
Speed and Shape of Electrostatic Waves in Dust-Ion Plasma

Prasanta Chatterjee and Bholanath Sen

Department of Mathematics, Siksha Bhavana, Visva Bharati, Santiniketan, India

Reprint requests to P. C.; E-mail: prasantachatterjee1@rediffmail.com

Z. Naturforsch. 61a, 661 – 666 (2006); received August 28, 2006

Nonlinear dust acoustic waves are studied in a magnetized plasma. Quasineutrality is considered.
The existence of a soliton solution is determined by a pseudo-potential approach. Sagdeev’s potential
is obtained in terms of U(= αudx + γudz), the component of the dust-ion velocity in the direction
of the propagation of the wave. It is shown that there exists a critical value of U , beyond which the
solitary waves cease to exist.
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1. Introduction

Dusty plasma is a rapidly growing area in plasma
science. It plays a significant roles in space plasma,
astrophysical plasma, laboratory plasma and environ-
ment. The presence of dusty plasmas in cometary tails,
asteroid zones, planetary rings, intersteller medium,
lower part of the earth’s ionosphere and magneto-
sphere [1 – 9] makes this subject increasingly impor-
tant. Dusty plasmas also play a vital role in low temper-
ature physics, radio frequency plasma discharge [10],
coating and etching of thin films [11], plasma crystal
[12] etc. Such plasmas are also investigated in labora-
tory experiments [13, 14].

Several authors have studied the wave phenom-
ena and associated nonlinear structures such as soli-
ton, socks and vortices in dusty plasmas. It began
with the work of Bliokh and Yarashenko [15] who
first theoretically observed the waves in such envi-
ronment while dealing with waves in Saturn’s ring.
The discovery of dust acoustic wave (DAW) [16, 17]
and dust-ion acoustic wave (DIAW) [18, 19] gave a
new impetus to the study of waves in dusty plas-
mas. Later it was found that the dust grain dynam-
ics also introduced few new eigen modes like Dust-
Berstain-Greene-Kruskal (DBGK) mode, dust-lattice
(DL) mode [20, 21], Shukla-Verma mode [22], dust-
drift mode [23].

The arbitrary amplitude dust acoustic solitary waves
in the one-dimensional and unmagnetized plasma have
been rigorously investigated by a number of authors.
The properties of dusty plasma waves in a magnetized
plasma were also studied in different modes. Shukla
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and Rehman [24] studied the existence of lower-
hybrid and dust-cyclotron waves. Chowe and Rosen-
berg [25, 26] also studied the instability of electrostatic
ion-cyclotron waves in magnetized plasmas. Rao [27]
studied the electrostatic waves and instabilities in non-
ideal magnetized dusty plasmas. Most of the studies
on waves in a magnetized dusty plasma, discussed up
to now, have dealt with linear theories. However, there
are many dusty plasma situations where the excitation
mechanism gives rise to large amplitude waves, and as
a result nonlinear effects become important. One of the
most interesting topics concerning such nonlinear ef-
fects is the formation of solitary waves, particularly the
dust acoustic solitary waves. Recently, Kotsarenko et
al. [28] and Mamun [29, 30] have studied the nonlinear
propagation of the dust acoustic waves in a magnetized
dusty plasma by means of the reductive peturbation
technique (RPT), which is valide for small amplitude
waves only. A few years ago Malfliet and Wieers [31]
reviewed the studies on solitary waves and found that
RPT is based on the smallness of the amplitude. More
recently Johnston and Epstein [32] derived Sagdeev’s
potential [33] in terms of u, the ion-acoustic speed in-
stead of φ , the electric potential. They observed that
a very small change in the initial conditions destroys
the oscillatory behaviour of the wave. Chatterjee and
Das [34] also observed the effect of electron inertia on
the critical value of u, the ion speed of the waves, for
which the oscillatory behaviour is destroyed. Maitra
and Roychoudhury [35] studied dust acoustic solitary
waves by the same technique, considering the dust dy-
namics in a dusty plasma consisting of warm dust par-
ticles and Boltzmann-distributed electrons and ions.
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Recently Chatterjee and Jana [36] studied the speed
and shape of dust acoustic solitary waves in the pres-
ence of dust streaming by the same technique used in
[32, 34, 35]. But in both studies in [35] and [36] dust
acoustic solitary waves in the one-dimensional and un-
magnetized plasma were investigated. In this paper,
we consider a magnetized ion-dust plasma and study
the propagation of the coupled nonlinear dust acous-
tic waves by the technique used in [32, 34 – 36]. Here
the dynamics of magnetized dust grains are governed
by the continuity and momentum fluid equations. The
Boltzmann distribution for unmagnetized ions is also
considered. We also consider the quasineutrality con-
dition so that the dust number density is localized. We
have found here that there exists a critical value of
U = U0 beyond which solitary waves cease to exist.
Criteria for the existence of such solitary waves are
discussed. The effect of Mack number, obliqueness of
wave propagation and B0, the external electric field, on
the existence of solitary waves is also discussed.

The organization of this paper is as follows. In Sec-
tion 2 basic equations are written for dusty plasmas.
The governing 2nd order ODE is derived. Conditions
for the existence of soliton solutions and results are
given in Section 3. Section 4 is kept for conclusions.

2. Basic Equations

A two-component dusty plasma is considered con-
sisting of Boltzmann-distributed ions and negatively
charged dust grains which are both magnetized. This
model corresponds to a situation when most of the
electrons from the ambient plasma are attached to the
dust grain surface. Hence we have ne0 � Zdnd0, where
ne0 and nd0 are the unperturbed electron and dust parti-
cal number densities, respectively. Zd is the number of
electrons residing onto the dust grain surface and so the
depletion of the electrons cannot be complete. As the
grain surface potential approaches zero, the minimum
value of the ratio between the electron and ion number
densities turns out to be (me/mi)1/2 where me (mi) is
the electron (ion) mass. We consider the dusty plasma
as a two-component plasma composed of negatively
charged dust grains and ions. The later shield the dust
grains. This model is relevant to planetary ring sys-
tems (e. g. Saturn’s F-ring) and in comets (e.g. Hal-
ley’s comet). Here, the situation is considered when
Zd � ne0/nd0. This model is valid because for such
a situation we have ne0

ni0
� (me/mi)1/2 and me/mi � 1

where ni0 is the unperturbed ion particle number den-

sity. Thus, at equilibrium we have n i0 � Zdnd0. We also
consider the Boltzmann distribution for ions in an ex-
ternal magnetic field as the parameters are so chosen
that the wave length is shorter than the ion gyroradius.
We assume that the dusty plasma is embedded in a uni-
form external magnetic field B0 = ẑB0 where ẑ is the
unit vector along the z axis. We also assume that the
grain size is much smaller than the dusty plasma De-
bye radius. The dust ion wave frequency is assumed
much lower than the dust grain charging time scale and
so the effect of dust charge variation is negligible and
the dust charge is assumed to be constant.

The basic equations are:

∂nd

∂t
+ ·(ndvd) = 0, (1)

∂vd

∂t
+ vd · vd =

zde
md

φ −wcdvd ×�z, (2)

ni = ni0 exp

(
− eφ

kbTi

)
, (3)

where nd and vd are the dust number density and dust
fluid velocity, respectively, ωcd is the dust cyclotron
frequency, e the magnitude of the electric charge, n i
the ion number density, Ti the ion temperature, φ the
electrostatic potential and kb the Boltzmann constant.
To obtain the dispersion relation we first consider nd =
nd0 + nd1, vd = 0 + vd and φ = 0 + φ and (1) – (3) re-
duces to the single equation[(

∂2

∂t2 + ω2
cd − c2

d�2

)
∂2

∂t2 −ω2
cdc2

d
∂2

∂z2

]
= 0, (4)

where cd = (ZdkbTi/md)
1
2 . Now considering φ is pro-

portional to ei(kr−ωt) we obtain the dispersion relation

ω2±=
1
2
[ω2

cd + k2c2
d

±
√

(ω2
cd + k2c2

d)
2 −4ω2

cdk2
z c2

d].
(5)

Hence we obtain two types of obliquely propagating
waves named dust acoustic wave and dust cyclotron
wave for the branches ω = ω− and ω = ω+, respec-
tively. For details see [16, 37, 38].

Now we express (1) – (3) in terms of normalized
variables, where nd is normalized by nd0, ni is normal-
ized by ni0, vd is normalized by cd, φ by (kbTi/e), t is
normalized by ω−1

cd , where ωcd = qB0
md

and r (= xi+y j)
is normalized by ρd = cd

ωcd
and the new variables are
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termed as Nd, Ni, ud, ψ , τ and R(= Xi +Y j), respec-
tively.

To investigate the properties of solitary wave solu-
tions of (1) – (5), we assume that all the dependent vari-
ables depend on a single independent variable

ξ=
1
M

(αX + γZ−Mτ)(
=

ωcd

ω
(kxx+ kzz−ωt)

)
,

(6)

where ξ is the special co-ordinate in the co-ordinate
system moving with the solitary wave velocity. Also
k = (kx,0,kz), α = kx

|k| = sinθ , γ = kz
|k| = cosθ . |k| =√

k2
x + k2

y and θ is the angle between k and B0. M =
vp/cd, where vp = ω/|k| is the phase speed of the wave.
Therefore,

∂
∂t

= wcd
∂

∂τ
= −wcd

d
dξ

, (7)

∂
∂x

=
wcd

cd

∂
∂X

=
wcd

cd
· α

M
d

dξ
, (8)

∂
∂z

=
wcd

cd

∂
∂Z

=
wcd

cd
· γ

M
d

dξ
. (9)

Equation (1) now reduces to

d
dξ

[LuNd] = 0, (10)

where

Lu = αudx + γudz −M. (11)

Equation (2) reduces to

−cdwcd
d(�ud)

dξ
+ c2

d

(
udx

∂
∂x

+udy
∂
∂y

+udz
∂
∂z

)
(�ud)

= c2
d
� ψ −wcdcd(udy −udx).

(12)

Taking the component in x direction, we have

Lu
dudx

dξ
= α

∂ψ
∂ξ

−Mudy,

taking the component in y direction, we get

Lu
dudy

dξ
= Mudx,

and taking the component in z direction, we get

Lu
dudz

dξ
= γ

∂ψ
∂ξ

.

Again, considering the quasineutrality condition, we
have

Nd = exp(−ψ) = Ni. (13)

To solve the above set of differential equations, the

following boundary conditions are used: φ , ∂φ
∂ξ , u →

0, nd → 1 as |ξ | → ∞.
From (7) we get,

Nd =
M

M−u
, (14)

where Lu = U −M and U = αudx + γudz. Now using
(9) and (12) in (11) we get

d2U
dξ 2 =

∂V
∂U

, (15)

where

V =
M2

(1− (M−U)2)(M −U)2

·
[

γ2M
(
−U + M log

M
M−U

)

− M2
(

1− M
M−U

+ log
M

M−U

)

−
(M2

2
+

γ2

2(M−U)2

)
U2
]
.

(16)

Thus

d2U
dξ 2 =

(M−U)2

1− (M−U)2

(
Mγ2U
M−U

+
M2U

(M−U)2

− U2γ2

(M−U)3 −U
(

M2 +
γ2

(M−U)2

))

+
4(M−U)3 + 2(M−U)(1− (M−U))

(1− (M−U)2)3

·
(
−U2

(M2

2
+

γ2

2(M−U)2

)

− M2
(

1− M
M−U

+ log
M

M−U

)

−Mγ2(M−U)
(

1− M
M−U

+
M

M−U
log

M
M−U

))
.

(17)
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Fig. 1. Plot of V vs. U for M = 0.5 and α = 0.6 (γ = 0.4).

Fig 2. The soliton solution U plotted against x for U0 =
0.233464. The other parameters are the same as those in Fig-
ure 1. (Read ξ in place of x.)

One can also write

V =
1
2

(
dU
dξ

)2

. (18)

3. Results and Discussion

To find the region of existence of solitary waves one
has to study the nature of the functionV (U) and φ1(U),
defined by

V (U) =
(U ′)2

2
, (19)

where

U ′′ =
dV
dU

= φ1(U). (20)

For solitary waves see [37, 36], φ1 will have two
roots, one being at U = 0 and the other at some
point U = U1(≥ 0). Also φ1 should be positive
on the interval (0,U1) and negative in (U1,Umax),

Fig. 3. The soliton solution U is plotted against x for U0 =
0.233465. The other parameters are the same as those in Fig-
ure 1. (Read ξ in place of x.)

Fig. 4. Plot of V vs. U for M = 0.5 and 0.48. The other pa-
rameters are the same as those in Figure 1.

Fig. 5. Plot of V vs. U for α = 0.6 and 0.58. The other pa-
rameters are the same as those in Figure 1.

where Umax = U0 is obtained from the nonzero root
of V (U).

Figure 1 shows the plot of V vs. U for M = 0.5 and
α = 0.6 (γ = 0.4). It is seen that V (U) crosses the U
axis at U = 0.233464. Hence Umax = U0 = 0.233464
is the amplitude of the solitary wave. To get the shape
of the travelling solitary wave one has to solve U ′′ =
φ1(U) numerically with U0 = 0.233464 and U ′

0 = 0
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and Fig. 2 depicts the soliton solution U(ξ ) plotted
against ξ . The other parameters are same as those in
Figure 1. It is seen that U0 = 0.233464 is the critical
value for U . For U > U0 the soliton solution ceases
to exist; this is shown in Figure 3. In this figure U0 is
taken as 0.233465. Other parameters are same as those
in Figure 2. It is seen that a small change (0.000001)
in U0 destroys the struture of the solitary wave. To see
the effect of the parameters M and α on the critical val-
ues, Figs. 4 and 5 are drawn. In Fig. 4 V (U) is plotted
against U for M = 0.5 and 0.48. Other parameters are
same as those in Figure 1. Here it is seen that the crit-
ical value increases with the increase of M. In Fig. 5
V (U) is plotted against U for α = 0.58(γ = 0.42) and
0.6(γ = 0.4). Other parameters are same as those in
Figure 1. Here it is seen that the critical value in-
creases with the increase of α . But from (6) it is clear
that the change in α , the angle of propagation, di-
rectly reflects the change in cyclotron frequency and
that α = M ωcd

ω = kx
k · qB0

mdcd
. Hence α varies directly

with B0, the external magnetic field. Hence the criti-
cal value increases with the increase of B0. soliton ve-
locity M, external magnetic field B0 or the obliqueness
parameters (α or γ), all play a significant role in the
existence of solitary waves and forming and breaking
of solitary waves.

4. Conclusion

Using the pseudo-potential approach we have stud-
ied the speed and shape of the dust acoustic solitary
waves in homogeneous magnetized dust-ion-electron
plasmas. The quasineutrality condition is also con-
sidered. Sagdeev’s potential is obtained in terms of
U = αudx + γudz, the component of dust fluid veloc-
ity in the direction of propagation of a solitary wave. It
is seen that there exists a critical value of U , at which
U ′2 = 0, beyond which the soliton solution does not
exist. This critical value is extremely sensitive to other
parameters and also depends on the soliton velocity.
This technique can be extended to the study of a non-
thermal distribution of electrons in magnetized plas-
mas. Work in this direction is in progress.
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