
Service interdependencies: insight into use cases for
service composition

Witold Abramowicz, Agata Filipowska, Monika Kaczmarek, Tomasz Kaczmarek,
Marek Kowalkiewicz, Wojciech Rutkowski, Karol Wieloch, Dominik Zyskowski

 Department of Management Information Systems, the Poznan University of Economics,

Poznan, Poland
{w.abramowicz, a.filipowska, m.kaczmarek, t.kaczmarek, m.kowalkiewicz, w.rutkowski,

k.wieloch, d.zyskowski} @kie.ae.poznan.pl

Abstract. The paper analyses several most appealing use cases for Semantic
Web services and their composition. They are considered from the perspective
of service types, QoS parameters, semantic description and user preferences.
We introduce different levels of service composition and discuss implications
of the above.

Keywords: Web services, information services, service composition, use cases

1 Introduction

With the emergence of the idea of Semantic Web and Semantic Web Services a lot of
different scenarios and use cases appeared, that were supposed to illustrate and justify
their application in the real life. The primary purpose of introducing semantics into
the world of Web services (WS) was to enable semantic-based discovery and
composition. WS composition comes into play when a client request cannot be
satisfied by one available service, but by an adequate combination of existing
services. The autonomous agents should be able to discover services that would suit
their goals, invoke them and execute series of tasks that required to this day human
involvement. However, most of the scenarios defined to illustrate this vision fail a
very basic test, namely applicability. This is not only a result of problems with
semantics, interoperability or lack of features that numerous WS-standards try to
address, but also many use cases for Semantic Web Services fail to take into account
some general properties of services. This is particularly visible in scenarios where
automatic service composition is considered.

Our motivation in this article is to clarify limitations of service composition, taking
into account use cases already discussed in the literature. We rely on our experiences
in several research projects that deal with semantic-enabled Web services. We also
propose meta-requirements for use cases that include service composition at various
levels. Additionally, we show interdependencies between different service types. The
main focus of the paper is to present distinctions between Web services and real-
world services, and show how these two worlds mix and interplay.

John Debenham
101

The paper is structured as follows. First the related work is briefly discussed. In
the following section a number of use cases used in the research projects and some
practical examples of service exploitation are presented. Next, the service types that
influence service compositions are given. Finally, the conclusions and future
directions of research are discussed.

2 Related work

Service composition may be defined as building more powerful and feature-rich
functionality from simpler elements. Each simple element (a service) must have
discrete, independent capabilities of its own, but can also be added to (composed
with) other elements to create more complex solutions [9]. Service composition has a
lot to offer. It has triggered a considerable number of research efforts and is currently
one of the most hyped and addressed issues in the Service Oriented Computing and
Service Oriented Architecture as the Web services standards have largely been
designed to be composable. The interoperability was the key requirement, and
interoperability triggers composability. Moreover, the web is a particularly interesting
domain for service composition for several reasons. Firstly, increasing numbers of
interesting services are moving online and the web is fast transforming from a
collection of static pages to a provider of numerous useful services. Another reason is
that Web services conform to the standard HTTP protocol which makes it (relatively)
easier to integrate them into a common framework. Third, because the web has many
independent service providers providing related services, there is an inherent need for
composing complementary services provided by independent providers to achieve the
end-user's needs. [12]

Of course the ultimate challenge is not only service composition but automatic
service composition performed by autonomous agents. Additionally, automatic
composition has a large potential in the workflow area (see [5]) as it enables dynamic
reconfiguration of workflow, which is hardly achievable if workflows are defined and
managed manually. Milanovic and Malek [4] propose four requirements that must be
satisfied by service composition mechanism: connectivity, nonfunctional quality-of-
service (QoS) properties, correctness, and scalability. Connectivity guarantees that
WS can be composed in terms of input and output messages. Nonfunctional QoS
properties denote parameters like timeliness, security and dependability. Correctness
assures that composed service’s properties are verified and the composition
framework must scale appropriately.

In order to illustrate the applicability of the Web services technology and Semantic
Web services composition a lot of different use cases were invented. They are
analyzed at different angels. There are many works and initiatives that look at the use
cases from the perspective of what requirements to Web services, Web services’
architecture and languages used to describe them, may be identified (see e.g.
http://www.daml.org/services/use-cases.html for a choice of use cases). There is a
tremendous ongoing research effort in several EU-funded projects that deal with
semantics for Web services (e.g. DIP, Knowledge Web, InfraWebs, SEKT, SWWS,
ASG and Esperonto). Some of these projects aim at applying Semantic Web Services

John Debenham
102

to real-world scenarios. They deal with subjects such as semantic description of
service capability, choreography, quality parameters, service discovery, invocation
and composition. The main problem of such projects is to apply the results of
scientific efforts in the real life. To handle this issue properly, special actions are
undertaken. For example, in the ASG project [2] one work component is responsible
for the preparation and further exploitation of use-cases. From the other side, there is
another work component focused entirely on service composition matters. Their task
is to define requirements to used services, prepare mechanisms capable of composing
and creating all needed ontologies. However, to our best knowledge, there are no
research initiatives looking at the use cases from the side as we present in this article.

3 Use cases discussion

In this section several of the scenarios that are considered when applying Semantic
Web Services are discussed. The aim of this survey is to prepare ground for further
analysis of common features of these use cases and comparison of different service
types that take part in the scenarios. The scenarios were split into two groups. The
first one includes scenarios that are tailored for using semantic descriptions or
composing services and are the basis for various Web Services development projects
(subsection A-F), like e.g. WSMO [14], ASG [2], USE-ME.GOV [16]. The second
group consists of existing and running applications of WS in particular business areas.
A. Travel booking
The most popular use case for Web services deals with traveling [7]. In this scenario
travel agent offers to book complete vacation packages. Airlines, hotels are providing
Web services to query their offerings and perform reservations. This use case assumes
that consistent ontology is used within the entire process. The other issue is services
reliability and trustworthiness of parties engaged. Another travel based scenarios
comes from WSMO group [14]. From the end-user point of view both scenarios give
interfaces to external information systems. Both scenarios are based on a service
(called Virtual Travel Agency and travel-agent service respectively) that behaves like
some kind of integration platform with a fixed workflow.
B. Tourist attraction booking
The scenario presents a location based mobile service - the Attraction Booking
Service (end service). It is part of a larger service platform in the ASG project,
providing all kinds of tourist services for a mobile end user. In this scenario an end
service customer (e.g. a tourist visiting a foreign city) wants to book a cultural event.
Hence, the goal of the Attraction Booking Service is to provide the customer with
information about attractions in the nearest surroundings of the current location.
Additionally, the customer is able to perform certain actions based on this information
(retrieve details, book, pay, get route description). First, the distributed platform that
manages the services, and on the basis of the user request composes a flow of service
specifications that can fulfill the goal. However, there is not only one service that
implements the service specification – e.g. implementation of AttractionInformation
service may be offered by three different service providers. So, the most suitable

John Debenham
103

service implementation to be contracted by negotiation to each service specification is
selected. At the very end the composed service is executed [2].
C. Buddy scenario
Buddy scenario assumes that the user owns a mobile device. The scenario is based on
keeping contacts with your buddies. It allows to get the availability status and location
of the buddies, and to set up a group communication, based on instant messenger,
SMS or voice. The scenario typically consists of service components, which are
configured dynamically (e.g. configuration of your buddy list, getting information
about activities, identification of friends in the vicinity and group communication).
The development of the service has to be dynamic, based on service components from
different providers. For example, we want to check who of our friends is in the
vicinity. In order to fulfill our need, the platform integrating the services must take
advantage of three services: finding phone number, finding localization and drawing a
map on the screen of mobile device. There is a set of services in each category and
the platform must dynamically select the best services to be executed in the workflow
taking into account QoS criteria and other user criteria [2].
D. Healthcare services
This is a scenario taken from a medical domain. Imagine that we would like to visit
dermatologist. There are several health services provided by medical centers that offer
us as a result the appointment at a dermatologist chosen. What differentiates them is a
price of a service, quality of specialist and medical center, date of possible
appointment. The service that will be chosen depends on user preferences (i.e.
urgency, price, distance to medical center, etc.) [16].
E. Dynamic supply chain
The dynamic supply chain scenario [10] assumes the existence of QoS ontologies and
of an engine capable of dynamic orchestration. The motivation of this use case is
simple – the retailer wants to choose the best suppliers based on its business logic and
the suppliers want to maximize their profit as well as increase their business with the
retailer. A key feature of the scenario is the use of quality of service (QoS) as an
essential criterion for dynamic selection of services that are later dynamically
composed. The scenario assumes multiple interactions between the platform (as a
proxy) and the user (retailer). The result of the interactions is a placed order.
F. Complaints handling by local authority
This is an example of e- or m-government solution. Most of the administrative
processes are predefined by law or internal regulations of the institution e.g. when
authority receives an inquiry or a request from citizen it is obliged to send response
within a predefined time. Moreover also the processes in institutions are defined, so
when citizen sends a complaint, it is redirected to a certain department, dealt with and
then sender is notified about the action that was undertaken. It is envisioned that
citizens could send complaints to the local authority with their mobile devices, and be
notified of the status of the complaint and solution for it [16].
G. Bookstore on the Web
The bookstore scenario [3] motivates the need for semantic annotation in protocol
definition languages. It is shown that WSDL does not describe some important
aspects of web services such as implications and effects of an operation. Interested
parties are the bookseller, the customer and Semantic Web services middleware
vendors. On the bookstore side, Semantic Web services allow for the definition of

John Debenham
104

more sophisticated behavior. On the customer side, the interest lies in easier
understanding of the service's behavior and of how to leverage them. Similar order-
purchase-like scenario is presented in [13]. For a B2B domain there is a scenario [11]
whose actors are companies and organizations that would like to exchange messages
that will trigger their business processes.
H. Amazon
The Amazon.com web application is compound in nature. It consists of several
services: www service (which in turn comprises of search service, product catalog
online etc.), transaction handling service, package delivery service. Some of the
complexity of this service is exposed through Web service interface. This includes
information services e.g. getting detailed information about particular item or list of
items as a response to a query and shopping cart interface that allows for placing
orders through Amazon. WSMO group (www.wsmo.org) has developed Amazon E-
commerce Service use case which describes the service in the WSMO language. The
functionality includes various kinds of searches and setting up shopping cart.
Purchasing is not possible in this scenario, as well as through native service [15].
I. eBay
eBay’s Web services allow for executing almost every operation accessible on the
website (listing items, searching, receiving notifications), although they do not
support bidding yet (as opposed to other regional auction services, e.g.
www.allegro.pl). In the year 2004 the eBay Platform handled over 1 billion Web
service requests per month [8].
J. Google
Last but not least is the example of simple Web service which is Google API. It
allows querying the Google retrieval engine, and obtaining results in XML format.
This is another example of successful application of Web services as an interface to
the already existing information services.

The common point of all the services described in this section is the added value to
the end user – the ability to query offerings, perform reservations, transmit documents
and made payments etc. Moreover, some of the scenarios consider services that are
performed in the real world, like health services, supply of materials, traveling or
even book delivery. Finally, as one may see not only the semantics are important for
successful composition of Web services but the other crucial criterion is the quality of
service aspect. In the consequence, taking these three aspects into account, we may
distinguish two types of Web services presented in the next section that have a crucial
impact on the composition process.

4 Service types

The use cases presented above can be analyzed from the perspective of the type of
services’ results. The services in all the scenarios follow at least a simple interaction
pattern: query – response. The queries are used to retrieve an offer of a particular kind
(books, transportation routes, tickets, healthcare, industrial suppliers). The expected
result is a list of interesting items (information result). The other type of interaction is
to send a message with the goal to trigger some further workflow. The results in such

John Debenham
105

a case are twofold. The first is an immediate confirmation sent to the user (order
confirmation). The second is an actual, real-world (possibly postponed) service, e.g.
the book delivered to the user, the reserved place on the plane the user is just entering,
etc (real-world result). As there are two kinds of result of services we distinguish two
kinds of services – real-word and information services. Real-world service is a service
(properly defined piece of work) offered by some provider (through traditional
channels like face-to-face communication and hand-to-hand delivery) in the real
world. Information service is such a service that its sole relevant result is a piece of
information and the result can be transmitted to the customer through any possible
communication channel.

Note that in order to utilize a service in some information system the service must
be wrapped-up with a machine-processable interface. Such an interface is a Web
service according to the W3C, which states that it is a software system designed to
support interoperable machine-to-machine interaction over a network. It has an
interface that is described in a machine-processable format such as WSDL.

The above division (to real-world and information services) together with the
notion of Web service as an interface allows us to describe services in terms of
tangibility of their results by any information system. In case of information system
the user is only interested in the result that can be captured by some Internet
communication protocol. In case of a real-world service the user besides the feedback
information is interested in results that cannot be controlled. This intangibility is an
effect of the lack of full integration between service provider’s system and systems of
its environment as well as machines’ inability to control physical results of provided
services.

The use cases presented in the third section mix different notions of service. On
one hand they are all information services. Actually some of the use cases utilize
WWW browsers, some provides API, and some provides dedicated solutions. On the
other hand the core of some of the use cases is to book or order something. Wrapping
information service is quite simple, because information service may be seen as a
computational function with simple input and output. Wrapping real-world service is
more complex. We think that the goals for designing scenarios discussed above miss
this distinction, which is the reason for the fact, that only simple, well known services
like Amazon, Google, auctions actually works. Moreover only few of their
capabilities are accessible through API (not GUI). Not taking into account differences
in meaning of Web service is the reason, why it is hard to find good use cases that
deal with real-world services, and yet requires Web services, and reach semantics and
semantic-based composition.

5 The impact of service types on composition

Taking into account the types of service distinguished in the previous section, the
conclusion appears that the service composition is not as monolithic as it would seem.
If we take into account different service types and their semantic description
accordingly, we obtain different levels of composition. The following levels of
composition may be distinguished:

John Debenham
106

- Full composition – it appears in the scenarios that consider large set of substitutive
services. When the user goal is formulated, then the process specification, taking
into account desired inputs, outputs, preconditions and effects, needs to be
defined. Then adequate services implementations are bound to the process
specification.

- Limited composition – in this case the process definition is fixed in terms of types
of services (service specifications), however different services (implementations
from different providers) may be attached / negotiated to become a part of the
composition. Those negotiated services may be already contracted or internal to
the company, or they may be external. In the latter case, the composition usually
requires SLA’s and negotiation of contract.

- No composition – the process is fixed, the providers of services on each step of
process are known.

Each of the composition levels mentioned above is available to both real-world
services and information services (possibly wrapped into Web services). Yet due to
characteristics of real-world services it is very hard to mix them with information
services within one process. If we try to do so we would have to consider such effects
of real-world services that are not accessible to information services. Moreover,
composition is also dubious due to the approach to semantic service description. Real-
world services may have semantic description which is just symbolic representation
of what they perform. However information services (like ticket booking service)
must be described as information delivering or changing service (in this example –
enabling some other service), having only minor impact on the real world.

Mixing information and real-world services in one composed process is also
challenging for its execution. It is only possible to monitor execution of real-world
services (the platform that executed the whole process gets notifications when the
service is finished), while for information services wrapped in WS it is actually
possible to execute them remotely. Moreover, it is rather easy to handle the
composition of information services, because an output of one service is an input of
the next service. Real-world, complex services that really effect in the creation of real
objects do not provide simple data types that can be processed electronically.

A few more limitations that may be applied to the service composition will be
discussed in the following subsections.

5.1 The role of Quality of Service in service composition

Service composition is definitely limited by the quality of service considerations. It
is important to note, that service composition is usually quality-driven, while its goal
is to achieve certain functionality. However, when talking about quality of service
issues two aspects need to be taken into account. On one hand the quality of Web
service implementation (the interface) and on the other hand the quality of the
resulting service, made available through the use of Web service. In the consequence,
the quality concept should be divided into two groups – Quality of Execution (QoE)
and Quality of Result (QoR) [1].

QoE parameters characterize services in general. They usually include execution
time, execution cost (not to mistake with different prices appearing around the

John Debenham
107

service), latency, response time etc. QoR in turn describes the output of the service –
it is hard (or even impossible) to enumerate all the parameters for measuring quality
of arbitrary output, however it always includes price. The example for this distinction
may be ticket booking service (wrapped with WS). Its QoE parameters would
measure how long did it take to book a ticket and what was the cost of using this
particular service. However the price of the ticket is QoR for this service, together
with place for which the ticket is booked, time, etc. Quality of Execution is rather
domain-independent whereas QoR concept is domain specific. However, in some
cases the differentiation between QoE and QoR is rather subjective. It depends
strongly on the users’ point of view, their previous experiences as well as goals and
expectations.

Taking this all into account, the quality of service is not easy to be defined and
measured. For those scenarios that include binding concrete services to their
specifications (limited composition or second step of full composition), services are
only distinguishable via their QoS. As QoS is only partially measurable it leads to
problems in satisfying user preferences. Additionally, from the user perspective,
problems with QoR have deep impact on possible queries that can be asked against
service repositories. For example users can ask for cheapest services but not for
services that would get them cheapest tickets because that would require executing
the services even before they are chosen.

5.2 Requirements for service composition from the perspective of semantic
service description and goals formulation

The indepth analysis of the use cases implies that different types of services (real-
world, information) will have different semantic description. Does this influence
composition capability (in terms of mixing both types or even within single type)?

It seems that the deepest challenges lie in the case of full composition. There the
services are not known in advance because the user does not specify which service he
or she would like to use. He or she only specifies the desired goal, giving its semantic
description. This may be viewed as specifying service capabilities in terms of
preconditions and effects. Four illustrative examples of such goals (corresponding to
the scenarios discussed) would be:

- I want to have a certain book,
- I have a free evening and I want to get out spending it on something interesting,
- I’m in New York today (15th of January) and on March 12th I need to be in Hong

Kong on the conference,
- I have ill sister and I want her to get better.
It seems like these questions would fit for bookstore, attraction booking, travel or

healthcare use cases. However those scenarios require specifying the service
composition on some general level first - preferably from certain available service
categories. Those categories should include services that deliver books, make
arrangements for evenings, transport or heal. While all what is described in the
scenarios are information services: that inform about books (and allow ordering
them), find attractions or book tickets. It is hard to match user goals expressed this
way with such service descriptions.

John Debenham
108

Furthermore, it seems that the composition may be achieved only after knowing
the outcomes of certain services. It is possible to bind some services to the process
only if the results of previous services are known. For example: if my process
includes paying for a ticket, the payment methods available for ticket booking service
determine which transaction handling service I should use.

Users of platforms that act as middleware between service providers and customers
need to query for service to be discovered and executed. This is often referred to as
specifying user’s goal. Several types of user queries are conceivable:

- Give me all available services that can do... – this is a general question about
certain category of services. If they are not directly discoverable through semantic
descriptions then full composition is required.

- I do not know what to do with my free evening... - another question that requires
full composition.

- I want to go to the cinema on the movie titled... Which one do you propose? – here
the user specifies some of the results of services that he or she would like to
obtain. This is the case for limited composition - only some categories of services
need to be considered, the process is fixed and all is necessary is finding the
service that books tickets and then plays the right movie.

- I want to book a ticket for cinema... – in this case there is no need for composition.
The process is fixed and the user specifies (indirectly) which service (from which
provider) he would like to use.

The level of the above questions determines how the services should be described.
For the first one any description is sufficient (even textual), however it is
tremendously challenging even with fullest semantic description to conduct automatic
service composition against such queries. The sheer number of variations of processes
may be prohibitive, not to mention that the user will have to choose which one he or
she prefers. With regard to the QoS and other parameters – user does not provide any
values of parameters (possibly only some QoS parameters – like execution time of the
whole composed service or its price; for example: evening for 100 USD)

 For the second – the description should include information which cinemas a given
service is able to book (+ values of other runtime parameters) – here the characteristic
thing is that the user provides some of the input values with his or her goal description
(here – the name of the movie). The problem here is how to check which of the
service is able to handle the request prior to invoking it!

 For the third, a concrete service may be successfully discovered and invoked. If
there are many services available the user may choose one of them based on QoS
parameters, his or her preferences or any external information.

6. Conclusions

Introducing several levels of service composition we discussed how the type of a
service, its QoS parameters and semantic description influence the feasibility of
composition. From the discussion of several use cases we clearly see that currently
only simple information services are applicable, possibly with fixed workflows and
limited composition. We observe that Web service composition use cases often miss

John Debenham
109

the distinction between real-world services and information service. The reason for
this is the misconception that Web services that serve as front-end for real-world
services and may be described as if they would be the real services. Google and eBay
examples show that Web services make sense in business environment where they
really make business processes more efficient or simplify them.

Moreover, it is inherent for (real-world) services that they are partially undefined
and become defined on the time of their execution (which also determines the price).
Therefore for complex services it is very hard to automate the process of composition
and even to deliver proper description. It is something that should be remembered.

References

1. W. Abramowicz et al., “A Survey of QoS Computation for Web Service Profiling , ISCA
18th International Conference on Computer Applications in Industry and Engineering, 2005

2. J. Noll et al., “ASG based scenarios in Telecommunications, Telematics and enhanced
Enterprise IT”, Deliverable on http://asg-platform.org , 2004

3. B. Benatallah, F. Casati, F. Toumani, “Conversation Protocol of the book purchase service”,
2003

4. N. Milanovic, M. Malek, “Current Solutions for Web Service Composition”, Internet
Computing Vol. 8, No. 6(6), pp. 51-59, 2004

5. M. Gajewski, M. Momotko, “Dynamic Failure Recovery of Generated Workflows”, 16th
International Workshop on Database and Expert Systems Applications (DEXA'05) pp.
982-986, 2005

6. G. Piccinelli, Service Provision and Composition in Virtual Business Communities (HPL-
1999-84), Technical report, Hewlett-Packard, 1999

7. H. Haas, Web service use case: Travel reservation, 2002
8. W. Iverson, “Web Services in Action: Integrating with the eBay Marketplace”, retrieved

10th January 2005, http://developer.ebay.com/join/whitepapers/webservicesinaction, 2004
9. P. Lipton, “Composition and Management of Web Services”, SOA Web Services Journal.,

2004
10. K. Verma, A. Sheth, J. Miller, R. Aggarwal, “Dynamic QoS based Supply Chain”, retrieved

10th January 2005, http://www.daml.org/services/use-cases, 2004
11. C. Bussler, M. Zaremba, “Semantic Web-enabled Business Protocol Standards”, retrieved

10th January 2005, http://www.daml.org/services/use-cases, 2003
12. S. R. Ponnekanti, A. Fox, “SWORD: A Developer Toolkit for Web Service Composition”,

in the Eleventh World Wide Web Conference (WWW2002), 2002
13. H. He, H. Haas, D. Orchard, “Web Services Architecture Usage Scenarios”, retrieved 10th

January 2005, http://www.daml.org/services/use-cases, 2004
14. M. Stollberg, R. Lara, “WSMO Use Case <<Virtual Travel Agency>>”, retrieved 10th

January 2005, http://www.wsmo.org, 2004
15. J. Kopecky, D. Roman, J. Scicluna, “WSMO Use Case: Amazon E-commerce Service”,

retrieved 10th January 2005, http://www.wsmo.org, 2005
16. D. Tilsner, W. Abramowicz, M. Wi!niewski, P. Moore,G. Peinel, USE-ME.GOV

(USability-drivEn open platform for MobilE GOVernment), The Proceedings of the First
European Conference on Mobile Government, 2005, University Sussex, Brighton UK,
ISBN 9763341-0-0Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford
Digital Library Metadata Architecture. Int. J. Digit. Libr. 1 (1997) 108–121

John Debenham
110

