. Suppose n ≥ 16, and X contains a hypercube

sBn
∞. Then for any δ ∈ (0, 1/2) and any ε ≤ s

√
n/8, any

algorithm A satisfies

TA(ε, δ) ≥ log 2 · σ2s2

256ε2
· n[n(1 − δ) − 8]

s2n+ 1

for the first-order oracle. For the gradient-only oracle,

TA(ε, δ) ≥ log 2 · σ2s2

256ε2
· n[n(1 − δ) − 8]

Proof. By the Varshamov–Gilbert bound (Lemma 2.9 in [6]),

there exists an n/8-packing of size N > 2n/8 ≥ 4 of

the binary cube {−1,+1}n in the Hamming distance. This

packing gives an (s
√
n/4)-packing of the scaled hypercube

sBn
∞ in ℓ2. Using Theorem 2 with DX ≥ s

√
n and c = 4

yields the result.

Corollary 2. Suppose n ≥ 16 and X contains a Euclidean

ball sBn
2 . Then for any δ ∈ (0, 1/2) and any ε ≤ s/8, any

algorithm A satisfies

TA(ε, δ) ≥ log 2 · σ2s2

256ε2
· [n(1 − δ) − 8]

s2 + 1

for the first-order oracle. For the gradient-only oracle,

TA(ε, δ) ≥ log 2 · σ2s2

256ε2
· [n(1 − δ) − 8]

Corollary 2 follows immediately from Corollary 1 by noting

that s√
n
Bn

∞ ⊂ sBn
2 .

E. Noisy oracles satisfying a moment bound

We close this section by showing how our information-

theoretic technique can be used to recover the lower bounds

derived by Nemirovski and Yudin [2, Ch. 5] for Lipschitz

convex functions and noisy first-order oracles satisfying a

certain moment constraint.

Let X = Bn
∞ and F = FLip, and consider the class of

all noisy first-order oracles whose output Y = (V 0, V 1) ∈
R × R

n satisfies the following two conditions:

• (C1) It is unbiased, i.e., E[V 0|f, x] =
f(x), E[V 1|f, x] ∈ ∂f(x), ∀f ∈ F , x ∈ X.

• (C2) There exist constants r > 1, L > 0, such that

E
[

|V 0 − f(x)|r
∣

∣f, x
]

≤ Lr, E
[

‖V 1‖r
∣

∣f, x
]

≤ Lr

for all f ∈ F , x ∈ X.

We will denote the class of all such oracles by Π(r, L).

Theorem 3. There exists an oracle O ∈ Π(r, L), such that

any algorithm A operating on the corresponding problem

class satisfies

TA(ε, δ) ≥ log 2 − h2(δ)

c log 2
ε−r/(r−1) (16)

for all ε ∈ (0, 1], δ ∈ (0, 1/2) with some c = c(r, L) > 0.

Proof. Define two functions f0(x) = −ξTx and f1(x) =
ξTx, where ξ ∈ R

n has all coordinates equal to ε/n, and

consider the noisy oracle defined by Nemirovski and Yudin

[2, p. 198]. Choose a constant c > 0 such that c(1−r)/r <
min{L, 1}, and let pε,r

△
= cεr/(r−1). On the set F\{f0, f1},

our oracle acts noiselessly, while on the set {f0, f1} it acts

as follows: given fm, m ∈ {0, 1}, and x ∈ X, it outputs

Y =

{

(0, 0), with probability pε,r

p−1
ε,r(fm(x),∇fm(x)), with probability 1 − pε,r.

It is an easy exercise to show that this oracle belongs to

Π(r, L). Moreover, on the set {f0, f1} this oracle is oblivious

because, given fm and x, its output is a noisy version of

(fm(x),∇fm(x)).
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Consider an algorithm A such that TA(ε, δ) = T . Then

I(Ut;Yt|Xt, Y t−1) ≤ I(Ut;Yt|Xt) because, given Xt,

(Xt−1, Y t−1) → Ut → Yt is a Markov chain. Now, given

Xt = xt, Ut can take only two values, namely (−ξTxt,−ξ)
or (ξTxt, ξ). Thus, H(Ut|Xt) ≤ log 2. Moreover, since the

mutual information I(A;B|C) is convex in PB|A,C , we have

I(Ut;Yt|Xt) ≤ pε,rH(Ut|Xt) ≤ pε,r log 2.

Summing over the T rounds and using Lemma 2, we get

I(M ; M̂T ) ≤
T

∑

t=1

I(Ut;Yt|Xt) ≤ Tcεr/(r−1) log 2.

From Lemma 1, we have I(M ; M̂T ) ≥ log 2 − h2(δ).
Combining these bounds and rearranging, we get (16).

The statement of Theorem 3 should be interpreted in the fol-

lowing sense (cf. also [2]): given X and F as above, any al-

gorithm A will satisfy supO∈Π(r,L) TA(ε) = Ω(ε−r/(r−1)).
Thus, we have a lower bound on the information complexity

of any algorithm which is robust relative to Π(r, L).

IV. LOWER BOUNDS FOR ANYTIME ALGORITHMS

In deriving the lower bounds of Section III, we have been

following a certain recipe: given an algorithm that requires

T oracle calls to ε-minimize every function in some class

of interest with probability at least 1 − δ, we obtained a

lower bound on T using a chain of inequalities of the

form φ1(ε, δ) ≤ I(M ; M̂T ) ≤ Tφ2(ε), where I(M ; M̂T ),
roughly speaking, is the average amount of information the

algorithm can extract, after T oracle calls, about an unknown

function drawn at random from some set of cardinality

N = N(ε). This gave us tight lower bounds of the form

T ≥ φ1(ε, δ)/φ2(ε) for a variety of problem classes.

However, one aspect of this approach is somewhat unsat-

isfying. In bounding the mutual information I(M ; M̂T ), we

have not taken into account the dynamics of the algorithm,

pertaining to the manner in which its expected error evolves

with time. Instead, we have settled for uniform, worst-case

bounds on the uncertainty remaining after each successive

oracle call. In this section, we describe another technique

that tracks the evolution of the mutual information over time

and can be used to derive lower bounds for algorithms whose

expected errors are known a priori to decay with time. We

will call any such algorithm anytime.

We will show that the amount of information extracted by

an anytime algorithm at each time step obeys a law of dimin-

ishing returns: as the queries Xt approach the minimizer, the

rate at which the algorithm can reduce its uncertainty about

the objective function slows down. Moreover, assuming that

the worst-case expected error of such an algorithm decays

polynomially with time, we will obtain lower bounds on the

rate of this decay.

Let us briefly draw parallels to the work of Yang and Bar-

ron [5]. The authors showed that optimal rates of estimation

are determined by a certain critical separation εT , which

balances Tε2T and the metric entropy at resolution εT . The

technique of Section III is similar in nature. In the present

section, however, we extend this idea by carefully tracking

the diminishing information. The optimal rate is then given

by the critical separation εT which balances the entropy

logN and the sum of diminishing mutual information terms.

First, some notation. Given an algorithm A for a problem

class P = (X,F ,O), let us denote by errA(t, f) the worst-

case expected error of A at time t:

errA(t,F)
△
= sup

f∈F
E errA(t, f).

Definition 4. An algorithm A will be called anytime if

limt→∞ errA(t,F) = 0.

A. Strongly convex functions

We first consider the case of strongly convex functions.

Given X, let Fκ,L denote the set of all functions f : X → R

that satisfy the following conditions:

• Each f ∈ Fκ,L is strongly convex with parameter κ:

f(x) ≥ f(y)+∇f(y)T(x−y)+ κ2

2
‖x−y‖2, ∀x, y ∈ X.

• For each f , the mapping x 7→ ∇f(x) is L-Lipschitz:

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X.

Consider the noisy first-order oracle Y = (f(x) +
W,∇f(x) + Z), and suppose that there exists an algorithm

A whose worst-case errors decay at a given rate {εt}∞t=1:

errA(t,F) = εt, t = 1, 2, . . . . (17)

Let {f0, . . . , fN−1} ⊂ Fκ,L be a finite set of functions, such

that f∗
0 = . . . = f∗

N−1 = c∗ and ∇fm(x∗m) = 0, where x∗m
is the (unique) minimizer of fm on X. Then we have:

Lemma 4. At every time t = 1, 2, . . ., any algorithm A such

that (17) holds also satisfies

I(Ut;Yt) ≤
(L/κ)2

σ2

(

D2
X

+ 1
)

εt. (18)

Proof. By Lemma 3,

I(Ut;Yt) ≤
1

2σ2

{

E[(fM (Xt) − c∗)2] + E‖∇fM (Xt)‖2
}

.

(19)

The fact that ∇fM (x∗M ) = 0 and the Lipschitz condition on

the gradient imply that ‖∇fM (x)‖ ≤ LDX for all x ∈ X.

By convexity of fM ,

fM (Xt) − f∗
M ≤ ∇f(Xt)

T(Xt − x∗M )

≤ ‖∇f(Xt)‖‖Xt − x∗M‖ ≤ LDX‖Xt − x∗M‖.

On the other hand, from strong convexity we have that

fM (Xt) ≥ f∗
M + (κ2/2)‖Xt − x∗M‖2, which, together with

(17), gives E‖Xt−x∗M‖2 ≤ 2εt/κ
2. Therefore, we can write

E[(fM (Xt) − c∗)2] ≤ 2D2
X(L/κ)2εt. (20)

Moreover, because ∇fM (x∗M ) = 0, we can write

E‖∇fM (Xt)‖2 = E‖∇fM (Xt) −∇fM (x∗M )‖2

≤ L2
E‖Xt − x∗M‖2 ≤ 2(L/κ)2εt. (21)
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Substituting (20) and (21) into (19), we get (18).

The lemma says that the decay of the expected error in

minimizing a strongly convex function is accompanied by

the decay of the average information gain, and, moreover,

the two quantities decay at the same rate. For this reason, we

call this the law of diminishing returns for strongly convex

programming. Evidently, this phenomenon is due to the fact

that, as the algorithm zeroes in on the minimizer, the signal-

to-noise ratio keeps dropping because the mean-square error

and the mean-square norm of the gradient both decrease as

O(εt). Using Lemma 4 in conjunction with the information

bounds of Section III, we can prove the following:

Theorem 4. Let X = Bn
∞ and F = Fκ,L with κ = 1

and L ≥ 1. Suppose there exists an anytime algorithm A
that satisfies errA(t,Fκ,L) = O(t−γ) for some γ > 0. Then

γ ≤ 1. In other words, O(t−1) is the optimal error decay

rate for all anytime algorithms for this problem whose errors

decay polynomially with t; equivalently, TA(ε) = O(ε−1) is

the optimal decay rate of the ε-computing time.

Proof. By the anytime property, given {εt}, there exists

some T0 such that t = TA,P(εt), ∀t ≥ T0. By Markov’s

inequality, we must have TA,P(3εt, 1/3) ≤ t for all t ≥ T0.

Thus, for each T ≥ T0 let ΛT = {θ0, . . . , θN−1} denote

a maximal 2
√

3εT -packing set in X (w.r.t. ‖ · ‖), and define

fm(x)
△
= (1/2)‖x− θm‖2, m = 0, . . . , N − 1.

By volume counting, N ≥ v−1
n (1/3εT )n/2. We also have

d(fm, fm′) = 1
2‖θm − θm′‖2 ≥ 6εT . By Lemma 1,

I(M ; M̂T ) ≥ n

3
log

(

1

εT

)

+ cn, (22)

where cn = (1/3) log(1/3n8v2
n). On the other hand, apply-

ing Lemmas 2 and 4, we obtain

I(M ; M̂T ) ≤ n+ 1

σ2

T
∑

t=1

εt. (23)

Combining (22) and (23), we see that the sequence {εt} must

satisfy the following inequalities:

σ2n

3(n+ 1)
log

(

1

εT

)

+ c′n ≤
T

∑

t=1

εt, ∀T ≥ T0 (24)

where c′n = σ2cn/(n+1). It can be shown that (24) implies

the existence of an infinite subsequence of times 1 ≤ t1 <
t2 < . . ., such that εtj

= Ω(t−1
j ). Since εt = O(t−γ) by

hypothesis, we must have γ ≤ 1.

The bound Ω(t−1) is tight and can be achieved by stochastic

gradient descent [4]. Note that the methods of Section III can

be used to explicitly identify the dependence of the lower

bound on the problem dimension n.

B. Active learning

Our technique for analyzing anytime optimization al-

gorithms can also be used to give a particularly simple

derivation of the minimax lower bound for active learning of

a threshold function on the unit interval [7]. In a very sketchy

form, the active learning problem is stated as follows. We

have a pair (X,Z) of jointly distributed random variables

X ∈ X = [0, 1] and Z ∈ {0, 1}, where the marginal

distribution PX is uniform on [0, 1], while the conditional

distribution PZ|X is unknown. We do, however, have some

prior knowledge about PZ|X . Define η(x)
△
= E[Z|X = x].

Then we assume the following:

• There exists some θ ∈ [0, 1], such that η(x) < 1/2
for x < θ and η(x) ≥ 1/2 otherwise. In other words,

the Bayes classifier G∗ for this problem is of the form

G∗(x) = Gθ(x) = 1{x≥θ}.

• For some 0 < c < C < 1/2 and κ ∈ [1,∞), we have

c|x− θ|κ−1 ≤ |η(x) − 1/2| ≤ C|x− θ|κ−1, (25)

where the first inequality holds for all x in a sufficiently

small neighborhood of θ.

Let Π(κ, c, C) denote the class of all conditional proba-

bility distributions PZ|X satisfying these two conditions. We

wish to determine the unknown threshold θ using an active

strategy: at time t, we request a label zt ∈ {0, 1} at a point

xt ∈ X, chosen as a function of the history (xt−1, zt−1).
Given our query xt, the label zt is generated at random

according to PZ|X=xt
. At time t, the candidate classifier is

Gxt
(x) = 1{x≥xt}. The performance of the strategy after t

time steps is measured by the excess risk relative to G∗:

R(Gxt
) −R(G∗) =

∫

[xt,1]△[θ,1]

|2η(x) − 1|dx, (26)

where △ denotes symmetric difference between sets. [The

risk of a classifier G : x 7→ {−1,+1} is defined as R(G)
△
=

Pr(G(X) 6= Z), and the Bayes risk is R(G∗)
△
= infGR(G).]

Castro and Nowak [7] have shown any active strategy will

have excess risks of Ω(t−κ/(2κ−2)), and gave an explicit

scheme that achieves the rate O(t−κ/(2κ−2)). Their proof

of the lower bound relies on an intricate construction of two

distributions P
(1)
Z|X , P

(2)
Z|X ∈ Π(κ, c, C) that are close in a

statistical sense, but far apart in the sense of their Bayes risks.

We now show that the same lower bound can be derived

using our machinery without any careful function tuning.

To that end, we will cast this problem in the optimization

setting, as alluded to in Example 3. Let X and F be as

described there, and associate to each PZ|X ∈ Π(κ, c, C) a

noisy nonoblivious oracle with Y = {−1,+1} and P (Y =
1|f, x) = P (Y = 1|θ, x) = η(x). With this correspondence

in place, we can now prove the following:

Theorem 5. Let κ ∈ (1, 2]. Suppose that there exists an

active learning strategy satisfying

sup
PZ|X∈Π(κ,c,C)

E[R(GXt
) −R(G∗)] = O(t−γ)

for some γ > 0. Then γ ≤ κ/(2κ−2). Thus, O(t−κ/(2κ−2))
is the optimal decay rate for all active learning strategies

whose excess risks decay as Poly(t−1). If κ = 1, then the

optimal lower bound on the excess risk is Ω(2−t).
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Proof. For each θ ∈ [0, 1], find some P θ
Z|X ∈ Π(κ, c, C),

such that the inequalities in (25) hold for all values of x ∈ X.

Given a candidate classifier GXt
, consider the excess risk

R(GXt
)−R(Gθ). Assume for now that θ > Xt. Then from

(26) and (25) we get

R(GXt
) −R(Gθ) ≥ 2c

∫ θ

Xt

(θ − x)κ−1dx =
2c

κ
(θ −Xt)

κ.

The case Xt < θ is similar. Thus, the expected excess risk

of any strategy at time t can be bounded as

E[R(GXt
) − R(Gθ)] ≥ (2c/κ)E|Xt − θ|κ. (27)

Now suppose we have a learning strategy whose worst-case

excess risks decay at a prescribed rate {rt}:

sup
PZ|X∈Π(κ,c,C)

E[R(GXt
) −R(G∗)] = rt, t = 1, 2, . . .

Then from this and (27) we have that, for every P θ
Z|X , this

strategy satisfies

E|Xt − θ|κ ≤ κrt/2c, t = 1, 2, . . . (28)

Let εt
△
= (3κrt/2c)

1/κ. Then using (28) and Markov’s

inequality, we see that for this strategy we must have

sup
θ∈[0,1]

Pr
(

|Xt − θ| ≥ εt

∣

∣θ
)

≤ 1/3, ∀t = 1, 2, . . . . (29)

In other words, this active learning strategy gives rise to

an optimization algorithm A for the problem class P =
(X,F ,O), where O is specified by P (Y = 1|θ, x) =
Eθ[Z|X = x], and there exists some T0 ≥ 1, such that

TA,P(εt, 1/3) ≤ t, ∀t ≥ T0.

Now for each T ≥ T0 let ΛT = {θ0, . . . , θN−1} be a

maximal 2εT -packing of [0, 1]. Simple counting shows that

N ≥ 1/2εT . Consider the set F ′ = {fm = fθm
: θ ∈ ΛT } ⊂

F , and denote ηm(x)
△
= Eθm

[Z|X = x]. Then, in our usual

notation, we have from Lemma 1 that

I(M ; M̂T ) ≥ 2

3
log

(

1

εT

)

− 5

3
log 2. (30)

Next we apply Lemma 2. To that end, let us inspect the terms

I(M ;Yt|Xt, Y t−1):

I(M ;Yt|Xt, Y t−1)

= I(M,Xt;Yt|Xt−1, Y t−1) − I(Xt;Yt|Xt−1, Y t−1)

≤ I(M,Xt;Yt|Xt−1, Y t−1) ≤ I(M,Xt;Yt),

where the first step uses the chain rule, the second is because

mutual information is nonnegative, and the third is because

(Xt−1, Y t−1) → (M,Xt) → Yt is a Markov chain. Now

we use (13) with A = (M,Xt), B = Yt, and B′ uniformly

distributed on {−1,+1}. Then

I(M,Xt;Yt) ≤ D(PYt|M,Xt
‖PB′ |PM,Xt

)

≤ 4EM,Xt

{

(Pr[Y = 1|M,Xt] − 1/2)2
}

= 4EM,Xt

{

|ηM (Xt) − 1/2|2
}

≤ 4C2
EM,Xt

|Xt − θM |2(κ−1), (31)

where in the second step we used the fact that

d(p‖1/2)
△
= p log 2p+ (1 − p) log[2(1 − p)] ≤ 4(p− 1/2)2

for all p ∈ [0, 1], and in the last step we used (25). Suppose

first that κ ∈ (1, 2]. Because κ ≤ 2, the function x 7→
x(2κ−2)/κ is concave, and we can write

E|Xt − θM |2(κ−1) ≤ (E|Xt − θM |κ)
2(κ−1)/κ

.

Using this in conjunction with (28) and Lemma 2, we can

bound the mutual information I(M ; M̂T ) as

I(M ; M̂T ) ≤ 4C2
T

∑

t=1

(κrt
2c

)

2(κ−1)
κ

=
4C2

3
2κ−2

κ

T
∑

t=1

ε
2(κ−1)
t .

(32)

Combining (30) and (32), we have

3(κ−2)/κ

2C2
log

(

1

εT

)

− 5 · 3(κ−2)/κ

4C2
log 2 ≤

T
∑

t=1

ε
2(κ−1)
t .

An inequality like this must hold for all T ≥ T0. From this

it can be shown that there exists an infinite subsequence of

times 1 ≤ t1 < t2 < . . ., such that εtj
= Ω

(

t
−1/(2κ−2)
j

)

, or,

equivalently, that rtj
= Ω

(

t
−κ/(2κ−2)
j

)

. Since by hypothesis

rt = O(t−γ), we must have γ ≤ κ/(2κ− 2).
When κ = 1, from (31) we have I(M,Xt;Yt) ≤ 4C2 for

all t. This, together with (30), gives

1

6C2
log

(

1

εT

)

− 5

12
log 2 ≤ T, ∀T ≥ T0.

which gives εT = Ω(2−T ) and rT = Ω(2−T ).
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