
Journal of Machine Learning Research 17 (2016) 1-5 Submitted 9/16; Revised 11/16; Published 12/16

RLScore: Regularized Least-Squares Learners

Tapio Pahikkala tapio.pahikkala@utu.fi

Antti Airola antti.airola@utu.fi

Department of Information Technology

20014 University of Turku

Finland

Editor: Alexandre Gramfort

Abstract

RLScore is a Python open source module for kernel based machine learning. The library
provides implementations of several regularized least-squares (RLS) type of learners. RLS
methods for regression and classification, ranking, greedy feature selection, multi-task and
zero-shot learning, and unsupervised classification are included. Matrix algebra based
computational short-cuts are used to ensure efficiency of both training and cross-validation.
A simple API and extensive tutorials allow for easy use of RLScore.

Keywords: cross-validation, feature selection, kernel methods, Kronecker product kernel,
pair-input learning, python, regularized least-squares

1. Introduction

RLScore implements learning algorithms based on minimizing the regularized risk functional

argmin
f∈H

R(f) + λ‖f‖2,

where f is the learned predictor, H a reproducing kernel Hilbert space of functions, R(f)
the empirical risk, ‖f‖2 the regularizer, and λ > 0 a regularization parameter.

Regularized least-squares1 (RLS) is the classical method resulting from the choiceR(f) =∑n
i=1(f(xi)−yi)2. The method admits a closed form solution, leading to efficient algorithms

for leave-one-out cross-validation (LOO), multi-target learning, and fast selection of regu-
larization parameter (Rifkin and Lippert, 2007). For example, the LOO predictions can
be obtained essentially for free as the sideproduct of computations needed for training the
method once. Previously, these methods have been implemented in libraries such as GURLS
(Tacchetti et al., 2013) and Python scikit-learn (Pedregosa et al., 2011).

In the recent years, research in RLS methods has lead to the development of a large
variety of new efficient algorithms, that analogously to the classical RLS methods offer
unique computational benefits both for training and model selection. These include leave-
pair-out and leave-group-out cross-validation, methods for feature selection, ranking and
unsupervised classification, as well as pair-input learning methods with applications to
interaction prediction, cold start recommendations and zero-shot learning. RLScore is a
Python module that provides a simple high-level interface to a library of highly optimized
implementations of these methods.

1. aka kernel ridge regression, least-squares support vector machine

c©2016 Tapio Pahikkala and Antti Airola.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357319070?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pahikkala and Airola

2. Implemented Algorithms

RLScore implements a large variety of fast holdout and CV algorithms. A fast leave-
group-out (LGO) CV (Pahikkala et al., 2012b), where folds containing multiple instances
are left out, is provided, complementing the classical fast RLS LOO algorithm (also in-
cluded) (Rifkin and Lippert, 2007). The approach allows implementing fast K-fold CV,
and more importantly, implementing CV for non i.i.d. data with natural group structure.
Typical examples include leave-query-out CV for learning to rank, leave-sentence-out or
leave-document out CV in text mining, leave-image-out CV for object recognition etc. Fur-
ther, a leave-pair-out (LPO) algorithm (Pahikkala et al., 2009), that corresponds to leaving
each combination of two instances (or a subset of these) from the data out in turn, is pro-
vided. LPO can be used to compute an almost unbiased estimate of area under ROC curve
(Airola et al., 2011) and its generalization, the pairwise ranking accuracy.

RankRLS method implements efficient algorithms for both minimizing pairwise ranking
losses and computing cross-validation estimates for ranking. The method has been shown to
be highly competitive compared to ranking support vector machines (Pahikkala et al., 2009).
Unsupervised variants of RLS classification inspired by the maximum margin clustering
approach have also been developed (Pahikkala et al., 2012a).

Greedy RLS extends the basic RLS to learning sparse linear models in linear time, com-
bining fast update formulas for feature addition and LOO with a greedy search (Naula et al.,
2014). The computational short cuts allow scaling the approach to genome wide studies
with hundreds of thousands of features. The method produced the winning submission of
sub-challenge 3 of 2014 Broad-DREAM Gene Essentiality Prediction Challenge due to its
ability to select a minimal accurate subset of features for multi-task learning problems.

RLS methods allow also fast learning from pair-input data. Applications include protein-
protein and drug-target interaction prediction (Pahikkala et al., 2015), forecasting winners
of two-player games, collaborative filtering, learning to rank for information retrieval etc.
When making predictions for new pairs unseen in training set, the setting has natural
applications in transfer and zero-shot learning. In the kernel methods framework this can
be expressed as a learning problem where objects from two domains have their own kernel
functions, and their joint kernel is the Kronecker product kernel. Efficient training and
cross-validation algorithms for this setting have been recently derived (see e.g. Pahikkala
et al. 2013; Stock et al. 2016).

3. Software Package

RLScore is implemented as a Python module that depends on NumPy (van der Walt et al.,
2011) for basic data structures and linear algebra, SciPy (Jones et al., 2001–) for sparse
matrices and optimization methods, and Cython (Behnel et al., 2011) for implementing
low-level routines in C-language. The aim of the software is to provide high quality im-
plementations of algorithms developed by the authors that combine efficient training with
automated performance evaluation and model selection methods.

RLScore implements a modular design, where data representation, learning algorithms,
and prediction are separated from each other where possible. The most basic kernel-based
learning methods operate on a singular value decomposition of the data produced by an

2

RLScore: Regularized Least-Squares Learners

adapter object. The hypothesis space used depends on the adapter, choices include both
linear and kernel feature spaces, as well as Nyström type of reduced-set approximation.
After training, the adapter creates a suitable type of linear or kernel predictor. The predictor
object can be used or saved to disk independently of the algorithm used to train it.

The API design has been influenced by common Python data analysis environments such
as NumPy, SciPy and scikit-learn, making it easy to combine RLScore with existing data
analysis pipelines. The most fundamental classes in RLScore are learner objects in module
rlscore.learner. At initialization, a learner is trained, and function predict is used for
prediction. The predictor object can also be directly accessed and used independently of
the learner. The majority of the learners also implement fast holdout and cross-validation
functions, and support kernels, and fast multi-target learning. Unit tests are used to ver-
ify the implementations. Extensive tutorials describe how RLScore can be used to solve
different types of problems. Listing 1 presents a simple demonstration of the interface.

Listing 1: feature selection with greedy RLS algorithm

import numpy as np
from r l s c o r e . l e a r n e r import GreedyRLS
from s c ipy . s t a t s import kenda l l tau

#r e g r e s s i o n problem with 3 important f e a t u r e s
X = np . random . randn (100 , 20)
y = X[: , 0] + X[: , 2] − X[: , 5] + 0 .1∗np . random . randn (100)
#s e l e c t 3 f e a t u r e s wi th greedy RLS
r l s = GreedyRLS (X[: 5 0] , y [: 5 0] , regparam=1, s u b s e t s i z e =3)

#Did we s e l e c t the r i g h t f e a t u r e s ?
print (r l s . s e l e c t e d)
#Compute t e s t s e t p r e d i c t i o n s
p = r l s . p r e d i c t (X[5 0 :])
print (kenda l l tau (y [5 0 :] , p))

4. Benchmarks

Here we demonstrate the advantages of RLScore solvers on five benchmark tasks. Each of
the considered tasks can be expressed either as a single or a sequence of RLS problems with
closed form solutions. The baseline method solves each resulting system (K+λI)A = Y or
(XTX + λI)W = XTY with Python numpy.linalg.solve that calls the LAPACK gesv

routine. Further we compare to two existing RLS solvers implemented in Python scikit-
learn (version 0.18) (Pedregosa et al., 2011) and the MATLAB GURLS package (Tacchetti
et al., 2013). The RLScore algorithms produce exactly the same results as the compared
methods, but make use of a number of computational short-cuts resulting in substantial
increases in efficiency. GURLS results were not included for LPO and feature selection
as the runtimes were impractically long. Benchmark codes for comparing RLScore and
scikit-learn RLS implementations are included in the RLScore code repository.

3

Pahikkala and Airola

102 103 104

Inputs
10-2

10-1

100

101

102

103

104

105

106

107

CP
U

se
co

nd
s

RLSCore LOO
scikit-learn LOO
GURLS LOO
baseline LOO

(a) LOO + fast regularization

102 103 104

Inputs
10-3

10-2

10-1

100

101

102

103

104

105

CP
U

se
co

nd
s

RLSCore LGO
scikit-learn LGO
GURLS LGO
baseline LGO

(b) Leave-group-out CV

102 103 104

Inputs
10-1

100

101

102

103

104

105

CP
U

se
co

nd
s

RLSCore LPO
scikit-learn LPO
baseline LPO

(c) Leave-pair-out CV

102 103 104 105 106 107 108

Pair-inputs
10-4

10-3

10-2

10-1

100

101

102

103

104

CP
U

se
co

nd
s

RLSCore KronRLS
scikit-learn KronRLS
GURLS KronRLS
baseline KronRLS

(d) Kronecker RLS

20 40 60 80 100
Selected features

100

101

102

103

104

105

106

CP
U

se
co

nd
s

RLSCore GreedyRLS
scikit-learn GreedyRLS
baseline GreedyRLS

(e) Feature selection

(a) Leave-one-out CV and regularization parameter selection (parameter grid {2−15, ..., 215},
linear kernel, equal number of instances and features). Both scikit-learn and GURLS
also implement fast LOO and regularization.

(b) Leave-group-out CV, 10 instances per fold, Gaussian kernel, 500 features.

(c) Leave-pair-out CV, Gaussian kernel, 500 features.

(d) Kronecker product kernel K ⊗G is a popular choice in pair-input learning. KronRLS

allows learning with the kernel without explicitly forming the pairwise kernel matrix.
We generate two kernel matrices of size n × n, the label vector Y contains n2 entries,
one label for each pair. Baseline explicitly constructs the n2 × n2-sized kernel matrix.

(e) Learning sparse models. We consider greedy forward selection, where on each iteration
one selects the feature whose addition provides the lowest RLS LOO error. GreedyRLS
implements this procedure in linear time, with scikit-learn we use the fast LOO al-
gorithm, baseline is a pure wrapper implementation. Data matrix X contains 10000
instances and 1000 features, and the number of outputs in Y is 10.

RLScore scales to orders of magnitude larger problem sizes than the baselines on all but
the LOO experiment. With the exception of LOO, none of the considered fast algorithms
are available in other software implementations. RLScore contains also a large variety of
other methods, with new ones being added with each release.

Acknowledgments

We would like to acknowledge the support from the Academy of Finland (grants 134020 and
289903) and the co-authors who participated in developing the implemented algorithms.

4

RLScore: Regularized Least-Squares Learners

References

A. Airola, Tapio Pahikkala, Willem Waegeman, Bernard De Baets, and Tapio Salakoski.
An experimental comparison of cross-validation techniques for estimating the area under
the ROC curve. Computational Statistics & Data Analysis, 55(4):1828–1844, 2011.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython: The
best of both worlds. Computing in Science Engineering, 13(2):31–39, 2011.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org/.

P. Naula, A. Airola, T. Salakoski, and T. Pahikkala. Multi-label learning under feature
extraction budgets. Pattern Recognition Letters, 40:56–65, 2014.

T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Järvinen, and J. Boberg. An efficient algorithm
for learning to rank from preference graphs. Machine Learning, 75(1):129–165, 2009.

T. Pahikkala, A. Airola, F. Gieseke, and O. Kramer. Unsupervised multi-class regularized
least-squares classification. In IEEE International Conference on Data Mining, pages
585–594. IEEE Computer Society, 2012a.

T. Pahikkala, H. Suominen, and J. Boberg. Efficient cross-validation for kernelized least-
squares regression with sparse basis expansions. Machine Learning, 87(3):381–407, 2012b.

T. Pahikkala, A. Airola, M. Stock, B. De Baets, and W. Waegeman. Efficient regularized
least-squares algorithms for conditional ranking on relational data. Machine Learning,
93(2–3):321–356, 2013.

Tapio Pahikkala, Antti Airola, Sami Pietilä, Sushil Shakyawar, Agnieszka Szwajda, Jing
Tang, and Tero Aittokallio. Toward more realistic drug-target interaction predictions.
Briefings in Bioinformatics, 16(2):325–337, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

R. Rifkin and R. Lippert. Notes on regularized least squares. Technical Report MIT-CSAIL-
TR-2007-025, Massachusetts Institute of Technology, Cambridge, USA, 2007.

Michiel Stock, Tapio Pahikkala, Antti Airola, Bernard De Baets, and Willem Waegeman.
Efficient pairwise learning using kernel ridge regression: an exact two-step method. CoRR,
abs/1606.04275, 2016.

A. Tacchetti, P. Mallapragada, M. Santoro, and L. Rosasco. GURLS: A least squares library
for supervised learning. Journal of Machine Learning Research, 14(1):3201–3205, 2013.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for
efficient numerical computation. Computing in Science Engineering, 13(2):22–30, 2011.

5

http://www.scipy.org/

	Introduction
	Implemented Algorithms
	Software Package
	Benchmarks

