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Weakly nonlinear Prandtl model for simple slope flows
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The Prandtl model couples, probably in the most succinct way, basic boundary-layer
dynamics and thermodynamics for pure anabatic and katabatic flows over inclined surfaces
by assuming a one-dimensional steady-state balance between buoyancy and turbulent
friction. Although the classic Prandtl model is linear, having an a priori assigned vertically
constant eddy diffusivity and heat conductivity, K, in this analytic work we partly relax both
of these restrictions. The first restriction is loosened by using a weakly nonlinear approach
where a small parameter, ε, controls feeding of the flow-induced potential temperature
gradient back to the environmental potential temperature gradient, because the former,
below the katabatic jet, can be 20–50 times stronger than the latter, background or free-flow
gradient. An appropriate range of values for ε, controlling the weak nonlinearity for pure
katabatic flow, is provided. In this way, the near-surface potential temperature gradient
becomes stronger and the corresponding katabatic jet somewhat weaker (at a slightly lower
height) than that in the classic Prandtl solution. The second restriction is partly relaxed by
using a prescribed, gradually varying K with distance from the underlying surface, all within
the usual validity of the zero-order Wentzel–Kramers–Brillouin approximation to solve
the coupled differential equations. The new model is compared with the glacier wind data
from the Pasterze experiment (PASTEX-94), Austria. Further discussion includes gradient
Richardson number consideration and an application to simple anabatic flows. The model
may be applied for estimation and interpretation of the wind affecting glacier mass balance
and air pollution.
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1. Introduction

The theory, modelling and overall understanding of the very stably
stratified atmospheric boundary layer (SABL) is still far from being
complete (e.g. Mahrt, 1998; Grisogono and Oerlemans, 2001a;
Mauritsen et al., 2007; Rotach and Zardi, 2007; van de Wiel et al.,
2007; Belušić and Mahrt, 2008; Zilitinkevich et al., 2008; Belušić
and Güttler, 2010; Grisogono, 2010; Baklanov et al., 2011). Based
on the gradient Richardson number, Ri, i.e., the ratio of buoyancy
frequency squared to wind shear squared, one of the types of the
very SABL is pure katabatic flow, there Ri → ∞ at the height of
the low-level jet (LLJ). This jet appears in drainage type of flows
with a speed of, say ∼ O(5 m s−1). It may even occur at a few
or several metres above the underlying inclined cooled surface,
thus often violating the Monin–Obukhov surface-layer scaling,
as discussed by Mahrt (1998, 2008a, 2008b, 2014), Smeets et al.
(1999), Van der Avoird and Duynkerke (1999), Grisogono et al.
(2007), Fedorovich and Shapiro (2009) and Nadeau et al. (2013).
Pure katabatic, thermally driven LLJ should not be confused with
other types of LLJs, for instance, with a downslope wind due to,
e.g., a mountain-lee windstorm (with a shooting flow), such as

a strong bora wind (Smith, 1987; Grisogono and Belušić, 2009;
Chow et al., 2013).

The overall relevance and importance of near-surface drainage-
type flows has been documented by, e.g., Oerlemans and Vugts
(1993), Oerlemans et al. (1999) and also stated by Baklanov
et al. (2011). Almost needless to say, katabatic and drainage
flows are ubiquitous over mountainous and other complex
terrain wherever underlying surface inclination exists over an
appreciable distance (e.g. Nappo and Rao, 1987; Oerlemans,
2001; Renfrew and Anderson, 2002, 2006); hence, such flows
modulate local and regional climate (e.g. van den Broeke
and Lipzig, 2003), affect the mass balance of glaciers (e.g.
Munro, 2004), affect sea-ice thinning and production (e.g.
Barthélemy et al., 2012) and play a role in wind-energy harvesting
(e.g. Horvath et al., 2011). However, those flows are often
unresolved in both standard measurements and most operational
models. Meanwhile, as numerical weather prediction (NWP)
and climate models reach ever refined resolution, various flows
over progressively more sloping terrain are simulated, but the
related treatment of the lower boundary conditions, near-
surface turbulence parametrization, etc., remain unsettled issues
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(e.g. Mahrt, 1998, 2014; Epifanio, 2007; Grisogono et al., 2007;
Buzzi et al., 2011; Chow et al., 2013). Thus, katabatic as well
as anabatic flows remain the subject of vigorous research (e.g.
Princevac and Fernando, 2007; Fedorovich and Shapiro, 2009;
Shapiro et al., 2012; Zardi and Whiteman, 2013). All of which
leads to the aim of this work.

There are various aspects, modifications and improvements
to basic and advanced models of katabatic flows (e.g. Gutman,
1972; Mahrt, 1982; Nappo and Rao, 1987; Egger, 1990; Smith and
Skyllingstad, 2005; Kavčič and Grisogono, 2007; Axelsen and van
Dop, 2009a; Burkholder et al., 2009; Zardi and Whiteman, 2013).
With some valuable exceptions (e.g. Egger, 1990; Burkholder
et al., 2009; Shapiro et al., 2012), most of the analytic katabatic
models are one-dimensional models. Furthermore, one of the
more common analytic models for the corresponding thermally
driven simple slope flows is that of Prandtl (1942), as also
referred to elsewhere (Defant, 1949; Lykosov and Gutman, 1972;
Mahrt, 1982; Egger, 1990; Oerlemans, 2001; Axelsen and van
Dop, 2009b). Advantages and weaknesses of the classic Prandtl
model were recently discussed by Grisogono and Axelsen (2012),
primarily in the light of large-eddy simulation (LES) and secondly,
in terms of a limited observational data set (e.g. van den Broeke,
1997a, 1997b; Oerlemans and Grisogono, 2002; Parmhed et al.,
2004; Axelsen and van Dop, 2009a, 2009b). Further improvements
in treating certain shortcomings of the classic Prandtl model are
in Mo (2013). Overall, one of the main drawbacks for most
analytic models of katabatic flows, including the classic Prandtl
model, is the assumed linearity and prescribed constancy of eddy
diffusivity and conductivity (all for the sake of mathematical
tractability). The latter issue can often be at least partly treated
via eddy diffusivity that varies gradually with height and using
the WKB(J)∗ method (e.g. Bender and Orszag, 1978), as done for
katabatic flows in Grisogono and Oerlemans (2001a, 2001b, 2002;
hereafter GOa, GOb, GO2). In this way, the near-surface gradients
of certain important meteorological fields become sharper and
closer to the surface – the information that is typically missed
by many operational NWPs, even research numerical models,
not to mention climate models (e.g. Svensson and Holtslag,
2009; Nikulin et al., 2011; Chow et al., 2013). Besides turbulence
parametrization and the mentioned eddy-diffusivity approach,
the prime drawback of typical analytic models remains the
presumed flow linearity.

Focusing on analytic models for katabatic flows, the principal
weakness of such models, including the classic Prandtl model,
is that the strong, near-surface flow-related finite-amplitude
potential temperature gradient does not feed back onto the
imposed environmental potential temperature gradient in the
corresponding thermodynamic equation. In other words, even
though the induced temperature gradient below the katabatic LLJ
can be 20 to even 50 times stronger than the related environmental
gradient (GOa; Oerlemans, 2001; Grisogono and Axelsen, 2012),
the analytic near-surface katabatic wind does not sense quick
temperature profile adjustment after the initial discontinuity in
the potential temperature if the time evolution is also taken into
account (e.g. Grisogono, 2003). It is proposed here that it is
the induced rapid near-surface potential temperature gradient
that should shape the consequent wind profile adjustment,
and we shall address such an issue at its steady state. This
proposal might also address the dependence of the maximum
katabatic wind speed on the slope angle, which is not comprised
in the linear Prandtl theory (Oerlemans and Grisogono, 2002;
Grisogono and Axelsen, 2012). Of course, the whole process
between the temperature and wind speed ought to be interactive,
time-dependent and fully nonlinear; however, in an analytic
treatment of an existent, simple but rather robust model, such

∗After Wentzel, Kramers and Brillouin, who used and popularized the
method in theoretical physics. Sometimes also referred to as WKBJ, including
Jeffreys who, as Rayleigh, contributed to its early development. The original
approximation was made independently by Green and Liouville in 1837.

as that of Prandtl, a step forward in improving it should bring
further understanding of both the model and simple sloped flows
as such. In this way, more is learnt about the model itself and
eventually the model may come a step closer to reality.

The objective of this study is to introduce a single modification
and eventual improvement to a linearly improved Prandtl model
with gradually varying eddy diffusivity and conductivity (GOa, b;
GO2) that has previously been used and evaluated (Parmhed et al.,
2004). Moreover, the mentioned gradual variability, within the
WKB approach, has been deployed and validated in the context
of SABL modelling elsewhere (Jeričević et al., 2010, 2012). A
weakly nonlinear form of the previously improved Prandtl model
(GO2; Parmhed et al., 2004) is assumed here, so that the strong
near-surface potential temperature gradient, ∂θ/∂z, feeds back
to the assigned background or free-flow potential temperature
gradient �. Here we make a contribution by tackling a nonlinear
improvement of the Prandtl model modified by (or ‘immersed’ in)
gradually varying background eddy diffusivity and conductivity.
While the focus is on simple katabatic flow, the same approach
may be easily adjusted to simple anabatic flow. Section 2 presents
development of the weakly nonlinear Prandtl model for simple
katabatic flows. Section 3 provides data comparison, discussion
and a digression for simple anabatic flow; finally, conclusions are
summarized in section 4.

2. Weakly nonlinear Prandtl model

2.1. Zero-order solution

The classic Prandtl model has been presented and used in
numerous publications over more than 70 years (Prandtl, 1942;
Defant, 1949; Smith, 1979; Mahrt, 1982; Egger, 1990; GOa;
Stiperski et al., 2007; Axelsen and van Dop, 2009b), including
its straightforward extension to slowly varying eddy coefficients
(GOb; Parmhed et al., 2004; Kavčič and Grisogono, 2007) during
the past 13 years or so. Before we present the newly modified
weakly nonlinear Prandtl model in the context of gradually
varying background eddy coefficients, we want to mention that
all the detailed derivations from the original Prandtl model
throughout are given in Jurlina (2013).

The simplified governing steady-state one-dimensional equa-
tions in the tilted coordinate frame for a constant slope α, |α| � 1
so that the quasi-hydrostatic approximation is valid (Mahrt, 1982;
Haiden, 2003; Grisogono and Axelsen, 2012), are for the momen-
tum and thermodynamics (e.g. Denby, 1999; Stiperski et al.,
2007), respectively:

0 = g
θ

�0
sin(α) + KPr

∂2u

∂z2

0 = −
(

� + ε
∂θ

∂z

)
u sin(α) + K

∂2θ

∂z2
, (1)

where the new term is underlined and the symbols have their
usual meaning including: g is acceleration due to gravity, θ
is the potential temperature deviation from the background
temperature �, K and Pr are eddy heat conductivity and turbulent
Prandtl number (the latter assumed as a constant), u is the
downslope (katabatic) wind component, z is the coordinate
perpendicular to the constant slope surface, α < 0 for katabatic
and α > 0 for anabatic flow (since |α| � 1, this is not far away
from true vertical in the very SABL, which is a relatively thin layer,
say ∼ O (50 m), adjacent to the surface) and �0 is a reference
temperature. Hence, the free-flow � is defined in the true vertical
coordinate frame (where the buoyancy acts) as � ≡ d�/dz∗,
where z∗ is in the true vertical direction. Besides the assumed
steady-state (thus, the local change on the left-hand side is 0)
and one-dimensional slope flow without an imposed pressure
gradient field, quasi-hydrostatic, Boussinesq and rotation-free
approximations are included in the system (1). The only new
term in Eq. (1), as underlined in the thermodynamic equation,
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modulates the amount of nonlinearity (presumably weak in terms
of regular perturbation analysis) via small parameter ε, where
0 ≤ ε � 1. This term could have been derived more rigorously
from a fuller original thermodynamic equation by expanding
the meteorological fields and assuming the regular perturbation
analysis (e.g. Bender and Orszag, 1978; Pedlosky, 1987) for the
background windless conditions, but here it is more appealing
in its heuristic appearance and the consequent modification of
the meteorological fields (u, θ). The underlined term in Eq. (1)
enhances the along-slope advection ofθ that is counteracted by the
parametrized turbulent mixing. Note that a qualitatively similar
treatment of a sea breeze is presented by Gutman (1972); the
wind speed there evolves linearly while the potential temperature
behaves nonlinearly through an interaction with the wind speed.

The system (1) is invalid for α = 0 because no complete
tensor coordinate transformation is performed (e.g. Pielke, 1984);
however, if Eq. (1) is extended so that it contains additional
damping mechanisms, as in Mo (2013), this zero-slope singularity
is removed. As we are interested here in slopes from, say, a half
of a degree and more, the zero-slope issue is irrelevant here.
For example, if � = 3 K km−1 and α = 0.5◦, the characteristic
time-scale for the katabatic flow development is over 19 h, which
is too long for most katabatic winds out of the polar regions.

Once again, the only difference between Eq. (1) and the classic
Prandtl model is the presence of the ε∂θ/∂z term, which is
motivated by the fact that � � ∂θ/∂z around and below the
katabatic jet, zj, i.e., for z ≤ zj, or z ∼ zj. At the same time, the
regular perturbation analysis is perhaps the simplest and most
powerful method to treat nonlinearity in this case. Moreover,
the zero-order WKB approach can be directly applied here for
the treatment of the gradually varying eddy conductivity K(z)
and diffusivity K(z)Pr in Eq. (1) (GOa, b; Parmhed et al., 2004).
This means that Eq. (1), including its zero-order solutions, i.e.,
exponentially decaying functions of z, remains the same as in
the classic Prandtl model, while the coefficients parametrizing
turbulent exchange of momentum and heat become slowly
varying functions of z, so that their derivatives do not affect
the basic dynamics in Eq. (1) explicitly. However, local values
of K(z) are taken into account as integrals between the surface
and actual elevation considered. For this to be valid, it must be
satisfied that h > zj, where h is the scale height for K(z) (details
in GOa, b; GO2). Furthermore, Pr also could have been made
a gradually varying function; however, because relatively little is
known about Pr variability in the SABL, Pr constancy is assumed
here.

Next, we make a global expansion of (u, θ) into:

utot = u0 + εu1 + ε2u2 + . . .

θtot = θ0 + εθ1 + ε2θ2 + . . . , (2)

where the subscripts on the right-hand-side mean the zero-order
flow variables (as in the classic Prandtl model), the first-order
corrections (i.e. weakly nonlinear here), etc. We insert Eq. (2)
into Eq. (1) and obtain an infinite set of two-equation systems in
the order of powers of ε, i.e., ε0, ε1, etc. However, we keep this
expansion only up to its first order for simplicity. The solution to
ε0 order is already known from numerous previous studies (e.g.
Defant, 1949; Egger, 1990; GOa) and is given here for the overall
readability. Nonetheless, it was not previously presented in the
context of this perturbation expansion; it reads

u0(z) = −Cμ exp

(
− z

hP

)
sin

(
z

hP

)

θ0(z) = C exp

(
− z

hP

)
cos

(
z

hP

)
, (3a)

where C is, in case of katabatic flows, the surface potential
temperature deficit, C < 0 (the opposite is for anabatic
flows with a temperature surplus), μ = [g/(�0�Pr)]1/2 is

a dimensional parameter, hP is the characteristic depth of
the Prandtl layer, hP = √

2/σ , σ is the characteristic ‘wave
number’, σ = [N sin(α)/(KPr1/2)]1/2, N is the background or
free-flow buoyancy frequency, N2 = �g/�0 and K is an average
eddy conductivity. The boundary conditions (BC) imposed
are the usual ones for the Prandtl model: θtot(z = 0) = C,
utot(z = 0) = 0, θtot(z → ∞) = 0, utot(z → ∞) = 0, where in
the classic Prandtl model the subscript ‘tot’ trivially becomes 0.
Note that u0(z) maximizes at zj = hPπ/4 within statically very
strongly stratified conditions and below a typical but vaguely
defined inversion top (e.g. Mahrt, 1998; GO2). To add a point,
Stiperski et al. (2007) show that Eq. (3a) is a valid solution to the
Prandtl model even for finite-amplitude simple slope flows.

Within the zero-order WKB approach, pertaining to the
so-called solution’s controlling behaviour, system (1) can be
transformed to a single governing equation of the fourth order
for (u, θ), representing in both cases a heavily damped oscillator
(e.g. Grisogono, 2003):

d4(u, θ)

dz4
+ N2 sin2(α)

PrK(z)2
(u, θ) = 0,

where K(z) is a gradually varying part of the non-constant overall
‘coefficient’ in the second term. Hence, the argument in Eq. (3a),
z/hP, becomes a simple integral, i.e., z/hP → ∫

dz/hP = I(z),
where the arrow indicates the transformation from the variable
of constant-coefficient differential equation to the WKB-type
variable of gradually varying-coefficient differential equation.
In this way, I(z) is

I(z) =
(σ0

2

) 1
2

z∫
0

K(z)−
1
2 dz,

with σ
1/2
0 as the factor in I(z), σ0 = [N sin(α)Pr−1/2]; thus,

Eq. (3a) generalizes to

u0,WKB(z) = −Cμ exp[−I(z)] sin[I(z)],

θ0,WKB(z) = C exp[−I(z)] cos[I(z)], (3b)

of course, the lower integration limit for I(z) might go from
the roughness height, z0, upward, but this is not crucial here.
The details of the WKB method, which belongs to global singular
perturbation methods, applied to the Ekman or Prandtl model are
elaborated by Berger and Grisogono (1998), GOa, GO2 and the
consequent articles. The main point with the WKB approximation
here is that in Eq. (3b) the argument under the exponential
and trigonometric functions becomes the integral I(z), and the
solutions are no longer strictly periodic functions. Moreover, the
simplicity and the elegance of the basic, classic solution of Prandtl
for K = const, Eq. (3a), is clearly retained in Eq. (3b).

2.2. First-order correction

Next, we analyse the first-order corrections to Eq. (1) while
invoking the zero-order WKB method† (e.g. Bender and Orszag,
1978). The corresponding system at the order of ε1, with (or
similarly without) the WKB approximation, is

0 = g
θ1,WKB

�0
sin(α) + KPr

d2u1,WKB

dz2

0 = −
(

�u1,WKB + dθ0,WKB

dz
u0,WKB

)
sin(α) + K

d2θ1,WKB

dz2
,

(4)

†If a higher order WKB approximation was to be included, it would be
necessary to expand the equations and solutions in terms of yet another
small parameter, say δ, and to group the terms with the alike power of δ
and solve the consequent equations. The solutions should be proportional to
exp[(S0 + δS1 + δ2S2 + . . . )/δ]; the zero-order WKB solution is associated
with the S0 term in this expansion.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)



B. Grisogono et al.

where the unknowns are (u1,WKB, θ1,WKB) and the forcing is
provided by the zero-order field, (u0, θ0), represented by the
second term in the parentheses of the second equation in Eq. (4).
After arranging the terms, Eq. (4) again yields the damped
oscillator equation but now with the different forcing on the
corresponding right-hand sides for u1,WKB and θ1,WKB:

d4θ1,WKB

dz4
+ N2 sin2(α)

PrK(z)2
θ1,WKB = sin(α)

K(z)

d2

dz2

(
u0,WKB

dθ0,WKB

dz

)
,

d4u1,WKB

dz4
+ N2 sin2(α)

PrK(z)2
u1,WKB = − g sin2(α)

�0K(z)2Pr
u0,WKB

dθ0,WKB

dz
.

(5)

We impose the following BCs to the inhomogeneous
ordinary differential equations (5): θ1,WKB(0) = 0, u1,WKB(0) =
0, θ1,WKB(z → ∞) = 0, u1,WKB(z → ∞) = 0. Qualitatively
speaking, for α < 0, as considered for katabatic flows here, the
right-hand-side forcing of the (u1,WKB, θ1,WKB) correction implies
a mostly positive contribution for θ1,WKB and a mostly negative
one for u1,WKB (with the opposite effect for anabatic flows). It is
noteworthy that Eq. (5) is one of novelties of this study; it has
significant consequences for the dynamics of slope flows.

After a lengthy but straightforward calculation, assuming that
the solutions (u1,WKB, θ1,WKB) resemble the zero-order solutions
in Eq. (3b), which is due to the nature of the imposed forcing in
Eq. (5), the following is obtained:

θ1,WKB(z) = θA,WKB exp[−I(z)]

×
{
− 1

15
sin[I(z)] − 1

6
cos[I(z)]

}
+ θA,WKB exp[−2I(z)]

×
{

1

15
sin[2I(z)] + 1

15
cos[2I(z)] + 1

10

}
,

u1,WKB(z) = uA,WKB exp[−I(z)]

×
{
−1

3
sin[I(z)] + 2

15
cos[I(z)]

}
+ uA,WKB exp[−2I(z)]

×
{

1

30
sin[2I(z)] − 1

30
cos[2I(z)] − 1

10

}
, (6a)

where the (previously strictly constant) amplitudes are now:

θA,WKB =
(

2

σ0

) 1
2

C2μ sin(α)K(z)−
1
2 ,

and

uA,WKB =
(σ0

2

) 1
2

C2 μ

�
K(z)−

1
2 , (6b)

with subscript A for both corresponding gradually varying
amplitudes in (u1,WKB, θ1,WKB), and I(z) remains the same as
before. The correction amplitudes in Eq. (6b) vary gradually
because of K(z), where a small minimum value, say ∼ 10−4m2

s−1, prevents a possible division by 0 (see section 2.4). More
importantly, all the terms added within the braces of Eq. (6a)
cancel perfectly among themselves as z tends to 0, or to infinity.
This occurs more rapidly than K(z) tends towards its smallest
value.

The new solution of Eq. (6) exhibits a more complex behaviour
than the traditional ε0 solution Eq. (3a). In addition to the
exponentially decaying (first) parts in Eq. (6a), the second parts
in Eq. (6a) go with the argument doubled (i.e. 2I(z)), which
means a more rapid variation near the surface (as aloft this
becomes negligible due to its exponential decay). Moreover, there
are exponentially decaying terms in Eq. (6) that are not wave-like
(the last parts). From Eq. (6) it is evident that the near-surface
profiles of the final θtot(z) and utot(z) in Eq. (2) are somewhat
strengthened, and weakened, respectively; hence, the nonlinearity

provides asymmetric effects on the meteorological fields (u, θ), as
indicated by the different forcing in Eq. (5). This will immediately
lead to a relatively larger near-surface Ri compared with that
from the zero-order solution (e.g. Grisogono, 2003). Another
remark on discussing Eq. (6) is that Smith (1977) found a
qualitatively similar behaviour in his weakly nonlinear treatment
of hydrostatic mountain waves steepening‡; there, the mountain
waves were steeper on the lee side than on the windward side,
thus allowing for wave asymmetry.

The total WKB solutions up to the first order are:

θtot,WKB(z) = θ0,WKB(z) + εθ1,WKB(z),

utot,WKB(z) = u0,WKB(z) + εu1,WKB(z). (7)

It cannot be overstressed that these results with gradually
varying K(z) are structurally the same as those for the K = const
case. Proceeding to the higher order terms, i.e., ε2, ε3, etc.,
would result in a set of coupled and progressively more complex
ordinary differential equations for momentum and heat, with
their corresponding forcing from the lower orders of power in
ε. This is how the regular perturbation analysis works on a
global level: a hard nonlinear problem is split into many simple
problems, each bringing progressively less weight to the solution
as the power of εn increases (n ≥ 0).

As the correction u1,WKB(z) in Eq. (6) is mostly negative and

proportional to σ
1/2
0 , which also means proportional to the

square root of the slope, i.e., sin1/2(α) (here the absolute value
of α is taken), the total katabatic wind speed in Eq. (7), as
well as its maximum, should decrease with increasing the slope
angle α. This new analytic result is not contained in the classic
Prandtl theory, where the katabatic speed maximum is insensitive
to α. However, Grisogono and Axelsen (2012) found by using
LES that the maximum katabatic speed should decrease with
increasing slope angle (at least for the range 3◦ ≤ α < 6◦, which
they addressed explicitly); this decrease in the speed should be
weaker than a linear trend, perhaps in a similar manner to the
decrease of zj with sin−1/2(α), which is also in agreement with
our findings here (considering the range of slopes for which
the Prandtl model is suitable). Hence, this study supports the
experimental finding by Oerlemans and Grisogono (2002) and
the LES finding by Grisogono and Axelsen (2012), which is, that
zj is largely proportional to the maximum katabatic wind speed,
with correlation coefficients of 0.78 and 0.98, respectively. This
also implies that both properties of the katabatic LLJ (i.e. the
height and speed) should decrease for increasing slope α and
vice versa (for the relatively small range of α considered, say,
roughly, 0.5◦ < α < 6◦), although α as such could not be varied
by Oerlemans and Grisogono (2002).

2.3. Estimation of the small parameter ε

What remains now is to estimate a suitable value of ε. As an
appropriate value of ε should not depend on a particular method
of solving differential equations (e.g. Bender and Orszag, 1978),
we first plot katabatic profiles for the K = const case together
with Eq. (7) using various values of ε, with the knowledge that
such profiles should not depart much from Eq. (3a) for our
weakly nonlinear approach to be valid. Following that, we will
augment our reasoning by a dynamical approach using external
parameters of the model.

Figures 1 and 2 show typical katabatic profiles of (u, θ) using
Eq. (2) up to the first order (or Eq. (7) but temporarily without
invoking the WKB effects for simplicity). The zero-order solutions

‡There is not much similarity between the two studies, of course. Smith’s
treatment of weak nonlinearity goes through the lower BC and consequent
steepening of the flow while the governing equation remains linear. In this
study, it is the opposite: the lower BC remains fixed but the governing equation
is expanded to include nonlinear terms.
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Figure 1. Katabatic wind-speed profiles using Eqs (2)–(7) and various values of
the small parameter ε = 0, 0.01–0.04 are plotted. For simplicity, K = const =
0.06 m2 s−1; Pr = 2, α = −5◦, �0 = 273.14 K, � = 3 K km−1, C = −6◦C (i.e.
typical input parameters for the Prandtl model). Note that relatively larger values
of ε cannot be related to a realistic katabatic flow.
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Figure 2. Same as Figure 1 but for typical katabatic potential temperature
perturbation profile. The same reasoning regarding various ε profiles applies
here as well.

are plotted as thick solid curves, while the corresponding profiles
using various ε values are depicted as differently styled curves.
As well as displaying typical katabatic flow profiles, the aim of
these figures is to provide an estimate of a suitable value for the
small parameter ε. Both figures strongly suggest that the upper
limit for ε, in the context of simple katabatic flows, is 0.01.
The profiles beyond ε = 0.01 should be disregarded because the
weakly nonlinear effect becomes too large (the amplitude and
the return flow of u(z), and is comparable to the zero-order) if
ε > 0.01, which is in contrast to the idea of the weak nonlinearity
approach. Moreover, the near-surface inversion strength should
not be roughly doubled, within the assumed weak nonlinearity,
when compared with the zero-order solution (Figure 2, thick solid
line, mostly lying to the left). Furthermore, the statically unstable
layer above the bulk or the main part of the Prandtl flow (say,
z ≥ 25 m, in this case) should not be excessively unstable (e.g.
dθtot/dz > −2 K (100 m)−1), as for profiles using ε > 0.01. Thus,
realistic katabatic flows should exist for the range of 0 ≤ ε < 0.01.

Furthermore, the expectations about the behaviour of a weakly
nonlinear solution outlined below Eqs (5) and (6) are confirmed:
compared with the classic Prandtl solution, the new solution
exhibits weaker katabatic jets (Figure 1), occurring at lower
heights and immersed in stronger stratification (Figure 2). Again,
the first-order correction must really remain only a correction to
the ε0 solution.

The allowed range of ε values allowed may additionally be
assessed by considering the total potential temperature gradient
in Eq. (1). Since a weakly nonlinear model should not be able
to alter the nature of a corresponding classic solution, by the
same token, the total temperature gradient should not, on
average, reverse its sign; thus, one may require from Eq. (1)

that � > max(ε)
∣∣∣<∂θ0

∂z >

∣∣∣, where <∂θ0/∂z> is the average and

the absolute value is taken to be on the safe side for both katabatic
and anabatic flows. This absolute average is simply estimated
to be |<∂θ0

∂z >| = |C|
2hP

, which is also in agreement with van den
Broeke (1997a, 1997b), who used as katabatic flow forcing the
bulk average of the surface potential temperature deficit, C/2.
Hence,

max(ε) < 2�hP/|C|. (8)

For typical katabatic flow input values in Eq. (8), say
� = 3 K km−1, hP = 20 m and C = −6◦C (all external
parameters), max(ε) < 0.02 is obtained. According to Eq. (8)
and our previous reasoning related to Figures 1 and 2, it makes
sense to retain our proposed and somewhat more stringent
range for ε: 0 ≤ ε < 0.01 (see also section 3.1). Moreover, for
simplicity, we shall choose the average value from the ‘katabatic
range’, i.e., ε = 0.005. The dynamically based scaling argument
for ε, involving Eq. (8), is necessary for a better understanding
of the role and overall range of ε values that should be estimated
from external parameters (in this case: α, C, �, g/�0, K and Pr).

Note that in the case of anabatic flow the requirement Eq. (8)
generally relates to the higher elevations than that for katabatic
flow because, firstly, the surface is warmer than the adjacent air in
anabatic flow so that θ first decreases with height, and secondly, an
anabatic flow inversion is reached higher up, above hP (∼ K1/2)
which is also a few times larger than that for katabatic flow. This
immediately demands that ε for anabatic weakly nonlinear model
should be a few or several times larger (see section 3.2) than that
for katabatic flow.

2.4. Choice of K(z) profile

Gradually varying K(z) may have an arbitrary yet slowly varying
form, all within the validity of the WKB approach (e.g. GOa;
GO2). Among the large class of K(z) profiles allowed, we choose
that of GOb, Jeričević and Večenaj (2009) and Jeričević et al.
(2010):

K(z) = K0
z

h
exp

(
− z2

2h2

)
+ Kmin, (9)

which depends on two parameters related to the maximum
value of K(z) and the elevation h where the maximum is
attained, i.e., (K0, h). Certain asymptotic properties related to
Eq. (9) and the integral I(z) are given in GOa, b; furthermore,
extensive discussion, explanations and comparisons of this non-
local first-order turbulence parametrization scheme with some
other possible profiles are provided in the related references.
Note from Eq. (9) that max (K(z)) = K0 exp(−1/2) is attained
at z = h. To avoid a possible division by 0 when using Eq. (9), as
in, e.g., Eq. (6b), a small constant amount of diffusivity is added
to K(z) in Eq. (9), Kmin, typically tenfold of that for molecular
diffusivity of air (as in, e.g., Sun et al., 2013; their eq. (25)).

3. Results and discussion

As the focus here, among the various possible slope flows, is on
simple katabatic flow that is treated analytically, we proceed with
this first.

3.1. Simple katabatic flow

Although the essence of a weakly nonlinear Prandtl model and
its solutions is depicted in Figures 1 and 2, using K = const,
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Figure 3. Katabatic wind speed (mostly on the right-hand side of the figure)
and potential temperature perturbation (mostly on the left-hand side as deficit)
profiles: classic linear, (u, θ)0, dot-dashed, and weakly nonlinear solution, (u, θ)tot,
dashed, using ε = 0.005 for K = const and input parameters as in Figure 1; WKB
linear, (u, θ)0,WKB, thin solid, and WKB weakly nonlinear solution, (u, θ)tot,WKB,
thick solid, with ε = 0.005, for K(z) from Eq. (9) with max(K(z)) = 0.3 m2 s−1

at h = 30 m, the other input parameters as in Figure 1 Subscript 0 and tot denote
linear and total (i.e., weakly nonlinear) solutions, respectively.

to emphasize the acceptable range of ε that controls the
amount of nonlinearity, an additional comparison between this
and the corresponding WKB solution follows. Figure 3 shows
(i) the previously presented classic and the weakly nonlinear
Prandtl solution for K = const, and (ii) the corresponding WKB
solutions, using K(z) from Eq. (9), for both the classic and
the weakly nonlinear solution. Among all solutions presented in
Figure 3, the classic solution exhibits the weakest near-surface
gradients of potential temperature and partly for wind speed,
where the latter is comparable (for z ≤ 2 m) to that for the
nonlinear solution using K = const. Furthermore, the classic
solution for the wind-speed profiles decays more rapidly after
reaching its maximum at the corresponding zj, as previously
established based on data from Defant (1949), Egger (1990) and
GOa. The WKB solutions deliver sharper near-surface gradients,
however, including a stronger inversion and a lower katabatic
LLJ, which decreases more gradually after its maximum than
in the classic solution. Regarding the weakly nonlinear solution,
we focus now only on its WKB version, because the K = const
case has been discussed previously. This solution, shown by
bold curves in Figure 3, exhibits the second sharpest wind-speed
gradient with a moderately strong LLJ of ≈ 4 m s−1 (while the
other solutions go up to almost 5 m s−1), adjacent to the surface,
all within the strongest near-surface temperature inversion of
≈ 5 K (10 m)−1. Hence, the weakly nonlinear WKB solution
describes the katabatic wind under the most stably stratified flow
conditions.

Next, we compare the weakly nonlinear solution of Eqs (6)
and (7) for katabatic flow using a suitable data set, which pertains
to a glacier wind observed on the Pasterze glacier during the
PASTEX-94 experiment (e.g. van den Broeke, 1997a, 1997b; GOa,
b; Oerlemans and Grisogono, 2002). While GOa, b discussed and
explained how and why the WKB solutions are better than the
K = const solutions, herein we concentrate on the further
modifications of the WKB solutions using the weakly nonlinear
approach developed. Figure 4 is organized in a similar manner
as in GOb, their figure 3, in order to aid comparison, discussion
and to stress the overall diurnal persistency of the glacier wind
in spite of significant variations; details of the glacier wind
diurnal variability are available in van den Broeke (1997a, 1997b).
Although the observed glacier wind, as a nearly ideal katabatic
flow, varies in its intensity throughout the 24 h period presented
(eight-level tower data averaged over eight 3 h periods and a
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Figure 4. Data comparison for θ (potential temperature perturbation) and u
(katabatic wind speed) among the WKB solutions (u0,WKB – thin solid and,
utot,WKB – thick solid, mostly on the RHS, θ0,WKB – thin solid and θtot,WKB – thick
solid, mostly on the left-hand side) versus two kinds of observations (eight-
level tower data during 24 h, averaged over 3 h consecutively, light-hatched;
balloon data at 1400 LST from the second highest tower level up, dash-asterisk)
and the K = const solutions (u0 – dot-dashed, utot – dashed, θ0 – dot-dashed,
θtot – dashed). The main input parameters are given above the profiles, slope
α = −5◦.

single balloon profile at 1400 LST (1200 UTC)), the prominent
LLJ located around 5.5–7 m with a maximum speed of nearly 4
up to 5.8 m s−1 is always present. It is immersed into a strong
near-surface inversion of about 6 to almost 8 K (13 m)−1, that
weakens significantly from about 8 to 15 m and upward. The
weakly nonlinear WKB solution utot,WKB (bold solid curves in
Figure 4), describes the overall, or the average data the best,
even though the linear WKB solution u0,WKB (thin solid curve)
from GOb also remains very good, as the second best overall
solution. In fact, solely from the tower data, which go up to
13 m above the glacier’s surface, these two WKB solutions are of
the same quality; however, the new solution, utot,WKB, is closer
to the balloon data aloft and thus appears to be the best. We
substantiate this by calculating two statistical parameters, root
mean square error (RMSE) and bias, between the profiles of
each of the solutions and observations, both for the wind speed
and potential temperature. Particularly, we calculate RMSE and
bias by comparing the profile of a certain solution with the two
profiles observed for the tower (the most suitable profiles for
the comparison are those averaged between 0900 and 1200 LST
and especially between 1200 and 1500 LST, following van den
Broeke, 1997a) and that for the balloon ascent. According to
the results shown in Table 1, u0,WKB compares better with both
tower profiles than utot,WKB does, which compares better with the
balloon profile. Also, θ 0,WKB is better than θtot,WKB only for the
earlier tower profile, whereas for the later one and for the balloon
profile, θ tot,WKB is substantially better. To summarize, although
for wind speed u0,WKB is better than utot,WKB for the tower data,
for temperature this is only partially true. On the other hand, for
both wind speed and temperature, utot,WKB is better aloft with
regard to the balloon data. Therefore, the verification in Table 1
favours the new solution utot,WKB slightly better.

We now discuss the data comparison versus the finest
analytical solutions further by calculating and comparing the
wind speed and temperature gradients using the observations and
different solutions. Although the gradients obtained from u0,WKB

compare marginally better with those obtained from the tower
observations, for the balloon data the corresponding gradients
obtained from utot,WKB resemble the balloon gradients better
(not shown). Hence, when compared with the limited data set
and based on Figure 4 and Table 1, the new nonlinear solution
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Table 1. Values of statistical parameters derived from the comparison of the tower and balloon profiles from PASTEX-94 with the profiles of different analytical
solutions (the symbols as in Figure 4 and in the text). The units of RMSE and BIAS are m s−1 and K for wind speed and potential temperature, respectively.

Measurement location Error and bias u0 utot u0,WKB utot,WKB θ0 θtot θ0,WKB θtot,WKB

Tower 0900–1200 LST RMSE 2.10 2.19 1.05 1.43 1.37 1.16 1.22 1.36
Bias −1.39 −1.80 −0.39 −1.03 −0.67 −0.48 0.13 0.46

Tower 1200–1500 LST RMSE 1.82 1.81 1.01 1.15 2.08 1.85 1.36 1.17
Bias −0.91 −1.32 0.09 −0.55 −1.83 −1.64 −1.03 −0.70

Balloon 1400 LST RMSE 1.18 1.25 0.85 0.48 0.53 0.42 0.39 0.32
Bias −0.25 −0.90 0.71 0.29 0.11 0.21 −0.09 0.00
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Figure 5. Semi-logarithmic plot of the gradient Richardson number Ri(z) profiles
for K = const (= 0.06 m2 s−1 as before) using classic linear (dot-dashed) and
weakly nonlinear (thin solid), and the weakly nonlinear (thick solid) Prandtl
model with K(z) using Eq. (9); max(K(z)) = 0.3 m2 s−1at h = 30 m. The other
input parameters as before.

presented here appears to be marginally better than the linear
WKB solution from GOa, b.

It is seen in both Figures 3 and 4 that the weakly nonlinear
solution, when compared with the previous solutions, represent
the stronger near-surface stratification and somewhat weaker
katabatic LLJ. Another way to see the corresponding dynamical
effect of stratification and wind shear is to plot Ri(z) as depicted
in Figure 5, in which the LLJ in the new weakly nonlinear solution
is generally the lowest and thickest when compared to other
solutions.

To avoid tedious, though straightforward, analytic calculations
using three Prandtl solutions for the three Ri(z) presented in
Figure 5, each Ri(z) is calculated numerically at a very fine
vertical resolution. Two different numerical methods using finite
differences are used; excellent agreement is obtained except at the
uppermost grid-point where the methods vary by a factor of two,
but this point (above 100 m) is irrelevant for our analysis. The
simplest among Ri(z), i.e., Ri0(z), is also checked analytically. At
the same time, all Ri(z) versions addressed have the same overall
structure, which can be summarized as:

Ri(z) = − ghP

�0Cμ2
exp(F1(z)) F2(z), (10)

with various levels of complexity. In the simplest case of Ri0(z),
F1 = z/hP and F2 = [cos(z/hP) + sin(z/hP)]/[sin(z/hP) −
cos(z/hP)]2; otherwise, F1 and F2 become lengthy expres-
sions involving ratios of derivatives of Eq. (6) that also
contain trigonometric functions of the integral I(z) used
in Eq. (3b).

Compared with the classic solution, the weakly nonlinear
Prandtl solution of Eqs (6) and (7) yields, via Eq. (10), a lowered
zj and the corresponding height where Ri → ∞, Figure 5. For
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ε = 0.03, K = 3 m2  s−1, max[K(z)] = 6 m2  s−1, h = 75 m

Figure 6. Anabatic wind speed (on the left-hand side) and potential temperature
perturbation (on the right-hand side) profiles. Symbols and curves as in Figure 3:
classic linear, (u, θ)0, dot-dashed, and weakly nonlinear solution, (u, θ)tot, dashed,
using ε = 0.03 for K = const = 3 m2 s−1; WKB linear, (u, θ)0,WKB, thin solid,
and WKB weakly nonlinear solution, (u, θ)tot,WKB, thick solid, with ε = 0.03,
for K(z) from Eq. (9) with max(K(z)) = 6 m2 s−1 at h = 75 m; other input
parameters as in Figure 1 except that now C = +6◦C.

z < 2 m this new solution, for the typical input given, represents
the lowest dynamic stability with Ri ≤ 0.02. Above that lowest
sublayer ∼ O(2 m), throughout the most of katabatic flow, the
new solution exhibits the largest Ri values, which may enhance
the possibility for flow decoupling from the upper layers via the
Scorer parameter consideration (Parmhed et al., 2004; Mahrt,
2014); this, in turn, may modify the turbulent fluxes over glaciers
and their mass balance (e.g. Munro, 2004). Overall, the new
solution also implies the thickest strongly stratified SABL (where
the Prandtl layer is its lower part) among all the solutions
considered.

3.2. Simple anabatic flow

Next, we briefly address a simple anabatic flow for which the
same weakly nonlinear approach developed here also may be
applied. For simplicity and consistency, we retain as many input
parameters as possible (see Figures 3–5). However, now C > 0,
as a surface potential temperature surplus, thus the K value also
must be enlarged and consequently hP; therefore, this demands
a larger ε than that for katabatic flows (see section 2.3). Figure 6
displays typical anabatic flow profiles.

From Figure 6 it appears that the potential temperature of
anabatic flow decreases more rapidly with height when using the
weakly nonlinear solution and/or WKB method. Furthermore,
in the same solutions the corresponding anabatic wind (plotted
as negative values, in order to contrast with the katabatic wind,
which blows in the opposite direction) increases with height
more rapidly, reaching its maximum at lower elevations. There
are two effects present in the θtot,WKB rapid decrease and utot,WKB

rapid increase with height: near-surface mixing reduction due to
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a locally smaller K(z), compared with that for K = const and
the weakly nonlinear feedback. Between these two effects, there
is a stronger effect of the K(z) near-surface mixing reduction
on the temperature profile for, roughly z ≤ 80 m (for z > 80 m
the weakly nonlinear feedback dominates but the overall effect
is already very small). However, for the wind speed both effects
appear as equally important. Namely, for the anabatic wind speed
the effect of reduction of K(z) is stronger for z < 40 m, while the
weakly nonlinear effect is stronger for z > 45 m.

The linear solutions produce about 15 to even 20% weaker
anabatic LLJ than the weakly nonlinear solutions (two leftmost
profiles in Figure 6). In particular, the classic solution u0(z)
and the new weakly nonlinear solution using K(z), i.e., utot,WKB,
when integrated through 200 m depth (Figure 6), give the mean
anabatic wind speeds of 3.25 and 4.14 m s−1 (the latter is more
than 20% higher than the former), respectively. Hence, unlike
in the katabatic flow, here the new solutions result in a LLJ
enhancement in a more statically unstable ABL than that in the
classic Prandtl solution for anabatic flow. This might have certain
positive consequences on straightforward wind-energy potential
estimates (the yield goes with the mean wind speed cubed, e.g.,
Horvath et al., 2011) because going from, e.g., 4 to 5 m s−1 in the
mean wind speed, allows for about a doubling in the wind-power
potential. Moreover, daytime valley ventilation via anabatic flows
appears now to be more intensive, while its night-time katabatic
counterpart becomes weaker, when both are compared with the
classic Prandtl solution. This finding agrees qualitatively with the
finding by Nadeau et al. (2013) that the night-time downslope
and downvalley winds are lighter than the daytime thermally
driven upslope and upvalley flows.

3.3. Summary on simple slope flows

Two combined effects appear important for details of simple
slope flows: nonlinearity and variable diffusivity K(z). To sum
up, the weakly nonlinear solution of Eqs (6) and (7) up to the
ε1 term using K(z), produces sharper temperature perturbations,
i.e., steeper vertical gradients, in both katabatic and anabatic
flows. The enhanced advection of θ via the ε∂θ/∂z term,
yielding lowest θ values near the surface, is (mildly) balanced
near the surface where the K(z) values are low (and the
corresponding parametrized turbulent eddies are thus very small),
which allows for an enhanced total vertical temperature gradient
near the surface. As the former relates to the relatively thin,
strongly stratified SABL with significantly reduced turbulent
(parametrized here) mixing, except in the lowest few metres
where also strong wind shear dominates and thus 0 < Ri ≤ 0.1,
the katabatic LLJ becomes generally reduced when compared
with that based on the linear solution, which is of the ε0 order
(without or with the WKB modification for K(z)). Namely, in
the linear Prandtl solution the established strong stratification,
via dominant temperature perturbation, does not feed back to
the dynamics of katabatic flow. It is shown that the nonlinearity
affects the elevation and strength of the LLJ in simple slope flows.
For simple anabatic flow occurring in the convective ABL, more
vigorous mixing appears (a more rapid temperature decrease with
height in our weakly nonlinear Prandtl model) and thus, a more
intensive anabatic LLJ forms than that obtained from the linear
Prandtl solution.

All those points could account for an improvement in the
turbulence parametrizations, including thermally driven slope
flows in NWP and climate models (e.g. Barthélemy et al., 2012).
Namely, for a given dominant slope angle α(x, y), surface
potential temperature perturbation, background stratification
and a current state of eddy diffusivity, a near-surface u and θ
can be estimated, as well as the corresponding vertical fluxes,
and fed back to the model. The information can then be
used in various applications ranging from glacier mass-balance
estimation, pragmatic meteorological modelling (e.g. affecting
the Obukhov length, Grisogono et al., 2007), to wind-energy

harvesting (e.g. Horvath et al., 2011), etc. We leave those avenues
for future work.

4. Conclusions

Slope flows occupy the focus of geophysical fluid research for
many reasons (Renfrew and Anderson, 2002, 2006; Shapiro et al.,
2012; Chow et al., 2013). Simple slope flows are addressed herein
by the extension and evaluation of analytic models based on the
classic work of Prandtl. Our modification of the Prandtl model,
making it weakly nonlinear, is somewhat similar to the analytic
treatment of sea-breeze nonlinearity by Gutman (1972). The
emphasis here is on a type of very stratified SABL, dealing with
inclined cooled surfaces, i.e., simple katabatic flows, although the
opposite flow (i.e. common anabatic wind) is tackled as well. For
this purpose, a regular perturbation analysis is deployed.

As slope flows in an undisturbed, quiescent atmosphere are
primarily thermally driven, the goal of this study was to seek
an explicit nonlinear response of the flow to the temperature
perturbation. Namely, flow-induced potential temperature
gradient is allowed to feed back to the overall (environmental)
potential temperature gradient because the former (by absolute
values) can be 20–50 times stronger than the latter (e.g. GOa;
Oerlemans, 2001). That fact has significant consequences on
the slope flow, as shown in this work, in which the weakly
nonlinear Prandtl model is developed and explored. A better
(physically more consistent) solution has been presented when
compared with the classic Prandtl model. The new results lead to
a qualitatively similar modification in height and strength of the
LLJ as that produced by the linear WKB approach with gradually
varying eddy diffusivity and conductivity K(z).

One of the main points from this study is that the purely
linear Prandtl solution (of the order of ε0, where ε is the
small parameter in the regular perturbation expansion) produces
weaker near-surface stratification with a stronger katabatic wind
than that obtained here by using the weakly nonlinear Prandtl
model up to the ε1 order of the solution expansion. This occurs
with both K = const and WKB solutions using gradually varying
K(z), and both pertain to the new, weakly nonlinear solution. A
limited data comparison confirms this finding, although within
the uncertainty inherent in a limited data set the weakly nonlinear
improvement of the model is not very significant when compared
with the linear WKB model. The estimated optimum value of ε

is 0.005 and 0.03 for katabatic and anabatic flow, respectively.
Moreover, this study shows that the maximum katabatic wind
speed should decrease with increasing underlying slope angle α, a
result found in both the limited data set and for LES (Oerlemans
and Grisogono, 2002; Grisogono and Axelsen, 2012), but a feature
that is not contained in the linear Prandtl theory.

The (weak) nonlinearity affects the elevation and strength
of the LLJ in both the katabatic and anabatic cases, which,
in turn, inevitably modifies the dynamic stability of the layers
below and above the LLJ. Furthermore, based on the thermally
driven nonlinearity in the Prandtl slope-flow theory considered
in this work, anabatic winds are more enhanced whereas katabatic
winds become weakened, when compared with their respective
counterparts from linear theory.

Finally, we discussed some of the consequences of the analytical
approach deployed here, speculated on further applications and
summarized the main steps of the article. From a broader
perspective, this analytical study can be useful for parametrizing
inclined boundary layers in NWP and climate models, as well as
in improving calculations of wind over glaciers (important for
glacier mass balance and other microclimate-related issues) and
wind-energy potential over mountainous terrain. In other words,
the new solution may be used as a basis for a parametrization of
unresolved simple slope flows in NWP and climate models.
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Grisogono B, Belušić D. 2009. A review of recent advances in understanding
the meso- and micro-scale properties of the severe Bora wind. Tellus 61A:
1–16.

Grisogono B, Oerlemans J. 2001a. A theory for the estimation of surface fluxes
in simple katabatic flows. Q. J. R. Meteorol. Soc. 127: 2725–2739 (referred
to as GOa).

Grisogono B, Oerlemans J. 2001b. Katabatic flow: Analytic solution for
gradually varying eddy diffusivities. J. Atmos. Sci. 58: 3349–3354 (referred
to as GOb).

Grisogono B, Oerlemans J. 2002. Justifying the WKB approximation in pure
katabatic flows. Tellus 54A: 453–463 (referred to as GO2).
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