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Methods for Performance Evaluation
of VBR Video Traffic Models

David M. Lucantoni, Marcel F. Neuts, Member, IEEE, and Amy R. Reibman, Member, IEEE

Abstract— Models for predicting the performance of multi-
plexed variable bit rate video sources are important for en-
gineering a network. However, models of a single source are
also important for parameter negotiations and call admittance
algorithms. In this paper we propose to model a single video
source as a Markov renewal process whose states represent
different bit rates.

We also propose two novel goodness-of-fit metrics which are
directly related to the specific performance aspects that we want
to predict from the model. The first is a leaky bucket contour plot
which can be used to quantify the burstiness of any traffic type.
The second measure applies only to video traffic and measures
how well the model can predict the compressed video quality.

I. INTTtODUCTtON

IT is well recognized that the viability of B-ISDN/ATM
depends on the development of effective and implementable

congestion control schemes. While many frameworks and

techniques are under discussion (see, e.g., [l]), at least two
capabilities have been agreed to as necessary in any framework
that might arise.) The first is a comection admission control
(CAC) by which the network will decide to accept or reject a
new connection based on a set of agreed to traffic descriptors

and on available resources. Once a connection is accepted,
a second necessary control issome form of usage parameter
control (UPC) which will insure that connections stay within
their negotiated resource parameters. A popular UPC would
involve a leaky bucket monitor of traffic entering the system,
where traffic deemed as excessive by the monitor could either

be dropped or tagged as low priority and allowed to proceed
through the network to take advantage of potentially unused
resources.

Performance modeling is necessary to determine which

techniques or set of techniques will be appropriate for eventual
implementation in a B-ISDN network. Such models need to
take into account traffic characteristics from realistic services
that would be carried in a B-ISDN network. In particular,
we need traffic models which will accurately represent the

statistical nature of very high-speed, bursty services.
Two classes of traffic models need to be developed: multi-

plexed source models and single source models. Although the

same traffic model might be used in both cases, some models
might be more suitable for one than the other. Multiplexed
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models will capture the effects of statistically multiplexing
bursty sources and will predict to what extent the superposition
of bursty streams is “smoothed”. These models will be useful
in traffic engineering the network (e.g., deciding how many

links or virtual paths to put between different locations) and
in traffic management (e.g., designing connection admission
control algorithms, etc.) Several models have already been
proposed in this direction (see, e.g., [2], [3], [4], [5] and the
references there).

There are several areas where single source models are
useful. They could be used to study what types of traffic

descriptors make sense for parameter negotiation with the net-
work at call setup. For example, if leaky bucket monitoring is

used as a traffic descriptor, the negotiation might consist of the
source specifying what parameters could be used in the leaky
bucket for a given connection. Single source models can help
in the selection of these parameters. Also, some applications
may do some end-to-end rate control to ensure that minimal
traffic is lost during periods of network congestion. Source
models could be used in testing various rate control algorithms,
Finally, these models are also useful in predicting the quality-

of-service (QOS) that a particular application might experience
during different levels of congestion.

In deriving traffic models, we need metrics which can

determine how “close” the model is to the actual traffic. Stan-
dard statistical measures such as means, variances, and other
goodness-of-fit tests may not be appropriate here since they
may not be measuring the characteristics of the process that
are most important for either predicting the effect of the source

on the resources in the network or the performance the source
will experience. Instead, the goodness-of-fit metrics need to

be directly related to the specific aspects of performance that
we want to predict from the model; see e.g., [6].

In this paper, we propose two criteria for judging the appro-

priateness of a traffic model for bursty services. The first one
applies to any high speed bursty data service and the second
is specific to a variable-bit-rate (VBR) video application. To
illustrate these measures we compare a previous model of VBR
video with a new model proposed here.

II. MODELING VARIABLE-BIT-RATE VIDEO

The data we are modeling was recorded at an actual

teleconference meeting. Each scene depicts the head and
shoulders of one person, and is 5 rein, or 9000 frames, long.
Since each 5 min of video required approximately one week to
encode using software, the motivation for developing accurate
models with a low computational burden is clear. A typical
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Fig. 1. Original data. Fig. 3. DAR model
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Fig. 2. MRP model.

sample path is shown in Fig. 1, which shows the number of
bits for 1800 successive frames or one minute.

We now briefly present a Markov renewal process model
[7] of VBR video and review a recently proposed discrete
autoregressive model.

A. A Marko\ Renewal Process (MRP) Video Model

We partition the range of possible rates (i.e., bits per frame)
into 40 equidistant levels. The transition matrix P is estimated
empirically. Next, we estimate the sojourn time distribution in
each level. We fit the empirical distributions to a mixture of
two geometric distributions, when possible, and otherwise we
fit them to geometric distributions. Fitting all of the sojourn
time distributions to geometric distributions, while giving
satisfactory results, did not perform as well as the mixtures.
Sampling from the fit distributions actually produced better
results than the original empirical distributions.

A sample of 1800 frames generated by the MRP model
is shown in Fig. 2. This certainly “looks” somewhat like the
original data shown in Fig. 1 but required much less time to
generate than the coded traffic. However, in Sections 111and
W we use two potential measures to determine how accurately
this model predicts actual source performance.

B. A Discrete Autoregressive Model (DAR)

A discrete autoregressive (DAR) model has recently been
proposed for VBR video traffic by Heyman et al., [5] and has
been shown to predict accurately the blocking characteristics
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Fig, 4. Original data, 10 sources.

of a superposition of video sources into a statistical multi-
plexer. This is a very simple 3-parameter model but compares
favorably to other models when predicting multiplexed traffic.
We chose this model to compare with the MRP model because
of its simplicity and to help illustrate the measures to be
described below.

As discussed in Heyman et al., [5], the DAR model is a

Markov chain with transition matrix

R.=pI+(l–p)Q, (1)

where p is the autocorrelation and Q is a matrix with identical
rows equal to the marginal distribution. The form of R in ( 1)

gives some insight into the behavior of the model. Since the
autoeomelation is on the diagonal, for high values (we obtained

P = 0.98 in our data) the Markov chain will stay in a state for

a long time. When it leaves, it chooses the next state according
to the marginal distribution, so that it tends toward the mean.
Although it stays in a high-rate level for a fairly long time, it

may not stay in a group of high levels as long as it should and
therefore does not capture the burstiness sufficiently.

Fig. 3 shows a sample of 1800 frames generated from the
DAR model. This confirms the above observation that the
sojourn times in given levels can be long. While the sample
path doesn ‘t “look” like the original data, the overall trends

are close and the model may still work well in predicting
the specific performance measures of interest. In particular.
Figs. 4-6, show plots from the data, MRP model, and DAR
model respectively, from the superposition of 10 identical
video sources. Both models “look” like the data in this case.
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Fig, 7, A video system.

III. LEAKY BUCKET CONTW.IRS

A diagram of a generic video system is shown in Fig. 7. A
bufferbucket lies between the video encoder (which generates

the bits per frame) and the transmission channel. Thk could
represent either a physical buffer that contains the actual traffic

and performs some type of traffic shaping, or a logical buffer
such as a leaky bucket counter [8] which only monitors and
does not buffer the traffic. CBR video systems typically use

the former to generate a constant bit rate onto the channel,
while VBR systems could use the latter. In either case the
values for the buffer parameters are needed to ensure that a

given percentage of cells are not excessive. These parameters

are directly related to the average rate and burstiness of the

source. Since a physical buffer and a leaky bucket are logically

equivalent for a given drain rate, we focus our attention on
leaky buckets.

It has been proposed previously (see, e.g., [8]) that the
leaky bucket parameters (e.g., bucket size and drain rate)

could be passed to the network as a descriptor of the traffic
characteristics. However, to judge the goodness-of-fit of a

model or to compare different models we would like to have a

more comprehensive characterization of the traffic. We propose
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Fig. 8. A characterization of tratlic burstiness.

the concept of leaky bucket contours as a way to describe the
traffic characteristics of a bursty data source.

Typical plots of leaky bucket contours are shown in Fig. 8.
The drain rate of the leaky bucket is plotted on the z-axis and
the size of the bucket is plotted on the y-axis. Points along

the different curves are those pairs of (drain rate, bucket size)
which result in a fixed percentage of traffic overflowing a leaky
bucket with the given parameters. If we thhk of representing
the probability of overflow as the z-axis coming out of the
page, then the curves that are shown can be viewed as contour
lines of a 3-dimensional surface which is of height 1 at the
ongin of the z-y axes and which decreases in height as we get
further into the upper right hand quadrant. The steepness with
which this surface approaches zero on the z-axis is directly

related to the burstiness of the traffic.
These leaky bucket contours capture the burstiness on

many time scales simultaneously. A very good feeling for
the burstiness of the source can be obtained by observing the
gradients along the surface at these higher probability contours.
The contour plots shown in Fig. 8(a) are clearly from a less
bursty source than that shown in Fig. 8(b). At least one of these

contours may help the end system to decide which parameter
values to choose as a description of its traffic to the network.

We have shown typical contours for overflow probabilities
10–i’i = 1,2,3. At first this may not seem consistent with
the view that typical leaky bucket parameters might be chosen
to result in overflow probabilities of 10–6 - 10-9 or less.
However, we believe that the higher probability contours are
particularly relevant.

There are two options for a data source that wants to ensure

that no more than 10-9 percentage of its trafftc would overflow



LUCANTON1c-[al: EVALUATIONOF VBR VIDEO TRAFFICMODELS 179

3.5

3

2.5

2

1.5

1

0.5

0

1 1 I

k ,~
\\ — Data
\ — -- DAR
\ MRP
\
\

\
\ ,0.2

\
\.

\.

\
\

,.., ‘<,,

\’ ‘h
\.

\

300 400 500 600 700 600
Nominal average rate (kb/s)

Fig.9. Leaky bucket size for given overtlow probability.

a leaky bucket. The first is to select a very large drain rate
andlor bucket size for the traffic description. This would result
in the network “reserving” a large amount of resources for the
source and charging a high price to the end user. The second
option, which we believe is more likely for most sources, is
to reduce the cost of transport by selecting more reasonable
leaky bucket parameters and to do at least a minimal amount

of traffic shaping to ensure that no more than the desired
percentage of traffic would overflow the bucket. Most sources
would probably set the parameters in the 10-1 – 10 – 3 range
and shape the traffic when necessary.

Unfortunately, these are also the only contours that can
be accurately estimated with the limited amounts of data
available. For example. we required somewhere between 104

and 103 frames to get an accurate estimate of the 10–2 curve,
since these are not independent samples but are in fact highly

correlated. Therefore, curves for 10–6 and lower cannot be
accurately estimated for any reasonable simulation run.

Fig. 9 shows the 10-1 and 10-2 contour plots for the actual
VBR video traffic as well as the MRP and DAR models both
using 40 equidistant levels. The “time to empty” on the y axis
is defined as M/R where M is the leaky bucket size and
R is the drain rate of the bucket. Both models predict the
lower bucket sizes fairly well, but as the drain rates decrease
and bucket sizes increase both models become less accurate.
The MRP model seems to outperform the DAR model over

the entire range. One possible explanation for this is that as
mentioned earlier, the behavior of the DAR model inherently
underestimates the burstiness since it doesn’t stay in a group
of high states over any interval as long as the original process
does.

IV. QUANTIZATION HISTOGRAMS

The leaky bucket contours discussed in the last section can
be used to compare the burstiness of different sources or to

quantify the goodness-of-fit of a traffic model to a source. As
mentioned earlier, this measure is appropriate for describing
any bursty source, In this section we propose another measure
which can be used to judge the merits of a model, however,

this measure is only appropriate for video models. To describe
this measure we first need a little background on the operation
of a video coder with rate control.
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Fig. 10.Video system with rate control.

Consider a video system displayed

bit rate can be offered to the channel

in Fig. 10. A constant

using an adaptive rate

control. Bits generated by the encoder are placed in a buffer
before being transmitted at a constant rate onto the channel. To
ensure that the buffer neither overflows or empties, the buffer
fullness is monitored in real time. If the buffer starts to fill, the
rate control specifies that the encoder increase the quantization
step size (q) used for the discrete cosine transform coefficients,
which reduces the amount of information per frame and hence

the output bit rate. As the buffer fullness decreases, the rate
control decreases q which increases the output bit rate.

The above description also holds for a VBR video source
if we assume that the network will monitor the traffic using a
leaky bucket with specified parameters and that the source does
not want any traffic identified as excessive by the network.
Now, the encoder output is transmitted directly to the channel,
and to ensure that the offered VBR traffic is compliant with
the leaky bucket parameters, the video system again does rate
control by monitoring the content of the leaky bucket and

adjusting the quantization step size appropriate y. Therefore,

the rate control operation is identical when either a physical

or a logical buffer is being monitored.
Clearly changing the quantization step size affects the qual-

ity of the video signal. If most of the step sizes used are small,
then more information is retained and a higher resolution video
signal is transmitted. Conversely, larger quantization implies
poorer video quality. As a first step to quantifying the quality
of the VBR signal, we propose to ignore the serial correlations
and just look at the marginal distribution of the quantization

sizes. In general, comparing two quantization histograms for
different video streams may not allow us to say that one has
a higher quality than the other, but if a histogram is shifted
towards smaller quantization sizes then we could claim that
it represents a better quality signal. Quantization histograms
have been used [9] to evaluate the performance of various
buffer control policies.

To simplify modeling the effect of the q-step on the bit rate

output by the video encoder, we ignore many factors, including

the effects of memory when changing q and the effect of
changing q for different image content. We use an existing
model of the variable bit rate produced by a video encoder
with constant q-step (as in Section H, where q = 8 here),

and approximate the gross effect of changing the q-step using
an empirically-determined scaling factor, as shown in Fig. 1I.
This enables the model with rate control to be independent of

both the channel rate and the specific rate control algorithm.
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As an illustration of goodness-of-fit metric we show in
Fig. 12 the quantization histogram generated by the original
data and by the MRP and DAR models. Here, the nominal
average rate was 768 kbps, and the buffer size is 76.8 kbits.
The quantization size is chosen according to RM8, [10] with
a decision made 10 times per frame. The q tabulated in the
histogram is the average quantization step size used throughout

the frame.
The MRP tracks the histogram almost perfectly whereas

the DAR model overestimates the proportion of qttantizer step
sizes in the middle range and underestimates the proportion
in the higher range. Thus the DAR model would give an
overoptimistic estimate of the quality of the video signal. This
again seems intuitive since we have seen earlier that the DAR
model is less bursty than the original data.
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