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ABSTRACT
In this paper, we propose and investigate a new adaptive

trol algorithm for mechanical systems with time-varying para
eters and/or time-varying disturbances. The proposed me
does not assume any structure to the time-varying paramet
disturbance. The idea is based on the expansion of the t
varying parameter/disturbance using the Taylor series ex
sion; this facilitates expanding a time-varying function as a fin
length polynomial and a bounded residue; the coefficients of
finite length polynomial are estimated in a time interval sm
enough so that they can be assumed to be constant within
interval. A novel experiment is designed using a two-link m
chanical manipulator to investigate the proposed algorithm
perimentally. Simulation and experimental results validate
proposed new adaptive control algorithm; we discuss these
sults and also give some future research directions.

1 Introduction
Broadly, adaptive control refers to control of partially know

systems. It is rare that the control designer knows the true
rameters of the system being controlled. It is this uncerta
in the knowledge of the system parameters that has led to
tinued strong interest in adaptive control research; adaptive
trol has been one of the most important research activity am
control researchers since the 1950’s. Significant amount of
published research has focused on unknown parameters b
constant. Limited amount of research has been done in ada
ess all correspondence to this author.

duct
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control of nonlinear systems with time-varying parameters.
amount of research in adaptive control assuming that the un
tain parameters are constant far overshadows research in ad
control of systems with time-varying parameters. As pointed
in (1), one of the compelling reasons for considering adap
methods in practical applications is to compensate for large
ations in plant parameter values. The focus of this paper is o
design of a practical adaptive control algorithm for time-vary
mechanical systems; which are an important practical clas
nonlinear systems with time-varying parameters.

High performance tracking control of mechanical syste
is essential in a number of industrial applications; examples
clude, material handling and part assembly. In many of the
dustrial applications the mechanical system dynamics is t
varying due to a time-varying payload and/or time-varying d
turbances. Examples of such applications include pouring
filling operations using robots. Also, time-varying disturban
are common in a large-number of mechanical system app
tions. There has been an increase in recent research ac
in adaptive control of time-varying systems. But most of t
research has focused on assuming worst case bounds for
varying parameters and/or their derivatives; an amalgam of a
tive control and robust control have been used in the contro
signs with the gains of the controller chosen based on the w
case bounds. The resultant controllers, although stable, gav
to large and at times practically unbounded control inputs.

In (2), a robust switching controller is designed a the tim
varying parameter model of the robot manipulators perform
path tracking tasks. Properties of the element by element pro
Copyright  2002 by ASME
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of matrices is used to isolate the time-varying parameters fr
the inertia matrix. A robust adaptive control for robot manipu
tors consisting of slowly time-varying parameters is presente
(3). A smooth robust adaptive sliding mode controller is given
(4). A robust adaptive control algorithm subject to bounded d
turbances and bounded and (possibly) time-varying parame
is given in (5); it is shown that the proposed controller achiev
asymptotic tracking if the disturbances vanish and the parame
are constant. In (6), a new adaptive controller for time-vary
mechanical systems is proposed based on the assumption th
time-varying parameters are given by a group of known boun
time functions and unknown constants. A time-scaling techniq
of mapping one cycle period of the desired trajectory into a u
interval is proposed to provide robustness to the parameter a
tation algorithms. A novel experimental platform consisting
a two-link manipulator with time-varying payload that mimic
filling and pouring operations was built to verify the propos
adaptation algorithm experimentally.

In this paper, we do not assume any particular structure
the time-varying parameters and disturbances; that is, we c
sider the unknown time-varying parameters and disturbance
be general unknown time-varying functions. We express the g
eral time-varying function as a finite ((p− 1)-th order) length
polynomial in time and a residue based on a result related
Taylor’s formula(7). We compute the bound on the residue
assuming that a bound on thep-th derivative of the function is
available. In the proposed new adaptive controller, the coe
cients of the polynomial are estimated in a small time interval
that they can be assumed to be constant; and a robustness
is used in the controller to compensate for the unknown resid
the robustness term is much smaller than what is generally u
in robust control literature and is proportional to the choice
the time interval chosen for estimation. To validate the propo
adaptive controller, an experiment is designed on a two-link m
nipulator platform. We use the second-link of the two-link plan
manipulate to generate time-varying disturbances in the first l
We also show simulation results of the proposed adaptive c
troller and compare it with a classical robust control algorith
that is available in literature.

2 Time-Varying Dynamics
The dynamic equations of ann degree-of-freedom mechani

cal system with time-varying parameters and disturbances ar
given by

M(q,φ)q̈+C(q, q̇,φ)q̇+F(q, φ̇)q̇+g(q,φ) = τ+d(t) (1)

whereq ∈ Rn are generalized coordinates,M(q) ∈ Rn×n is the
positive definite inertia matrix,C(q, q̇) ∈ Rn×n is the matrix
composed of Coriolis and centrifugal terms,g(q) ∈ Rn is the
2
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gravity vector,F(q, φ̇) ∈ Rn×n is a symmetric matrix,φ ∈ Rm is
the vector of constant and/or time-varying parameters,τ ∈ Rn

is the vector of control inputs, andd(t) ∈ Rn is the vector of
time-varying disturbances. The properties of the dynamic mo
(1) are:

Property I: The inertia matrix,M(q,φ), of the time-varying
mechanical system is a symmetric positive definite mat
Assumingφ(t) is bounded,M(q,φ) is bounded from above an
below for all system configurations.

Property II: F(q, φ̇) is a symmetric matrix, which is a
consequence of the symmetry of the inertia matrix.

Property III: The matrix Ṁ(q,φ) − 2C(q, q̇,φ) − F(q, φ̇) is
skew-symmetric. Notice that the skew-symmetry property
the time-varying case is different from that of the time-invaria
case.

Property IV: The dynamic equation (1) is linear in th
unknown parameters, i.e.,

M(q,φ)q̈+C(q, q̇,φ)q̇+F(q, φ̇)q̇+g(q,φ)

= Y1(q, q̇, q̈)φ+Y2(q, q̇)φ̇
(2)

whereY1(q, q̇, q̈) andY2(q, q̇) are the regressor matrices corr
sponding toφ(t) andφ̇(t), respectively.

3 Representation of Time-Varying Functions
To represent a general time-varying function, we invoke

following result (7):

Lemma 1. Let I be an open interval inR, and f be a p-times
continuously differentiable function ofI intoR; then, for any pair
of pointst0, t in I

f (t) = f (t0)+
(t− t0)

1!
f (1)(t0)+ · · ·+ (t− t0)p−1

(p−1)!
f (p)(t0)

+
Z t

t0

(t−ξ)p−1

(p−1)!
f (p)(ξ)dξ

(3)

where f (p)(·) stands for thep-th derivative of the functionf (·).
With lemma 1, we can represent an arbitrary time-varying
rameter,φ(t), as follows:

φ(t) =
p−1

∑
i=0

ki(t− t0)i +δφ (4)
Copyright  2002 by ASME
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where

ki =
φ(i)(t0)

i!
and δφ =

Z t

t0

(t−ξ)p−1

(p−1)!
φ(p)(ξ)dξ.

Notice thatki and δφ are vectors of the same size as that
φ. Suppose that thep-th derivative ofφ(t) is bounded, i.e.,
supt ‖φ(p)(t)‖ ≤ cp, we can boundδφ as

‖δφ‖ ≤ cp(t− t0)p

p!
. (5)

The motivation for the representation ofφ(t) as given in (4)
is as follows. If the interval(t− t0) is chosen small, then the co
efficientski can be assumed to be constant and can be estim
on-line during that time-interval. The bound onδφ given by (5)
depends oncp, (t − t0), and p. The bound onδφ can be made
small by either choosing a small(t− t0) or a largep even in the
case whencp is large.

The time-derivative ofδφ(t) can be obtained by using Leib
nitz rule1 of differentiating an integral with variable limits, an
is given by

δ̇φ =
Z t

t0

(t−ξ)p−2

(p−2)!
φ(p)(ξ)dξ. (6)

With the bound onφ(p)(t) we can obtain a bound oṅδφ as

‖δ̇φ‖ ≤ cp(t− t0)p−1

(p−1)!
. (7)

In a similar fashion, one can represent the time-varying dis
banced(t) as follows:

d(t) =
r−1

∑
i=0

l i(t− t0)i +δd. (8)

If we assume thatsupt ‖d(p)(t)‖ ≤ cr then

‖δd‖ ≤ cr(t− t0)r

r!
. (9)

1Leibnitz rule

d
dt

[Z ψ(t)

θ(t)
f (x, t)dx

]
=
Z ψ(t)

θ(t)

∂ f (x, t)
∂t

dx− dθ(t)
dt

f (θ(t), t)

+
dψ(t)

dt
f (ψ(t), t)
3
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It should be observed that the bounds onδθ andδd depend
on the choice of the time interval(t−t0) and the number of term
in the finite length polynomial.

4 Adaptive Control Design
We consider the trajectory tracking problem for the mech

ical system with time-varying parameters. Letqd(t) be the de-
sired trajectory. It is assumed thatqd(t) is twice continuously
differentiable. Lete = q(t)− qd(t) be the joint tracking error
and ev = ė+ Λe be the reference velocity error. Consider t
control law,τ, given by

τ =−Kvev +Y1(q, q̇, q̇r , q̈r)k̂0−
r−1

∑
i=0

l̂ i(t− t0)i

+
p−1

∑
i=1

(t− t0)i−1
[
(t− t0)Y1(q, q̇, q̇r , q̈r)

+
i
2

Y2(q, q̇+ q̇r)
]
k̂i −

(
‖Y1(q, q̇, q̇r , q̈r)‖‖δφ‖

+
1
2
‖Y2(q, q̇+ q̇r)‖‖δ̇φ‖+‖δd‖

)
sgn(ev) (10)

whereq̇r = q̇d−Λe, Kv andΛ are positive definite gain matrice
k̂i andl̂ i are estimates ofk andl , respectively, and sgn(ev) repre-
sents the component-wise sign vector ofev. Substitution of the
control input (10) into the dynamic equation (1) and simplifyi
using the linear parameterization property, i.e., Property IV,
obtain the error dynamics in terms ofev

M(q,φ)ėv +C(q, q̇,φ)ev +
1
2

F(q, φ̇)ev +Kvev

=Y1(q, q̇, q̇r , q̈r)k̃0 +
p−1

∑
i=1

Wi(q, q̇, q̇r , q̈r , t, i)k̃i

−
r−1

∑
i=0

l̃ i(t− t0)i −
(
‖Y1(q, q̇, q̇r , q̈r)‖‖δφ‖

+
1
2
‖Y2(q, q̇+ q̇r)‖‖δ̇φ‖+‖δd‖

)
sgn(ev)

−Y1(q, q̇, q̇r , q̈r)δφ− 1
2

Y2(q, q̇+ q̇r)δ̇φ +δd

(11)

wherek̃i = k̂i −ki , l̃ j = l̂ j − l j , and

Wi(q, q̇,q̇r , q̈r , t, i) = (t− t0)iY1(q, q̇, q̇r , q̈r)

+(t− t0)i−1 i
2

Y2(q, q̇+ q̇r).

To estimate the unknown parameters,ki and l i , we use the
gradient projection algorithm given in (9; 8), which we briefl
Copyright  2002 by ASME
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illustrate in the following. Consider the parameter setΠi given
by

k̂i = (k̂i1, · · · , k̂im)T ∈Πi

⇐⇒ |k̂i j −ρi j |< σi j , ∀ j ∈ {1,m}
(12)

with ρi j andσi j some given real numbers. Consider the funct

P (k̂i) =
2
ε

[
m

∑
j=1

∣∣∣∣∣
k̂i j −ρi j

σi j

∣∣∣∣∣
q

−1+ ε

]
(13)

where0 < ε < 1 andq≥ 2. Now, consider the “smooth projec
tion” Proj, which will be used to estimatêki while maintaining it
in Πi :

Pro j(p,y) =





y, if P (k̂i)≤ 0.

y, if P (k̂i)≥ 0 and
∂P
∂k̂i

(k̂i)y≤ 0.

y−
P (k̂i)

∂P
∂k̂i

(k̂i)y
∥∥∥∥

∂P
∂k̂i

(k̂i)
∥∥∥∥

2

[
∂P
∂k̂i

(k̂i)
]T

,

otherwise.

(14)

where∇P =
∂P (k̂i)

∂k̂i
. Based on the smooth projection defin

above, the following estimation algorithms are designed fok̂i

andl̂ i :

˙̂k0 = Pro j(k̂0,−Γ0Y
T
1 (q, q̇, q̇r , q̈r)ev), (15)

˙̂ki = Pro j(k̂i ,−ΓiW
T
i (q, q̇, q̇r , q̈r , t, i)ev),
∀ i ∈ {1, p−1}, (16)

˙̂l j = Pro j(l̂ j ,Γd j(t− t0) jev), ∀ j ∈ {0, r−1}. (17)

whereΓ0, Γi , i = 1 :m, andΓd j, j = 1 :n, are symmetric positive
definite gain matrices. The following theorem gives the stabi
of the closed-loop error dynamics.

Theorem 4.1. For the time-varying mechanical system giv
by (1), the proposed adaptive control law given by(10) together
with the parameter estimation algorithms given by(15), (16),
(17), and with the knowledge of the bounds given in Section 3
errorseandėconverge to zero asymptotically and the parame
estimates are bounded.
4

ed From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: 
Proof: Consider the Lyapunov function candidate:

V(ev, k̃i ,l̃ i , t) =
1
2

eT
v M(q,φ)ev +

1
2

k̃T
0 Γ−1

0 k̃0

+
1
2

p−1

∑
i=1

k̃T
i Γ−1

i k̃i +
1
2

r−1

∑
j=0

l̃T
j Γ−1

d j l̃ j .
(18)

Differentiating the Lyapunov function candidate along the t
jectories of the closed-loop system (11), using Property III, a
simplifying we obtain

V̇ =−eT
v Kvev +

(
k̃T

0YT
1 (q, q̇, q̇r , q̈r)ev

+ k̃T
0 Γ−1

0 Pro j(k̂0,−Γ0Y
T
1 (q, q̇, q̇r , q̈r)ev)

)

+
p−1

∑
i=1

(
k̃T

i Wi(q, q̇, q̇r , q̈r , t, i)ev

+ k̃T
i Pro j(k̂i ,−ΓiW

T
i (q, q̇, q̇r , q̈r , t, i)ev)

)

+
r−1

∑
j=0

(
− l̃T

j (t− t0) jev + l̃T
j Γ−1

d j Pro j(l̂ j ,

Γd j(t− t0) jev)
)
−

(
‖Y1(q, q̇, q̇r , q̈r)‖‖δφ‖

+
1
2
‖Y2(q, q̇+ q̇r)‖‖δ̇φ‖+‖δd‖

)
eT

v sgn(ev)

−eT
v

(
Y1(q, q̇, q̇r , q̈r)δφ +

1
2

Y2(q, q̇+ q̇r)δ̇φ−δd

)
(19)

With the parameter estimation algorithms given by (15), (1
(17), the following are true using (14) (see (8)):

k̃T
0

(
YT

1 (q, q̇, q̇r , q̈r)ev

+Γ−1
0 Pro j(k̂0,−Γ0Y

T
1 (q, q̇, q̇r , q̈r)ev)

)≤ 0,

k̃T
i

(
WT

i (q, q̇, q̇r , q̈r , t, i)ev

+Γ−1
i Pro j(k̂i ,−ΓiW

T
i (q, q̇, q̇r , q̈r , t, i)ev) )≤ 0,

l̃T
j

(
−(t− t0) j−1ev +Γ−1

d j Pro j(l̂ j ,Γd j(t− t0) jev)
)
≤ 0.

Hence, the derivative of the Lyapunov function candidate sa
fies

V̇ ≤−eT
v Kvev (20)

This implies thatev, k̃0, k̃i , l̃ i ∈ L∞, andev ∈ L2. Further, from
(11) ėv ∈ L∞. Therefore, invoking Barbalat’s lemma,ev asymp-
totically converges to zero. Sinceev = ė+Λe, bothe(t) andė(t)
asymptotically converge to zero.
Copyright  2002 by ASME
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5 Simulation Results
In this section, the proposed adaptive controller is compa

with a traditional robust control via computer simulations. W
consider a single-link robot with the dynamics given by

I(t)q̈+ İ(t)q̇+ fcsgn(q̇)+ fvq̇ = τ+d(t) (21)

where I(t), q, fc, fv, τ, d(t) are the moment of inertia, angu
lar position, Coulomb friction coefficient, viscous friction co
efficient, control effort and external disturbance, respectiv
The objective is to control the link to track a desired traje
tory qd = 0.5sin(πt)(rad) with fv = 0.01(N-m-s), fc = 3(N-m),
I(t) = 3+1.5sin(4πt) (Kg-m2), andd(t) = 120sin(3πt) (N-m).

5.1 Robust control
Assuming that the friction coefficients are exactly know

we can choose the following robust control law

τ = Î q̈r + fvq̇+ fcsgn(q̇)+uδ−Fvev−Uδsgn(ev),

Uδ ≥ |Ĩ ||q̈r |+ |İ ||q̇|+ |d|, (22)

whereÎ is the estimate ofI , andĨ = Î − I . The controlled system
is asymptotically stable. However the robust control termUδ is
very large which will results in control chattering. If we choo
Î = 3, Uδ should satisfy

Uδ ≥ 1.5|q̈r |+18.8|q̇|+120. (23)

The simulation results are shown in Figures 1, 2, and 3. Fig
1 shows the angular position, velocity and tracking error, resp
tively. The time-varying moment of inertia and disturbance
shown in Figure 2. Figure 3 displays the control effort by us
the robust control law given by (22); notice that there is sign
icant chattering, which makes practical implementation infea
ble.

5.2 Adaptive control
Using the approach given in Section 3, and assumingp = 2,

the inertia and the disturbances,I(t) andd(t), can be expanded
as

I(t) = k0 +k1(t− t0)+δI ,

d(t) = l0 + l1(t− t0)+δd, t ≥ t0 (24)

where|δI | ≤ cI
2 (t− t0)2, |δ̇I | ≤ cI (t− t0), |δd| ≤ cd

2 (t− t0)2, k0 =
I(t0), k1 = I (1)(t0), l0 = d(t0), l1 = d(1)(t0), cI = supt I (2)(t), and
cd = supt d(2)(t).
5
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Figure 1. Robust control simulation results: angular position, velocity

and tracking error
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Using the results from the previous section, we can cho
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Figure 3. Robust control simulation results: control effort

the following control law and estimation law as

τ = (k̂0 + k̂1(t− t0))q̈r + k̂1(q̇r + q̇)+ f̂vq̇+ f̂csgn(q̇r)

−Fvev− l̂0− l̂1(t− t0)−Usgn(ev), (25)

U ≥ K1|q̈r |+ 1
2

K2|q̇+ q̇r |+K3, (26)

˙̂β = Pro j(β̂,y) (27)

where(∗̂) is the estimate of(∗), K1 ≥ |δI |, K2 ≥ |δ̇I |, K3 ≥ |δd|,
β̂ = [ f̂v, f̂c, k̂0, k̂1, l̂0, l̂1]T ,
y = −[Γ fvq̇, Γ fcsgn(q̇r), Γk0q̈r , Γk1((t − t0)q̈r + 1

2(q̇ +
q̇r)), −Γl0, −Γl1(t − t0)]Tev, Γ fv > 0, Γ fc > 0, Γk0 > 0,
Γk1 > 0, Γl0 > 0 and Γl1 > 0. The robustness termU should
satisfy

U ≥ 0.002|q̈r |+0.95|q̇+ q̇r |+0.085, (28)

for (t−t0)≤ 2 ms. Notice that the robustness term in the adapt
controller,U , is much smaller than the robustness term,Uδ used
in the robust control.

The simulation results by using the control algorithm
Equation (26) are shown in Figure 4 and Figure 5. Figure
shows the angular position, velocity and tracking error the c
trolled system have. The control effort, shown in Figure 5,
much smoother than that achieved by robust control(see Fig
3). Almost no chattering is found.
6
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6 Experiments
To further investigate the feasibility of the proposed co

trol algorithm, a time-varying experiment designed for a tw
link robot, which consists of a two-axis direct drive manipulat
as shown in Figure 6. The direct drive manipulator operates
the absence of the undesirable factors of mechanical backlas
gear train compliance, eliminates the need for gear reduction
Copyright  2002 by ASME
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Figure 6. Picture of the two-link robot

repeatability is limited only the resolution of the position fee
back. Each axis of the manipulator is driven by an NSK Me
torque direct drive servo-motor.

The NSK-Megatorque motor system consists of a h
torque direct drive brushless actuator, a high-resolution brush
resolver, and a heavy duty precision bearing. The servo-mo
are capable of up to 3 revolutions per second maximum ve
ity and position feedback resolution of up to 156,400 counts
revolution. The base motor delivers up to 240 N-m of torque o
put, and the elbow motor produces up to 40 N-m torque out
The real-time system associated with the direct drive manip
tor consists of a host computer, a servo DSP card, and a
associated with the sensors. For a complete description o
experimental platform we refer the reader to (6).

The first link is designed to track a sinusoidal trajectory w
an amplitude of 0.5 radians and a frequency of 0.5 Hz. The
ond link is used to generate a time-varying disturbance and t
varying moment of inertia to the first link. A constant torq
of 4N.m is used as input to the second link; with this torque
put the second link will run with an angular velocity of arou
20rad/safter its velocity reaches the steady state. A control s
pling period of 2 milli-seconds is chosen.

6.1 Dynamics of the two-link manipulator

The dynamics of the two-link manipulator is given by

M(q)q̈+C(q, q̇)q̇ = u (29)
7
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where

M(q) =
[

p1 +2p3c2 p2 + p3c2

p2 + p3c2 p2

]
, (30)

C(q, q̇) =
[−p3q̇2s2 −p3(q̇1 + q̇2)s2

p3q̇1s2 0

]
, (31)

and u = [u1 u2]T is the vector of motor torques,c1 =
cos(q1),s1 = sin(q1),c2 = cos(q2) and s2 = sin(q2), and p1,
p2 and p3 are coupled inertia parameters without any paylo
The true values of the coupled inertial parameters arep1 = 3.4,
p2 = 0.4 andp3 = 0.3.

Solving (29) results in

(p1p2−p2
2− p2

3c2
2)q̈1− p3(2p2q̇1q̇2 + p2q̇2

1 + p2q̇2
2

+ p3c2q̇2
1)s2 = p2u1− (p2 + p3c2)u2. (32)

(32) can be rewritten as

I(t)q̈1 + İ(t)q̇1 = u1 +d (33)

where

I(t) =p1− p2− p2
3

p2
c2

2 (34)

d =p3((q̇1 + q̇2)2 +
p3

p2
c2q̇2

1)s2− (1+
p3

p2
c2)u2 (35)

u1 =τ1− f f (36)

whereτ1 is the torque generated by the motor at the first lin
f f = fvq̇1 + fcsgn(q̇1) is the friction. System (33) has time
varying moment of inertia and time-varying external disturban
By choosingu2, we can introduce time-varying disturbances in
the first link .

6.2 Experimental results
Figure 7 shows the tracking error of the first link, and ang

lar velocity and input torques for both links. Notice that the pe
tracking error of link 1 is below 0.04 radians even in the pre
ence of time-varying inertia and very large time-varying dist
bances. The disturbance and time-varying inertia computed f
Equation (35) and (34) are shown in Figure 8. Notice that
time-varying disturbance is periodic with an amplitude of abo
120 N.m and frequency is about3.1 Hz. The peak of the time
Copyright  2002 by ASME
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Figure 7. Tracking error, angular velocity and control effort

derivative of the disturbance is about6000N.m/s. The moment
of inertia varies with a peak-to-peak value of0.23 Kg.m2 and a
frequency of6.2 Hz. The peak of the time derivative of the mo
ment of inertia is about4.8 Kg.m2/s. The middle plot in Figure
7 shows the angular velocities of both links. The steady state
locity of the second link is about20 rad/s, which is equivalent to
3.1 cycles/second. The input torque of each link is shown in
last plot of Figure 7. The second link is controlled with a co
stant torque of4N.m. Observe that the motor torque for the fir
link has almost the same amplitude and frequency as that o
time-varying disturbance; and some chattering can be obse
due to the robustness switching term in the controller. Figur
shows the estimated parameters, estimated disturbance and
mated moment of inertia. It can be seen that all the estima
parameters are within the range defined in the projection a
rithm.

7 Conclusion
In this paper, a new adaptive controller for mechanical s

tems with time-varying parameters and disturbances is propo
The time-varying parameter/disturbance is expanded as a fi
length polynomial of time and a residue. The coefficients of
finite length polynomial are assumed to be constant in a sm
interval of time. Based on this expansion of time-varying para
eter/disturbance, an adaptive controller is developed for tra
tory tracking. The unknown coefficients were estimated us
a gradient projection algorithm. Asymptotic convergence of
tracking errors with the proposed controller is shown. Expe
mental results using the proposed adaptive controller show g
tracking performance in the presence of large time-varying
8
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Figure 9. Estimated parameters

turbances. It is evident that the choice of the time interval dis
cussed in Section 3 plays an important role in the control desig
Since the time-varying function is estimated in each interval u
ing a local approximation, the initial condition of the coefficien
estimates at the beginning of each interval must be chosen a
propriately such that the estimated function is smooth and th
candidate Lyapunov function is non-increasing at each resetti
point. Future research work should focus on ways to approp
ately choose this time interval and the initial condition of the
Copyright  2002 by ASME
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coefficient estimates at the beginning of each interval. Furt
there is a need for development of an experimental platform
which it is possible to generate arbitrary time-varying parame
and time-varying disturbances.
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