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ABSTRACT control of nonlinear systems with time-varying parameters. The

In this paper, we propose and investigate a new adaptive con- amount of research in adaptive control assuming that the uncer-
trol algorithm for mechanical systems with time-varying param- tain parameters are constant far overshadows research in adaptive
eters and/or time-varying disturbances. The proposed methodcontrol of systems with time-varying parameters. As pointed out
does not assume any structure to the time-varying parameter orin (1), one of the compelling reasons for considering adaptive
disturbance. The idea is based on the expansion of the time- methods in practical applications is to compensate for large vari-
varying parameter/disturbance using the Taylor series expan- ations in plant parameter values. The focus of this paper is on the
sion; this facilitates expanding a time-varying function as a finite design of a practical adaptive control algorithm for time-varying
length polynomial and a bounded residue; the coefficients of the mechanical systems; which are an important practical class of
finite length polynomial are estimated in a time interval small nonlinear systems with time-varying parameters.
enough SO that they can be assumed to be constant within that H|gh performance tracking Control of mechanica' Systems
interval. A novel experiment is designed using a two-link me-  js essential in a number of industrial applications; examples in-
chanical manipulator to investigate the proposed algorithm ex- clude, material handling and part assembly. In many of the in-
perimentally. Simulation and eXperimental results validate the dustrial app"cations the mechanical System dynamics is time-
proposed new adaptive control algorithm; we discuss these re- yarying due to a time-varying payload and/or time-varying dis-
sults and also give some future research directions. turbances. Examples of such applications include pouring and
filling operations using robots. Also, time-varying disturbances
are common in a large-number of mechanical system applica-
tions. There has been an increase in recent research activity
) X in adaptive control of time-varying systems. But most of this
systems. It is rare that the control designer knows the true pa- research has focused on assuming worst case bounds for time-

_rarr;]etekrs Ofl tge sy?tehm being controlied. It Ihs thr']s u?c(;artamty varying parameters and/or their derivatives; an amalgam of adap-
In the knowledge of the system parameters that has led to CON-+ive control and robust control have been used in the control de-

tinued strong interest in adaptive control research; adaptive con- signs with the gains of the controller chosen based on the worst

trol has been one of the most important research activity among 5¢e poynds. The resultant controllers, although stable, gave rise
control researchers since the 1950's. Significant amount of the to large and at times practically unbounded control inputs.

published research has focused on unknown parameters being In (2 bust switchi troller is desianed a the ti
constant. Limited amount of research has been done in adaptive n (2), a robust switching controller is esigned a the time-
varying parameter model of the robot manipulators performing

path tracking tasks. Properties of the element by element product

1 Introduction
Broadly, adaptive control refers to control of partially known
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of matrices is used to isolate the time-varying parameters from gravity vector,F(q, ip) € R™" js a symmetric matrixp € R™ is
the inertia matrix. A robust adaptive control for robot manipula- the vector of constant and/or time-varying parameters,R"
tors consisting of slowly time-varying parameters is presented in is the vector of control inputs, andit) € R" is the vector of
(3). A smooth robust adaptive sliding mode controller is given in time-varying disturbances. The properties of the dynamic model
(4). A robust adaptive control algorithm subject to bounded dis- (1) are:
turbances and bounded and (possibly) time-varying parameters
is given in (5); it is shown that the proposed controller achieves Property I: The inertia matrix,M(q,®), of the time-varying
asymptotic tracking if the disturbances vanish and the parametersmechanical system is a symmetric positive definite matrix.
are constant. In (6), a new adaptive controller for time-varying Assumingq(t) is boundedM(q, ¢) is bounded from above and
mechanical systems is proposed based on the assumption that théelow for all system configurations.
time-varying parameters are given by a group of known bounded _
time functions and unknown constants. A time-scaling technique Property Il: F(q,9) is a symmetric matrix, which is a
of mapping one cycle period of the desired trajectory into a unit consequence of the symmetry of the inertia matrix.
interval is proposed to provide robustness to the parameter adap- _
tation algorithms. A novel experimental platform consisting of Property Ill: The matrix M(q,¢) — 2C(9,4.9) — F(q,¢) is
a two-link manipulator with time-varying payload that mimics skew-symmetric. Notice that the skew-symmetry property for
filing and pouring operations was built to verify the proposed the time-varying case is different from that of the time-invariant
adaptation algorithm experimentally. case.

In this paper, we do not assume any particular structure to
the time-varying parameters and disturbances; that is, we con-Property IV: The dynamic equation (1) is linear in the
sider the unknown time-varying parameters and disturbances tounknown parameters, i.e.,
be general unknown time-varying functions. We express the gen-
eral time-varying function as a finitd f — 1)-th order) length . N N
polynomial in time and a residue bef';lsed ())n a result related to M(q,(p)q+C(q,q,(p)q+F(q,(p)q_+g(q,(p) 2)
Taylor's formula(7). We compute the bound on the residue by =Y1(9,G,6)9+ Y2(q,9)¢
assuming that a bound on theth derivative of the function is
ayailable. In the proposed new adapt_ive control_ler, _the coeffi- whereY:(q,d, ) and Yx(q,q) are the regressor matrices corre-
cients of the polynomial are estimated in a small time interval so sponding tag(t) andip(t) respectively.
that they can be assumed to be constant; and a robustness term '
is used in the controller to compensate for the unknown residue;
the robustness term is much smaller than what is generally used
in robust control literature and is proportional to the choice of
the time interval chosen for estimation. To validate the proposed
adaptive controller, an experiment is designed on a two-link ma-
nipulator platform. We use the second-link of the two-link planar Lemma 1. Let | be an open interval ifR, and f be ap-times
manipulate to generate time-varying disturbances in the first link. continuously differentiable function binto R; then, for any pair
We also show simulation results of the proposed adaptive con- of pointstg,t in |
troller and compare it with a classical robust control algorithm
that is available in literature.

3 Representation of Time-Varying Functions
To represent a general time-varying function, we invoke the
following result (7):

_ —to)P1
f(t) =f(to) + (t 1'to) f<1)(to)+~--+ (t(pto)l)lf(p)(to)
! ! 3
2 Time-Varying Dynamics Zt (t—gpr-?t P (5 ®)
The dynamic equations of andegree-of-freedom mechani- + t (p—1)! (€)dg
cal system with time-varying parameters and disturbances are (6)
given by

wheref(P)(.) stands for thep-th derivative of the functiofi(-).

M(q, ®)d+C(a,q,9)q+F(q,9)q+9(a, @) =Tt+d(t) (1) With lemma 1, we can represent an arbitrary time-varying pa-
rameter(t), as follows:

whereq € R" are generalized coordinated,(q) € R™" is the .
positive definite inertia matrixC(qg,q) € R™" is the matrix R i
composed of Coriolis and centrifugal termgq) € R" is the ot) = .Z>k‘(t_t°) +3y (4)
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where It should be observed that the boundsdgranddy depend
on the choice of the time intervél—tp) and the number of terms
@' (to) Z (t—g)pr-1t in the finite length polynomial.

ki = 0 and 9y =

4 Adaptive Control Design

We consider the trajectory tracking problem for the mechan-
ical system with time-varying parameters. lcg{t) be the de-
sired trajectory. It is assumed thgi(t) is twice continuously
differentiable. Lete = q(t) — qq(t) be the joint tracking error,

Notice thatk; and d, are vectors of the same size as that of
@. Suppose that the-th derivative of@(t) is bounded, i.e.,
sup ||@P) (t)|| < cp, we can bound, as

18] < Cp(t —to)P (5) ande, = €+ Ae be the reference velocity error. Consider the
e control law,T, given by
The motivation for the representation@(t) as given in (4) o -1 _
is as follows. If the intervalt —to) is chosen small, then the co- T=—Kv&y+Y1(, 6, G, Gr )ko — _Zoli (t—to)'
efficientsk; can be assumed to be constant and can be estimated 1=
on-line during that time-interval. The bound &g given by (5) p—1 i1 D
depends orep, (t —to), andp. The bound ordy can be made + iZ\ (t—to) [(t_tO)Yl(q’ A A Cir)
small by either choosing a smdtl—tg) or a largep even in the f A
case wherr, is large. + 5720086 | — (IMa(0,6..6)] 3]
The time-derivative oby(t) can be obtained by using Leib- 1 _
_nitz_rulel of differentiating an integral with variable limits, and + é||Y2(q,c']+c'4r)|| (Bl + \|6d||)sgr(a,) (10)
is given by
whereq, = qq — \e, Ky andA are positive definite gain matrices,
Zy p-2 SISTE
_ =9 ofP)(£)dE. ©) k andi; are estimates dfandl, respectively, and sga,) repre-
? o (P—2)! sents the component-wise sign vectoreaf Substitution of the
control input (10) into the dynamic equation (1) and simplifying
With the bound orglP) (t) we can obtain a bound (m, as using the linear parameterization property, i.e., Property 1V, we
obtain the error dynamics in terms &f
- Cp(t —to)Pt
dgl| < P—L . 7 _ _ 1_. .
%] = (p—1)! © M(a,9)ev +C(a.6,9)ev + SF(a, 9)ev + Kiey
p-1
In a similar fashion, one can represent the time-varying distur- =Y1(q, 6, &, & ko + lel(q, a, G, Gt )k
banced(t) as follows: =
r-1 .
o = 3 Tt t0)' = (0666 3] )
d(t) = Zj|i(t—to)'+5d~ (8) '1:
+ 5I1¥2(0,0+ ) 18]l + 13 ) san(ey)
(P s 1 I
If we assume thagup ||d'P)(t)|| < ¢ then —Y1(0, 6, & G )Bp— éYz(q,CH'Qr)é(p‘f'ad
Cr(t —to)r -~ A ~ A
18| < = ©  wherek =k —k,ij=ij—1;,and

W(q7 Qaqra qhta I) = (t _t0>iY1(q7q,ql‘a qr)
1Lemmt(z;| ruéeuum 2w 9f(xt) . do(t) +(t *to)i_liéYz(q,quQr)-
= [ RRRIC t)dx} T el s COR)

+dlp7(t)f(lu(t)7t) To estimate the unknown parametetsandl;, we use the
at gradient projection algorithm given in (9; 8), which we briefly
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illustrate in the following. Consider the parameter Betgiven Proof: Consider the Lyapunov function candidate:
by

. 1~

IO . V(e kili,t) = a,M(q Pev+ 5 I<orolko

(ke T . 2

k| - (k|17 7k|m) € rll (12) (18)

— |kj —pij| < gij, ¥je{1,m} +Z R-TF-‘lﬁiJrf Ty
Zi; i 2];] dj'l

with pjj andajj some given real numbers. Consider the function o _ _
Differentiating the Lyapunov function candidate along the tra-

jectories of the closed-loop system (11), using Property lll, and
where0 < € < 1 andqg > 2. Now, consider the “smooth projec-

simplifying we obtain
A rTr-1 o Tin A &
tion” Proj, which will be used to estimate while maintaining it +kolg Proj(ko, ~ToYy (g, q,qr,qr)a,))
in M;:

plj

K)

l+e

(13)

V=—elKev+ (Y] (6,66 ey

-1,
+5 (K'Wi(a,a,6, 6t i)e
i;( (0,6, G G

A |f£PR;§O. ~ L a C

5’ |f ?EAK;ZO and +kiTPrOJ(kh_riVVIT(qaqaql'aqratal)a/)>

0P -~ r-1 ) .

ok Ky <o +ZO(*ﬂr(tfto)laxﬂh}rrgijroj(lj,

PRIPY =\ 2Ry oy 7 1) o y
yo ok~ {azf’(&)} | ai(t—to) ) ) — (Va6 )
i 1 N
H +§||Yz(q,q+qr)l\ll5cpH+||6d||)eIsgr(e«)
otherwise . 1 .
—ei(Yl(q,qqr,qr)&eréYz(q,q+qr)6¢—6d) (19)
0(k)

whereJ? = P Based on the smooth projection defined \wjth the parameter estimation algorithms given by (15), (16),

above, the following estimation algorithms are designedAkfor (17), the following are true using (14) (see (8)):

andl;: ~
kg (Yj:r(qvq’ Qraqr)e\/

ko= Proj(ko, —To¥{ (0,666 )ey). (15) 1o "Proj(ko, —To¥{ (0.6, t)ey)) <O,

5 N "‘T T . . . .

k|: j(kiv_ri\MT(q’Qaqr7ql’7t7i)e\/)7 k1 (VVI (q7q7qr’qi7t’l)a/

Vie {1p—1}, (16) + T Proj(ki, ~TW" (0,66, 6, )ey) ) <O,

[ =Proj(l},Faj(t—to)le,), Vje{or—1}.  (17) I]-T(—(t—to)j Yey+ T4 Proj(ij,Faj(t —to) e )) <0.

wherel o, i, i = 1:m, andl 4j, j = 1:n, are symmetric positive Hence, the derivative of the Lyapunov function candidate satis-

definite gain matrices. The following theorem gives the stability fies
of the closed-loop error dynamics.

' U
Theorem 4.1. For the time-varying mechanical system given V= —e ke (20)
by (1), the proposed adaptive control law given (@) together o
with the parameter estimation algorithms given (%), (16), This implies thate,, ko, ki,l; € L., ande, € L,. Further, from

(17), and with the knowledge of the bounds given in Section 3, the (11) é, € L. Therefore, invoking Barbalat's lemme, asymp-
errorseandé converge to zero asymptotically and the parameter totically converges to zero. Sineg = é+ Ae, bothe(t) andé(t)
estimates are bounded. asymptotically converge to zero.
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5 Simulation Results

In this section, the proposed adaptive controller is compared

with a traditional robust control via computer simulations. We
consider a single-link robot with the dynamics given by

L(t)G+1(t)q+ fesgn(@) + fug=T+d(t) (21)

wherel (t), q, ¢, fy, T, d(t) are the moment of inertia, angu-
lar position, Coulomb friction coefficient, viscous friction co-
efficient, control effort and external disturbance, respectively.
The objective is to control the link to track a desired trajec-
tory qq = 0.5sin(tt)(rad) with f, = 0.01(N-m-s), f. = 3(N-m),

I(t) = 34 1L.5sin(4rt) (Kg-m?), andd(t) = 120sir(3rt) (N-m).

5.1 Robust control
Assuming that the friction coefficients are exactly known,
we can choose the following robust control law

=16 + fu§+ fesgn(d) + us — Fve, — Ussgn(ey),

Us > 1|6 | + [T]]a] -+ |d], (22)

wherel is the estimate of, andl =1 — 1. The controlled system
is asymptotically stable. However the robust control té&fgris
very large which will results in control chattering. If we choose
I = 3, Us should satisfy

Us > 1.5/¢ |+ 18.8/¢| + 120 (23)

The simulation results are shown in Figures 1, 2, and 3. Figure
1 shows the angular position, velocity and tracking error, respec-

tively. The time-varying moment of inertia and disturbance are
shown in Figure 2. Figure 3 displays the control effort by using
the robust control law given by (22); notice that there is signif-
icant chattering, which makes practical implementation infeasi-
ble.

5.2 Adaptive control

Using the approach given in Section 3, and assumieg2,
the inertia and the disturbancdgt) andd(t), can be expanded
as

I(t) =
d(t) =

k0+k1(t_t0)+6|a

lo+li(t—to) +04, t>to (24)

Where|6|| g 3
( 0), k (
= sup d t

(t—10)2 1] < & (t—to), |8al < Cd(t—to) ko=
to), lo = d(to), I1 = d®(tg), ¢ = sup 1@(t), and

(1)
(©).
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Figure 1. Robust control simulation results: angular position, velocity
and tracking error

Time-varying moment of inertia (Kg.mz)
4.5 T T T T T

15 1 1 1 1 1 1 1 1 1
0.5 15 2 25 3 3.5

Time-varying disturbance (N.m)

0.5

25
Time (sec)

Figure 2. Robust control simulation results: time-varying moment of in-
ertia and disturbance

Using the results from the previous section, we can choose
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Control effort (N.m) Angular position (rad) and velocity (rad/s)
200 T T T 2 T T T T T T

I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 45 5 -3 1 1 1 1

I I I I I
Time (sec) 0 0.5 1 15 2 25 3 35 4 4.5 5
Time (sec)

Figure 3. Robust control simulation results: control effort _ ) _ ) N )
Figure 4. Adaptive control simulation results: angular position, velocity

and tracking error

the following control law and estimation law as

Control effort (N.m)

250 T T T T
1= (ko+ka(t —t0))r +ka(dr +) + fua+ fesgricr) =
~ ~ 200 *
—FRey—lo—l1(t—to) —Usgnley), (25)
I i
U > Kaltr |+ S Kol + | +Ka, (26)
B="Proj(B.y) @n = 1
50 -
where(%) is the estimate of), Ky > |§ ], K2 > [8/], K > ||,
B:[fVa va -k07 kl; lOvl ll}T; . ° 1
y = —[M8 Tesond), Mot Ma(lt — o)d + 36+
a)), —Ti, —Tit—t)]Tey, My, >0, T, >0, My, >0,
Mg >0,y >0andl, >0. The robustness tertd should |
satisfy e
-150 1 1 1 1 1 1 L L L
0 0.5 1 15 2 ) 25 3 3.5 4 4.5 5
U > 0.002¢;| +0.95/q+ G| +0.085, (28) Time (sec)

Figure 5. Adaptive control simulation results: control effort

for (t—tg) <2ms. Notice that the robustness term in the adaptive
controller,U, is much smaller than the robustness tednused
in the robust control. 6 Experiments

The simulation results by using the control algorithm in To further investigate the feasibility of the proposed con-
Equation (26) are shown in Figure 4 and Figure 5. Figure 4 trol algorithm, a time-varying experiment designed for a two-
shows the angular position, velocity and tracking error the con- link robot, which consists of a two-axis direct drive manipulator
trolled system have. The control effort, shown in Figure 5, is as shown in Figure 6. The direct drive manipulator operates in
much smoother than that achieved by robust control(see Figure the absence of the undesirable factors of mechanical backlash an
3). Almost no chattering is found. gear train compliance, eliminates the need for gear reduction, so
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Figure 6. Picture of the two-link robot

repeatability is limited only the resolution of the position feed-
back. Each axis of the manipulator is driven by an NSK Mega-
torque direct drive servo-motor.

The NSK-Megatorque motor system consists of a high
torque direct drive brushless actuator, a high-resolution brushless
resolver, and a heavy duty precision bearing. The servo-motors
are capable of up to 3 revolutions per second maximum veloc-
ity and position feedback resolution of up to 156,400 counts per
revolution. The base motor delivers up to 240 N-m of torque out-
put, and the elbow motor produces up to 40 N-m torque output.
The real-time system associated with the direct drive manipula-
tor consists of a host computer, a servo DSP card, and a DSP
associated with the sensors. For a complete description of the
experimental platform we refer the reader to (6).

The first link is designed to track a sinusoidal trajectory with
an amplitude of 0.5 radians and a frequency of 0.5 Hz. The sec-
ond link is used to generate a time-varying disturbance and time-
varying moment of inertia to the first link. A constant torque
of 4N.m s used as input to the second link; with this torque in-
put the second link will run with an angular velocity of around
20rad/safter its velocity reaches the steady state. A control sam-
pling period of 2 milli-seconds is chosen.

6.1 Dynamics of the two-link manipulator
The dynamics of the two-link manipulator is given by

M(9)§+C(g,9)9=u (29)

where

p1+2p3C2 P2+ pP3C2
M = 30
@ [ P2 + P3C2 p2 ] ’ (30)
o | —P3tes2 —p3(QL+G2)s2
C(a,9) = [ PanSo 0 } ; (31)

and u = [up uy]" is the vector of motor torquesg; =
coqd1),s1 = sin(q1),c; = cogqgy) and s, = sin(ge), and p,
p2 and p3 are coupled inertia parameters without any payload.
The true values of the coupled inertial parameterspare 3.4,
p2 =0.4andpz =0.3.

Solving (29) results in

(P1P2— P35 — P3C3) 61 — Pa(2p2dz + P20 + pacp

+ P3C2G2)S2 = Paus — (P24 P3C2)Uz. (32)
(32) can be rewritten as
I()G1+1(1)gr =ug +d (33)
where
2
I(t) =p1— p2— >G5 (34)
P2
d =ps((Ga + )% + %czq@sz —(1+ %flz)uz (35)
u; =11 — ff (36)

whereT; is the torque generated by the motor at the first link.
fi = futh + fesgn(an) is the friction. System (33) has time-
varying moment of inertia and time-varying external disturbance.
By choosingu,, we can introduce time-varying disturbances into
the first link .

6.2 Experimental results

Figure 7 shows the tracking error of the first link, and angu-
lar velocity and input torques for both links. Notice that the peak
tracking error of link 1 is below 0.04 radians even in the pres-
ence of time-varying inertia and very large time-varying distur-
bances. The disturbance and time-varying inertia computed from
Equation (35) and (34) are shown in Figure 8. Notice that the
time-varying disturbance is periodic with an amplitude of about
120N.m and frequency is abol®&1 Hz. The peak of the time
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Tracking error of the first link (rad) Computed I(t) (Kg. m

o] L T ‘ I “ | H
: ! ‘ IR |
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e ® 5= |
, ,,,,, g . L . 20 25 .
;::o 5 10 o Olljg o 2 2 30 1:: : ‘ (1 i ﬂ
102 | 'l.'\ 1”11[.1' ]: h‘n“l 'n'l, \“‘Hl l‘ IHI‘ l”l‘ mﬂ' l ll'“”ll’ |'| l‘r”\l’ llln”li uU\”lll ML !ﬂul. 52 ¥
Figure 7. Tracking error, angular velocity and control effort Figure 8. Computed | (t) and d(t)
derivative of the disturbance is abd@@00N.m/s. The moment Estimates of parameters
of inertia varies with a peak-to-peak value®®3 Kg.nm? and a el ‘

frequency of6.2 Hz. The peak of the time derivative of the mo-
ment of inertia is about.8 Kg.n?/s. The middle plot in Figure
7 shows the angular velocities of both links. The steady state ve- °
locity of the second link is abo@0rad/s, which is equivalent to h s m = " pre %
3.1 cycles/second. The input torque of each link is shown in the
last plot of Figure 7. The second link is controlled with a con- T
stant torque oiIN.m. Observe that the motor torque for the first | L. Y |
link has almost the same amplitude and frequency as that of the

time-varying disturbance; and some chattering can be observed Sfﬁw
due to the robustness switching term in the controller. Figure 9 % 5 10 s 20 2 20
shows the estimated parameters, estimated disturbance and esti 2
mated moment of inertia. It can be seen that all the estimated
parameters are within the range defined in the projection algo- *

rithm. 0 S e onart a0 |

~10 I I I I I
0 5 10 15 20 25 30

Time (sec)

7 Conclusion

In this paper, a new adaptive controller for mechanical sys- Figure 9. Estimated parameters
tems with time-varying parameters and disturbances is proposed.
The time-varying parameter/disturbance is expanded as a finite
length polynomial of time and a residue. The coefficients of the turbances. It is evident that the choice of the time interval dis-
finite length polynomial are assumed to be constant in a small cussed in Section 3 plays an important role in the control design.
interval of time. Based on this expansion of time-varying param- Since the time-varying function is estimated in each interval us-
eter/disturbance, an adaptive controller is developed for trajec- ing a local approximation, the initial condition of the coefficient
tory tracking. The unknown coefficients were estimated using estimates at the beginning of each interval must be chosen ap
a gradient projection algorithm. Asymptotic convergence of the propriately such that the estimated function is smooth and the
tracking errors with the proposed controller is shown. Experi- candidate Lyapunov function is non-increasing at each resetting
mental results using the proposed adaptive controller show good point. Future research work should focus on ways to appropri-
tracking performance in the presence of large time-varying dis- ately choose this time interval and the initial condition of the
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coefficient estimates at the beginning of each interval. Further,
there is a need for development of an experimental platform in
which it is possible to generate arbitrary time-varying parameters
and time-varying disturbances.
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