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Introduction

F ricrioN-induced vibration has been observed in a
wide variety of systems. For example, discontinuous motion
may occur during the positioning of large masses in machine
tools and servomechanisms., Alternatively, brake squeal and
vibration in automatic transmission elements are manifestations
of self-excitation produced by friction. The Froude pendulum
and the motion of a violin string under the action of a bow are
frequently cited as examples of friction-induced vibration.

Two forms of autonomous friction-induced vibration may be
classified: stick-slip vibration and quasi-harmonic oscilla-
tion. The stick-slip or relaxation oscillation is characterized by
the sawtooth displacement-time waveform of Fig. 1. The regimes
of stick and slip constitute the complete vibration cycle. The
stick phase is dependent on the static friction forces established
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dynamic friction forces.
shape for the vibration to occur.
shown to increase with sliding velocity until oscillation ceases at some wpper velocity
boundary. The introduction of suitable damping will quench the vibration entirely.
The vibration can exist at high skiding velocities and as a consequence may influence
the operation of automatic transmissions, brakes, and clutches.

The vibration is of near-sinusoidal form and is solely governed by

However, the friction-velocity curve must be of a particular
The amplitude of the quasi-harmonic vibration is

during stationary contact. At the end of stick, sudden relaxation
occurs, and during this movement the system is governed by
dynamic friction forces. A theory recently developed by Brock-
ley, Cameron, and Potter [1]* permits the prediction of the condi-
tions necessary for the existence and decay of the stick-slip oscilla-
tion. In another recent paper by Brockley and Davis [2], a
theoretical and experimental study of the time-dependence of
static friction is reported. The findings of this paper arve di-
rectly applicable to the theory of the stick-slip oscillation. A
list of references concerned with stick-slip vibration is given in
[1].

The quasi-harmonic vibration, Fig, 2, has a waveform which is
approximately sinusoidal. Comparatively little work has been
devoted to the mechanics of this form of vibration. Papenhuyzen
[3] accurately classifies friction-induced vibration into the two
general types but he does not present a satisfactory theoretical
analysis of the quasi-harmonic form. The present work extends
the knowledge concerning this particular type of friction-induced
vibration.

Theory

The differential equation for the system as shown in Fig. 3 is:
mi + ré + kx = Fy 1)

where F; is the friction force.

Nomenclature

A = amplitude of friction-in- m = equivalent mass of vibra- z = displacement of slider

duced vibration tory system &, y = absolute velocity of slider
Cy, C1, ete. = coeflicients of friction force r = damping coefficient of vi- i = acceleration of slider

functions bratory system w = damped natural frequency

F; = friction force re = critical damping coeflicient of vibratory system

Iy, I, I, = modified Bessel functions for extinction of friction- v = coeflicient of nonlinear ve-

of the first kind induced vibration locity terms

k = stiffness of support system t = time ¢ = phase angle
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Tt has been indjeated earlier that in the case of stick-slip oscil- X
lation, F; is time-dependent during stick and velocity-dependent
during slip. However, in the case of quasi-harmonic oscillation
the motion is governed by velocity-dependent friction forces
only. The existence of the quasi-harmonic oscillation is critically
dependent on the particular shape of the dynamic friction curve. vA

Actual friction couples display a variety of forms of dynamic AN
friction curve. Fig. 4 illustrates a possible form of the curve. |
Alternatively, there is evidence to support the type of curve illus-
trated by Fig. 5. Kragelskii {4] demonstrates that this form of
curve is found for metals in dry sliding contact. Recently, the
study of the friction behavior of rubber [5] and of polymers [6]
has shown that similar humped friction-velocity curves exist for
nonmetallic materials. HExperimental results [7] for the edge
contact of lubricated rotating disks reveal the existence of friction-
torque versus velocity curves of the form of Fig. 5. It is of inter- W
est to note that the humped friction-velocity curve exists for
metals in dry and lubricated sliding contact as well as for non-
metallic surfaces. Further work is required in order to determine
whether or not a common factor is responsible for the humped

Fig. 2 Displacement-time recording of typical quasi-harmonic vibration

characteristic curve which is found for the various combinations. ; r
The friction force F; in equation (1) is considered as a function - M=

of sliding velocity. Various mathematical expressions have been m
used to represent the friction force function. In general, the VAV / Ff
function can be expressed in the form of an exponential function k -
or as an nth-order polynomial, such as * )

Py= 10+ oo — 2))e @08 4 Cio — @) + O (2)

v
Fp= Colv — 2y + Choalo—aP1+ ....... + Co (3)

Fig. 3 Spring-mass-damper system showing lower surface moving at
where (v — @) is the relative sliding velocity and Cy, C), etc., ave  constant velocity, v

constants which may be adjusted to fit the equation to measured
friction values.

The existence or nonexistence of self-excited vibration of the Ft
quasi-harmonic form may be investigated for the various dynamic
friction curves proposed. The phase-plane graphical method of
Liénard [8] provides a useful technique for a semi-qualitative
investigation. In order to apply the method, equation (1) is
modified by letting & = y and by replacing F; by a function F (v —

y), which depends on the relative sliding velocity. After ma-
nipulation, these modifications yield

dy Flo—y)—ry — ka
de my

4)

dy

If — is set to zero in (4), then it is found that :
dx B
Pl —y) — 1y )
o= O VELOCITY

Fig. 4 Linearized dynamic friction-velocity relationship
Equation (5) describes the locus of all points of zero slope on a
phase-plane diagram. It is evident that the zero-slope isocline
is simply a modified friction-velocity characteristic curve. Ac- F
cordingly, employing this equation and Liénard method, the dia- f
grams of Figs. 6, 7, and 8 were prepared using Figs. 4 and 5.
Fig. 6 illustrates the case of a limit cycle of the stick-slip type

VELOCITY
Fig. 5 Typical humped friction-velocity curve which gives rise to quasi-
Fig. T Displacemeni-time recording of typical stick-slip vibration harmonic vibration
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Fig. 6 Typical phase-plane diagram for stick-slip vibration associated
with a linear dynomic friction-velocity curve

v

Fig. 7 Phase-plane diagram illusirating a phase frajectory which leads
to stable dynamic equilibrium

STABLE
LIMIT CYCLE

Fig. 8 Phase-plane diagram of guasi-harmonic vibration showing a
stable limit cycle
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produced by entrainment of the phase trajectory into the statje
friction axis. Fig. 7 shows a situation whereby the mass achievey
a position of stable dynamic equilibrium and limit eycle motigy,
does not occur. An extended analysis is given in the earligy
paper [1]. In general, it may be observed that the friction chap.
acteristic of Fig. 4 will give rise to stick-slip vibration or stable
displacement, depending on the system parameters. In any
event, oscillations of the quasi-harmonic form do not oceur for thjg
particular friction-velocity relationship. However, limit ecycle
motion is possible in the case of the humped fri(:tion-velocity
curve of Fig. 5, and the phase-plane solution of Fig. 8 illustrates
that near-harmonic oscillation occurs. Hence, the hump in the
friction-velocity curve appears to be one of the conditions neces-
sary for the existence of this form of oscillation.

A singular point analysis provides further information concern-
ing the conditions necessary for the existence of the oscillation
[9]. The analysis reveals that for the case where the friction
function is represented by expression (2), the condition for a stable
system is

[C1Cs + CoCp — Ca] < (1 + Ci)es (6)

From this condition it is possible to define the damping r, re-
quired for a completely stable system. In [10] it is shown that

— 2C,
re = Che <glg3kz> - C, @
Cs

A solution of the nonlinear differential equation (1) is found
using the method of Kryloff and Bogoliuboff [11]. Substitution
of expression (2) into equation (1), gives after manipulation

Cy ~
5 sl 2
oy e + w

T+C4’ﬁ—01+020

. (&)
&+ Cw e’ +

m me me

_ 041) + 05
B m

8)

The constant term on the right-hand side of equation (8) consti-
tutes the static displacement of the vibration. Since we are only
interested in the amplitude of the oscillation, the right-hand term
is omitted in the analysis. KEquation (8) can be written as

&+ yR@E) + wx =0 9)
where w? = k/m; and
) T+C4 Cl+021) i 02 . Cuk
_ & — i ; 10
YGE) m ® meC¥ et + meCe et (10)
If vG(&) < 1, then a solution of the form
z = A@t)sin [wi + @) (11)

may be proposed. Here A (t) and ¢(¢) are considered to be fune-
tions which vary slowly with time. The application of the
method specified in [11] gives rise to the integrals

2w
d4 I G(Aw cos ) cos Ydy (12)
dt 2w J,
2w
(i—;-f =w+ 27rZ>A j; G(Aw cos ) sin Ydy (13)

where ¢ = wt + ¢.

In a practical sense, equation (12) is of particular interest since
amplitude variations with time may be measured, whereas phase
variations are difficult to detect. Accordingly, substitution of
equation (10) into (12) yields
dA _ (7‘ + 04)[1 01 + 021)

OzA
= - A
dt 2m mweSs | hGdw) 2meCs [1x(Caer)

+ [(Codw)] = B(4) (14)
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Fig. 9 §L(C:Aw) and L{C3Aw) + 1(C;Aw) plotted as functions of C;Aw

where I1(C34w), I.(C3dw) and I,(CsAw) are Bessel functions.
Generally, interest centers on stationary values for A. If

1A .
(W = 0 in equation (14), then
¢

2(Cy -+ Cw)
weC’;,v

Ca4.
803v

L(Csdw) — [T2(Cs4w) + 1o(Cs4w))

— @404 =0 (15)

This last equation can be solved by a computer for discrete v
values if the system constants are known. Fig. 9 illustrates
I(C3Aw) and I,(CsAw) + I1(CiAw) plotted as functions of C3dw.

For the stability of the amplitude of vibration, according to
d®(Ay)

A

Kryloff and Bogoliuboff [11], < 0 is the condition for a

stable limit cycle with amplitude A4,.
Carrying out the derivation of equation (15), we have

o) 2(CiCs + Colw)

T —(r + Cy) + 4w Ty(C34w)

_ 2[CiCs + CoCy + Co(CsAw)? -+ Co

]
CaAweCHU Il(CaAw) (16)

Thus the stability of the amplitude obtained from equation (15)
can be investigated by substituting it into equation (16).

Equation (15) can be further analyzed by omitting the last
term (r 4+ C4)A. This represents a system with a friction charac-
teristic as shown in Fig. 10 and with negligible damping. For
this condition, equation (15) reduces to

GG 1:(C,Aw) + Io(CeAw)
Coo + =~ = Gido o1 (CsAw)
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Ft

T Co=C,C3
‘ CaC
C +Cs 23 l
; l Cs
\ 1
VELOCITY

Fig. 10 Friction-velocity function for C; = 0

Application of values for I,(ChAw), I,(Csdw), and Iy(Csdw) de-
rived from TFig. 9 permits the construction of the solution dis-
played by Fig. 11. This solution indicates that vibration will
commence at a velocity corresponding to the peak of the friction-
velocity curve (see Fig. 10). In the undamped case the vibration
amplitude increases without limit as the lower surface veloeity in-
creases. However, actual systems possess some damping which
suggests that amplitude limitation will exist. Indeed, the sta-
bility analysis referred to earlier shows that with damping present
the vibration will be limited at some upper velocity boundary.

It has been indicated earlier that the friction force function
can be expressed in the form of an nth-order polynomial. Sub-
stituting expression (3) in equation (1) we have after some ma-
nipulation

----- - ( -1 )an:i;”]

1
& 4+ —— [rd + Bid — Bg® + Byi® —
m

+ wi = B (18)
m
where
By=Co + Cow -+ Co® + ... .. + Caom
Bi=C+ 20w+ ........... + nCp»!
By=Co+3Cw + ........... + 7}_(7_7:2"_1) Can—2
and
nl
By=Cr+4 ...l + (0 — Bkl C
k=201, ..,n.

The constant term on the right-hand side of equation (18) can
be omitted in the amplitude analysis. The application of the
method specified in [11] gives the integral

dA 1 261Ch
—_— = " it k—1
= =g | der + k; Sy Bui(dw) (19)
or
k< ntl
A %l
—_ o - 2% —2
®4) = ~ | r+ k; Sy Bua(da) (20)
where ,Cq = P s the expression for the binomial coef-
(» — !
ficients.
- . s s d®(4:)
The condition for a stationary oscillation is $(4) = 0. Jd
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< 0 is the condition for a stable limit cycle with amplitude A,.
1P(0
Accordingly, if {d/(i? > 0 we have an unstable singularity, in
other words, self-excitation will start from rest.
If $(A) = 0 in equation (20), we have

PR
<3 "
2k—10% _
T 121 9(2k—2) Bue(dw)™™ = 0 @1
Differentiating equation (20) with respect to A we have
[t

add) 1 « (2k — Vsl
i it Pt bt . 2% ~2

dA 2m k§1 2(2%—2) Bua(de) 22)

Equation (21) is a polynomial which can be easily solved with
the aid of a computer. The amplitudes obtained can be sub-
stituted in equation (22) for the stability investigation.

Experimental

Apparatus and Instrumentation. Apparatus of the pin and disk
type was employed for the experimental investigation. The
slider was attached to a spherical, shaped mount which, when
fitted into a hemispherical-shaped retaining cup in the specimen
holder, provided the self-aligning action for the slider, thus insur-
ing uniform contact at all times. The specimen holder was at-
tached to a cantilever beam which formed the elastic supporting
system of the slider. The beam assembly was pivoted and load
was applied through a pulley system. The driving unit consisted
of a variable-speed d-c motor and a double worm gear speed
reducer.

Instrumentation was designed to measure the displacement,
velocity, and acceleration of the slider motion during vibration.
Strain gauges and a bridge amplifier were used for the displace-
ment measurement. The velocity transducer consisted of a coil
of very fine enameled wire which vibrates in the gap between two
horseshoe-shaped permanent magnets. A seismic-type acceler-
ometer which weighed 3 0z was attached at the top of the specimen

S
23
<L
2 .
!
, —
0 w3
| 2 3 4 5
Cav + £1C3
: Cz

Fig. 11 Simplified solution (equation (17)) for zero damping and C; =
0. For known values of v, w, C;, Cy, and C; the amplitude of vibration

CiC
can be found directly from the plot of AwC; versus Cyv - —2-—3
2
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Ft

Fig. 12" Typical phase-plane oscilloscope trace of x versus x for quagi.
harmonic vibration. The inner trace in the photograph represents the
variation of friction force, F;, with velocity. Scales:

F=—0.236 Ib/major division
x—0.004 in/major division
x0.553 in/sec/major division

holder. A more detailed description of the apparatus and in-
strumentation is given in another paper by the authors [12].

Specimens. Preliminary investigation indicated thatl several
material and lubricant combinations gave the desired quasi-
harmonic vibration characteristics. The combinations employed
for experimental verification of the theory were:

(a) Blotting paper on the slider surface running on a C 1020
steel disk with automatic transmission fluid as lubricant gave
satisfactory results. This particular combination simulates the
behavior of some automatic transmissions.

(b) A steel slider specimen running on the same steel disk as
(a) with petrolatum (U.S.P.) as the lubricant gave quasi-harmonic
vibration after a run-in period. It was observed that the vibra-
tion started after the formation of a fine black deposit on the
disk track.

The steel surfaces of (@) and (b) were prepared by grinding and
then lapping to a final finish of 25 microin, A. A. All surfaces
were cleaned with hexane prior to use.

Resuits

Fig. 12 illustrates a typical phase-plane oscilloscope trace of
displacement ¢ versus vibration velocity @ for blotting paper on
steel at a load of 5.4 Ib. A plot of friction force versus velocity
is displayed in the same diagram. The foregoing results were
obtained during one cycle of the vibration. Similar traces were
obtained for a sequence of disk velocities, and the results of Fig.
13 were obtained by plotting vibration amplitude versus disk
velocity. In the low-velocity region the system had a propensity
to execute stick-slip oscillation. However, above a certain veloe-
ity near-circular phase-plane diagrams were obtained on the
oscilloscope which were indicative that the quasi-harmonic form
of vibration existed. A plot of vibration frequency as a function
is also shown in Fig. 13.

Similar results were obtained for the steel on steel combination
although some inconsistencies in vibration behavior existed
which were found to be critically associated with the extent of
the black deposit on the disk track.

For both systems the equivalent vibrating mass was 1.2 1b,
the equivalent beam stiffness was 59 lb/in., and the viscous
damping coefficient was 0.01 lb/in/sec. The foregoing values
gave a damped nabural frequency of 138 rad/sec for the slider
support system.
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(a) Experimental friction-force versus velocity compared with the exponential and

(b} Comparison of experimental results and theoretical predictions for vibration amplitude

versus disk velocity

(¢} Vibration frequency versus disk velocity
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Fig. 14 Phase-plane diagram (computer solution) of the hard excitation case of quasi-

harmonic vibration

Discussion

The exponential and polynomial funections (equations (2) and
(3)) were computer-fitted to the experimental friction-velocity
curve of Fig. 13. The exponential equation was applied to the
theory developed eatlier in the paper (equation (15)) to give the
theoretical amplitude-velocity curves displayed in Fig. 13.
Theoretical amplitude values derived from equation (15) were
inserted into equation (16) in order to check the stability. A
similar procedure was followed for the polynomial approximnation

Journal of Lubrication Technology

employing equations (21) and (22). In Fig. 13 the amplitude-
veloeity curve for the polynomial theory is shown for the region
A to B only.

The amplitude-velocity curves of Ig. 13 illustrate that the
experimental results and the predictions by the exponential and
polynomial theories are in reasonable agreement. It should be
noted that the experimental points to the left of A represent
stick-slip amplitude values. In theory and by experiment the
quasi-harmonie oscillation commences at a discrete veloeity A,
and the amplitude of vibration increases in a near-linear fashion
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with increasing velocity until vibration suddenly decays at B.
Theory predicts that the vibration is stable between the velocity
limits A and B. To the right of B instability is possible, and in
fact two vibration amplitudes are predicted at cach velocity.
The vibration of larger amplitude is stable whereas the lower
curve represents an unstable condition.  If the system is per-
turbed to an amplitude between the two curves, the upper ampli-
tude will be adopted for steady-state vibration. Alternatively,
if the pertwrbation displacement is below the lower curve, vibra-
tion will not occur. Vibration in the region A to I8 corresponds to
soft. excitation, whereby the system departs from an unstable
singularity and arrives at a state of steady-state vibration with
a stable amplitude [12]. To the right of B the singularity is stable
and hard excitation prevails.  Under these conditions the barrier
presented by an unstable limit eycle must be erossed before a
stable vibration can exist.  Fig. 14 illustrates a phase-plane dia-
gram of the hard excitation case obtained by computer for the
blotting  paper-steel system. Experimentally, the vibration
tended to diminish at point B largely because inconsistencies in
friction between the disk and slider permitted a reduction in vi-
bration amplitude.  Towever, once the vibration had decayed
to a small amplitude value (below the lower amplitude curve), it
could not return to the original steady-state vibration under hard
excitation conditions,

The constants (' to Cg for the exponential funetion were de-
termined to be

Cy = —0.0225; C: = 0.5929; O3 = 2.7385; Cy = —0.00433;

Cs = 1.059.

Substitution of these values into equation (7) gave an estimate of
the damping coefficient required for complete extinetion of vibra-
tion over the entire range of sliding veloeities.  The damping coef-
ficient obtained from this ealeulation was 0.077. A test was per-
formed using a permanent magnet as damper which had a damp-
ing coefficient of approximately 0.08. With this damper only
stick-glip oscillation was observed in the low-veloeity region and
quasi-harmonice oscillation did not occur.  Henee, it is possible to
introduce controlled damping into the system in order to prohibit
quasi-harmonic oseillation.  ‘This finding could be utilized in the
design of practical systems where vibration is undesired.

In all tests, the frequency of quasi-harmonie vibration was of
the order 137 rad/sec which almost coincided with the damped
natural frequency of the slider support system. In the majority
of systems subjected to self-induced vibration, the frequency of
quasi-harmonice vibration is very nearly equal to the system
natural frequency.

It is of some interest to observe that a comparatively small
hump in the friction-veloeity curve can lead to substantial vi-
bration amplitudes. Normally, friction-induced oscillation is
associated with slow-speed sliding whereas the present work
demonstrates that vibration may exist over a large velocity
range. The presence of vibration of the quasi-harmonic form
could influence the performance of practical machine elements
such as automatic transmissions, brakes, and clutches.
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Conclusion

A theorctical and experimental study of quasi-harmonie vibra.
tion has been described.  The results of the investigation may be
summarized as follows:

1 Quasi-harmonic friction-induced vibration may exist pro-
vided the dynamic friction curve is of a partienlar form.

2 1f the necessary friction-velocity curve exists, then the vibra-
tion commences at some lower velocity boundary.  As the sliding
veloeity inereases, the amplitude of vibration increases until the
motion suddenly ceases at an upper critical veloeity.

3 Damping and the form of the dynamie friction curve play a
role in determining the range of velocity for which the vibration
exists.  Sufficient increase in damping will lead to the complete
extinetion of the vibration over the entire velocity range.

4 The theoretical predictions and the experimental results
are in reasonable agreement for the friction materials and lubni-
rants employed in the present work.

5 In general; quasi-harmonie vibration may exist at compara-
tively high sliding velocities and as a consequence may be detri-
mental in the operation of frictional machine elements such as
antomatic transmissions, hrakes, and clutches.

Acknowledgment

The authors gratefully acknowledge the financial assistance
provided by the Defence Research Board of Canada under
Grant, No. 7510-31 and the National Research Council of Canada
under Grant No. A 1065,

References

1 Brockley, C. A., Cameron, R., and Potter, A, I, “I'riction-
Induced Vibration,” Journar or LusricatioN TeecuNoLoay, TraNs,
ASME, Series If, Vol. 89, No. 1, Jan. 1967, pp. 101 108.

2 Brockley, C. A., and Davis, 1. R., *The Time Dependence of
Static Friction,” JourNan or LusricarioN TecHNOLOGY, TraNs,
ASMI, Series I, Vol. 90, No. 1, Jan. 1968, pp. 35 41,

3 Papenhuyzen, P. J., “Wrijvings Proeven in Verbandmet het
Slippen van Autobuauden,” de T'ngenieur, Vol. 53, 1938, p. 75.

4 Kragelskii, 1. V., FPriction and Wear, Butterworths, 1965, pp.
182 -183.

5 Grosch, K. A., Proceedings of the Royal Society, Series A, Vol.
273, 1963, p. 21.

7 Jefferis, J. A., “Friction and Deformation of Rolling and
Sliding Surfaces,” PhD dissertation, Cambridge, 1966.

8 Liénard, A., “IEtude des Oscillations Intretenues,”
Gen. d. Elect., Vol. 23, 1928, p. 901,

O MaclLachan, N. W., Ordinary Non-Lincar Differential Fqua-
tions, Oxford, 2nd ed., 1955, pp. 180-221.

10 Brockley, C. A., and Ko, I’. L., Discussion of “Sliding I'riction
Between Lubricated Rollers,” Jefferis, J. A., and Johnson, K. L.,
Proceedings of the Imstitute of Mechanical Engineering, Vol. 182, Part
I, No. 14, 1968, pp. 281 291,

11 Kryloff, N., and Bogoliuboff, N., Introduction to Nonlincar
Mechanics, Princeton University Press, Princeton, N. J., 1943.

12 Ko, P. L., and Brockley, C. A., “Measurement of L'riction and
Friction Induced Vibration,” to bhe published in the Jounxan or
LupricatioNn TrenxNovoay.

13 Minorsky, N., Nonlinear Oscillations, Van Nostrand Co. Inc.,
1962, 1. 76.

Rev,

Transactions of the ASME

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use





