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Qoasi-Harmonic Friction-Induced Vibration 
A theoretical and experimental investigation of quasi-harmonic friction-induced vibra
tion is reported. The vibration is of near-sinusoidal form and is solely governed by 
dynamic friction forces. However, the friction-velocity curve must be of a particular 
shape for the vibration to occur. The amplitude of the quasi-harmonic vibration is 
shown to increase with sliding velocity until oscillation ceases at some upper velocity 
boundary. The introduction of suitable damping will quench the vibration entirely. 
The vibration can exist at high sliding velocities and as a consequence may influence 
the operation of automatic transmissions, brakes, and clutches. 

Introduction 

iBicriON-induced vibration has been observed in a 
wide variety of systems. For example, discontinuous motion 
majr occur during the positioning of large masses in machine 
tools and servomechanisms. Alternatively, brake squeal and 
vibration in automatic transmission elements are manifestations 
of self-excitation produced by friction. The Froude pendulum 
and the motion of a violin string under the action of a bow are 
frequently cited as examples of friction-induced vibration. 

Two forms of autonomous friction-induced vibration may be 
classified: stick-slip vibration and quasi-harmonic oscilla
tion. The stick-slip or relaxation oscillation is characterized by 
the sawtooth displacement-time waveform of Fig. 1. The regimes 
of stick and slip constitute the complete vibration cycle. The 
stick phase is dependent on the static friction forces established 

during stationary contact. At the end of stick, sudden relaxation 
occurs, and during this movement the system is governed by 
dynamic friction forces. A theory recently developed by Brock-
ley, Cameron, and Potter [1]1 permits the prediction of the condi
tions necessary for the existence and decay of the stick-slip oscilla
tion. In another recent paper by Brockley and Davis [2], a 
theoretical and experimental study of the time-dependence of 
static friction is reported. The findings of this paper are di
rectly applicable to the theory of the stick-slip oscillation. A 
list of references concerned with stick-slip vibration is given in 

[1]. 
The quasi-harmonic vibration, Fig. 2, has a waveform which is 

approximately sinusoidal. Comparatively little work has been 
devoted to the mechanics of this form of vibration. Papenhuyzen 
[3] accurately classifies friction-induced vibration into the two 
general types but he does not present a satisfactory theoretical 
analysis of the quasi-harmonic form. The present work extends 
the knowledge concerning this particular type of friction-induced 
vibration. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Lubrication Division and presented at the 

Fluids Engineering, Heat Transfer, and Lubrication Conference, 
Detroit, Mich., May 24-27, 1970, of T H E AMERICAN SOCIETY OF 
MECHANICAL ENGINEEBS. Manuscript received at ASME Head
quarters, March 9, 1970. Paper No. 70-LubS-16. 

Theory 
The differential equation for the system as shown in Fig. 3 is: 

mx + rx + hx — F'/ (1) 

where F/ is the friction force. 

-Nomenclature-

A = 

Co, Ci, etc. 

Ff 

amplitude of friction-in
duced vibration 

coefficients of friction force 
functions 

friction force 
modified Bessel functions 

of the first kind 
stiffness of support system 

equivalent mass of vibra
tory system 

damping coefficient of vi
bratory system 

critical damping coefficient 
for extinction of friction-
induced vibration 

time 

x = displacement of slider 
x, y = absolute velocity of slider 

x = acceleration of slider 
co = damped natural frequency 

of vibratory system 
7 = coefficient of nonlinear ve

locity terms 
c/> = phase angle 
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Introduction 
F RIC'l'ION-induced vibration has been observed in a 

wide variety of systems. For example, discontinuous motion 
may occur during the positioning of large masses in machine 
tools and servomechanisms. Alternatively, brake squeal and 
vibration in automatic transmission elements are manifestation~ 
of self-excitation produced by friction. The Froude pendulum 
and the motion of a violin string under the action of a bow are 
frequently cited as examples of friction-induced vibration. 

Two forms of autonomous friction-induced vibration may be 
classified: stick-slip vibration and quasi-harmonic oscilla
tion. The stick-slip or relaxation oscillation is characterized by 
the sawtooth displacement-time waveform of Fig. 1. The regimes 
of stick and slip constitute the complete vibration cycle. The 
stick phase is dependent on the static friction forces established 
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during stationary contact. At the end of stick, sudden relaxation 
occurs, and during this movement the system is governed by 
dynamic friction forces. A theory recently developed by Brock
ley, Cameron, and Potter [1]1 permits the prediction of the condi
tions necessary for the existence and decay of the stick-slip oscilla
tion. In another recent paper by Brockley and Davis [2], a 
theoretical and experimental study of the time-dependence of 
static friction is reported. The findings of this paper are di
rectly applicable to the theory of the stick-slip oscillation. A 
list of references concerned with stick-slip vibration is given in 
[1]. 

The quasi-harmonic vibration, Fig. 2, has a waveform which is 
approximately sinusoidal. Comparatively little work has been 
devoted to the mechanics of this form of vibration. Papenhuyzen 
[3] accurately classifies friction-induced vibration into the two 
general types but he does not present a satisfactory theoretical 
analysis of the quasi-harmonic form. The present work extends 
the knowledge concerning this particular type of friction-induced 
vibration. 

Theory 
The differential equation for the system as shown in Fig. 3 is: 

mx + rx + kx = F f 

where F f is the friction force. 

(1) 

---Nomenclature----------------------------

A 

k 

amplitude of friction-in
duced vibration 

coefficients of friction force 
functions 

friction force 
modified Bessel functions 

of the first kind 
stiffness of support system 
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equivalent mass of vibra
tory system 

damping coefficient of vi
bratory system 

critical damping coefficient 
for extinction of friction
induced vibration 

time 

x = displacement of slider 
X, y absolute velocity of slider 

x acceleration of slider 
w damped natural frequency 

of vibratory system 
'Y coefficient of nonlinear ve-

locity terms 
cf> phase angle 
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It. has bcc)) illdir:al ed narlicr I.hat. ill the ense of st.iek-slip oscil
lation, Fj is time-dependent during stick and velocity-dependent 
during slip. However, in the case of quasi-harmonic oscillation 
the motion is governed by velocity-dependent friction forces 
only. The existence of the quasi-harmonic oscillation is critically 
dependent on the particular shape of the dynamic friction curve. 

Actual friction couples display a variety of forms of dynamic 
friction curve. Fig. 4 illustrates a possible form of the curve. 
Alternatively, there is evidence to support the type of curve illus
trated by Fig. 5. I{ragelskii [4) demonstrates that this form of 
curve is found for metals in dry sliding contact. Recently, the 
study of the friction behavior of rubber [5) and of polymers [6) 
has shown that similar humped friction-velocity curves exist for 
nonmetallic materials. Experimental results [7) for the edge 
contact of lubricated rotating disks reveal the existence of friction
torque versus velocity curves of the form of Fig. :S. It is of inter
est to note that the humped friction-velocity curve exists for 
metals in dry and lubricated sliding contact as well as for non
metallic surfaces. Further work is required in order to determine 
whether or not a common factor is responsible for the humped 
characteristic curve which is found for the various combinations. 

The friction force F! in equation (1) is considered as a function 
of sliding velocity. Various mathematical expressions have been 
used to represent the friction force function. In general, the 
function can be expressed in the form of an exponential function 
or as an nth-order polynomial, such as 

(3) 

where (v - x) is the relative sliding velocity and Co, CI , etc., are 
constants which may be adjusted to fit the equation to measured 
friction values. 

The existence 01' nonexistence of self-excited vibration of the 
quasi-harmonic form may be investigated for the various dynamic 
friction curves proposed. The phase-plane graphical method of 
Lienard [8J provides a useful technique for a semi-qualitative 
investigation. In order to apply the method, equation (1) is 
modified by letting x = y and by replacing F j by a function F(v -
V), which depends on the relative sliding velocity. After ma
nipulation, these modifications yield 

ely 

dx 

F(v - 1}) - TV - kx 

If ely is set to 7,ero in (4), then it is found that 
dx 

x 
F(v - y) - TV 

k 

(4) 

(5) 

Equation (5) describes the locus of all points of zero slope on a 
phase-plane diagram. It is evident that the zero-slope isocline 
is simply a modified friction-velocity characteristic curve. Ac
cordingly, employing this equation and Lienard method, the dia
grams of Figs. 6, 7, and 8 were prepared using Figs. 4 and 5. 
Fig. 6 illustrates the case of a limit cycle of the stick-slip type 

x 

-.---~--' ~ -.-- --+._-
.1. --_ .. --.---.~, -·-~-i-

~-------------------------------t 

Fig. I Displacement-time recording of typical stick-slip vibration 
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x 

Fig. 2 Displacement-time recording of typical quasi-harmonic vibration 

w 

k 

v 
Fig. 3 Spring-mass-damper system shOWing lower surface moving af 
constant velocity, v 

VELOCITY 

Fig. 4 Linearized dynamic friction-velocity relationship 

VELOCITY 

Fig. 5 Typical humped friction-velocity curve which gives rise to quasi
harmonic vibration 

OCTOBER 1970 I 551 

t 

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



x 

x o 

v 
Fig. 6 Typical phase-plane diagram for stick-slip vibration associated 
with a linear dynamic friction-velocity curve 

x 

x o 
v 

Fig. 7 Phase-plane diagram illustrating a phase trajectory which leads 
to stable dynamic equilibrium 

x 
STABLE 
LIMIT CYCLE 

-+--------~----------------x 

v 

Fig. 8 Phase-plane diagram of quasi-harmonic vibration showing a 
stable limit cycle 
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produced by entrainment of the phase trajectory into the Htat.ic 
friction axis. Fig. 7 shows a situation whereby the IllaH!> adlicve~ 
a position of stable dynamic equilibrium and limit eycle motioll 
does not occur. An extended analysis is given ill thc earlier 
paper [1]. In general, it may be observed that the friction char
acteristic of Fig. 4 will give rise to stick-slip vibmtioll or stable 
displacement, depending on the system parameters. I II any 
event, oscillations of the quasi-harmonic form do noL o(!elll" for this 
particular friction-velocity relationship. However, limit cycle 
motion is possible in the case of the humped fridion-vdocity 
curve of Fig. 5, and the phase-plane solution of Fig. ~ illllH),rates 
that near-harmonic oscillation occurs. Hence, the hllmp in the 
friction-velocity eurve appears to be one of the cOll(li LiollH lleces
sary for the existence of this form of oscillation. 

A singular point analysis provides fmther information eoncern_ 
ing the conditions necessary for the existence of Lht) os(,iliation 
[9]. The analysis reveals that for the case where Lhe frict.ion 
function is represented by expression (2), the condit.ion for a st.able 
system is 

[C,C3 + C,C3v - C,] < (1" + C,)eG',,· (6) 

From this condition it is possible to define the damping tc re
quired for a completely stable system. In [10] it is shown LhaL 

_ C (CIC3 - 2C,) C r, - ,e C, -, (7) 

A solution of the nonlinear differential equation (1) is found 
using the method of Kryloff and Bogoliuboff [11]. Suhstitulioll 
of expression (2) into equation (1), gives after manipulat.ion 

1" + C, C, + C2v G' C, r< • 
X + --- x - --- e ," + -- xe~'X + w';r 

m 17WG',v meG," 

C,v + Cs 
(8) 

m 

The constant term on the right-hand side of equation (8) consti
tutes the static displacement of the vibration. Since we are only 
interested in the amplitude of the oscillation, the right-hand term 
is omitted in the analysis. Equation (8) can be written as 

x + 'YG(x) + w'x = 0 (9) 

where w' = kim; and 

r + C, C, + C2v G'. C,. G' x 'YG(x) = --- x - e ,x + -- xe ' 
m meG',v meG',v 

(10) 

If 'YG(x) « 1, then a solution of the form 

x = A(t) sin [wt + <I>(t)] (11) 

may be proposed. Here A(t) and <I>(t) are considered to be fUllc
tions which vary slowly with time. The application of the 
method specified in [11] gives rise to the integrals 

- = - -- G(Aw cos t/;) cos t/;elt/; elA 'Y J:2'" 
elt 27rW 0 

(12) 

# 'Y J:2'" - = w + -- G(Aw cos t/;) sin t/;elt/; 
elt 27rwA 0 

(13) 

where t/; = wt + <1>. 
In a practical sense, equation (12) is of particular interest since 

amplitude variations with time may be measured, whereas phase 
variations are difficult to detect. Accordingly, substitution of 
equation (lO) into (12) yields 

elA 

elt 
(1· + C,)A C, + C,v I ,(C3Aw) _ C,A [I,(C3Aw ) 

2m + mweG',v 2meG',v 

+ Io(C,Aw)] = iP(A) (14) 
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Fig. 9 h(CaAw) and Iz(CaAw) + /o(CaAw) plotted as functions of CaAw 

where I,(CaAw), I,(CaAw) and Io(CaAw) are Bessel functions. 

,I 
! 

CZ-C1C3 

CzC::s C1+C5 ~ 
I Cs 

~~--~------------~ 
VELOCITY 

Fig. 10 Friction-velocity function for C4 = 0 

Application of values for I,(Caliw), 12(CaAw), and Io(CaAw) de
rived from Fig. 9 permits the construction of the solution dis
played by Fig. 11. This solution indicates that vibration will 
commence at a velocity corresponding to the peak of the friction
velocity curve (see Fig. 10). In the undamped case the vibration 
amplitude increases without limit as the lower surface velocity in
creases. However, actual systems possess some damping which 
suggests that amplitude limitation will exist. Indeed, the sta
bility analysis referred to earlier shows that with damping present 
the vibration will be limited at some upper velocity boundary. 

It has been indicated earlier that the friction force function 
can be expressed in the form of an nth-order polynomial. Sub
stituting expression (3) in equation (1) we have after some ma
nipulation 

+ (J)'X 
Bo 

(18) 
m 

Generally, interest centers on stationary values for A. If where 

dA = 0 in equation (14), then Bo = Co + C,v + C,v' + 
ilt 

+ Cnv" 

2(C, + C,v) C,A 
C I,(CaAw) - -c [I,(CaAw) + Io(CaAw)] 

we aV e aV 

- (1' + C4)A = 0 (15) 

This last equation can be solved by a computer for discrete v 
values if the system constants are known. Fig. 9 illustrates 
I,(CaAw) andI2(CaA.w) + Io(CaAw) plotted as functions of CaAw. 

For the stability of the amplitude of vibration, according to 

Kryloff and Bogoliuboff [11], d~~,) < 0 is the condition for a 

stable limit cycle with amplitude A,. 
Carrying out the derivation of equation (15), we have 

d<p(A) 

elA 

_ 2[C,Ca + C2Cav + C2(CaAw)' + C,] I (C Aw 
C A Csv ' 3 ) a we 

(16) 

Thus the stability of the amplitude obtained from equation (15) 
can be investigated by substituting it into equation (16). 

Equation (15) can be further analyzed by omitting the last 
term (1" +' C4 )A. This represents a system with a friction charac
teristic as shown in Fig. 10 and with negligible damping. For 
this condition, equation (15) reduces to 

(17) 

Journal of Lubrication Technology 

B2 = C2 + 3Cav + + n(n - 1) C
n
vn - 2 

2 

and 

n! 
Bk = Ck + .................. + (n _ k)!k! C"V,,-k 

k = 0,1, ... , n. 

The constant term on the right-hand side of equation (18) can 
be omitted in the amplitude analysis. The application of the 
method specified in [11] gives the integral 

[ 

k<n+l ] - 2 
elA 1 2k_,Ck 
-- = - ~~ Awl' + L: -- B'k_l(Aw)2k-l (19) 
elt 2mw k=l 2(2k-') 

01' 

<P(A) = - (20) 

where pCq 

ficients. 

P is the expression for the binomial coef-
(p - q)!q! 

el<p(A,) 
The condition for a stationary oscillation is <p(A) = O. elA 
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< 0 is the coudilion for a stable limit cycle wilh amplitude AI. 
. . £1'1>(0) 

Accol'(hngly, If - dA - > 0 we have all \lI\~lable ~illgul:lrity, ill 

other words, self-excitation will start from rest. 
If <I>(A) = 0 in equation (20), we have 

k<n+1 
- 2 

L 2k-lCk 
l' + --- B (1 )2k-2 0 k~l 2(2k-2) 2k_lIW = 

Differentiating equation (20) with respect to 11 we have 

d<I>(A) 

dA 
[ 

k<n+,] ] - 2 
1 (21c - l)2k-l C k 

- l' + 2k-2 2m kL;l 2(2k-2) B,k_l(Aw) 

(21) 

(22) 

Equation (21) is a polynomial which can be easily solved with 
the aid of a computer. The amplitudes obtained can be sub
stituted ill equation (22) for the stability investigation. 

Experimental 
Apparatus and Instrumentation. Apparatus of the pin and disk 

type was employed for the experimental investigation. The 
slider was attached to a spherical, shaped mount which, when 
fitted into a hemispherical-shaped retaining cup in the specimen 
holder, provided the self-aligning action for the slider, thus insur
ing uniform contact at all times. The specimen holder was at
tached to a cantilever beam which formed the elastic supporting 
system of the slider. The beam assembly was pivoted and load 
was applied through a pulley system. The driving unit consisted 
of a variable-speed d-c motor and a double worm gear speed 
reducer. 

Instrumentation was designed to measure the displacement 
velocity, and acceleration of the slider motion during vibration: 
Strain gauges and a bridge amplifier were used for the displace
ment measurement. The velocity transducer consisted of a coil 
of very fine enameled wire which vibrates in the gap between two 
horseshoe-shaped permanent magnets. A seismic-type acceler
ometer which weighed 3 oz was attached at the top of the specimen 

6 ,- --

/ 

/ 
5 

/ 
V 

4 

/ 

1/ i 

2 ij 
I 

o 
2 3 4 5 

C3V + CIC3 
, C2 

Fig. 11 Simplified solution (equation (17)) for zero damping and C, = 
O. For known values of v, W, CJ, C2, and C3 the amptilude of vibration 

can be found directly from the plot of AwC3 versus C3V + C, C3 
C2 
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Ff X )(=0 

X 
"----------------------- - -V-X 

Fig. 12- Typical phase-plane oscilloscope trace of x versus x for quasi. 
harmonic vibration. The inner trace in the photograph represents the 
variation of friction force, FI, with velocity. Scates: 

Fj -o.236 Ib/major division 
x-o.OO4 in/major division 
X-O.553 in/sec/major division 

holder. A more detailed description of the apparatlls and ill
strumentation is given in another paper by the authors [12J. 

Specimens. Preliminlll'Y investigation indicated thaI, several 
material and lubricant combinations gave the desired <juasi
harmonic vibration characteristics. The combinations employed 
for experimental verification of the theory were; 

(a) Blotting paper on the slider surface running on It C 1020 
steel disk with automatic transmission fluid as lubricant. gave 
satisfactory results. This particular combination siDllllat('s- the 
behavior of some automatic transmissions. 

(b) A steel slider specimen running on the same steel (lisk as 
(a) with petrolatum (U.S.P.) as the lubricant gave quasi-hnrrnonic 
vibration after a run-in period. It was observed that the vihra
tion started after the formation of a fine black deposit on the 
disk track. 

The steel snrfaces of (a) and (b) were prepared by grinding and 
then lapping to a final finish of 25 microin. A. A. All smfaces 
were cleaned with hexane prior to lise. 

Results 
Fig. 12 illustrates a typical phase-plane oscilloscope trace of 

displacement x versus vibration velocity x for blotting p:lPN on 
steel at a load of 5.4 lb. A plot of friction force verslls vel,,(Ojt,y 
is displayed in the same diagram. The foregoing l'(~slllt~ WCl'B 

obtained during one cycle of the vibration. Similar t.ra(·(~s were 
obtained for a sequence of disk velocities, and the resllits of Fig. 
13 were obtained by plotting vibration amplitude V(~rSllS disk 
velocity. In the low-velocity region the system had a propensity 
to execute stick-slip oscillation. However, above a certain vchw
ity near-circular phase-plane diagrams were obtain(~cl Oil the 
oscilloscope which were indicative that the quasi-harlllollic form 
of vibration existed. A plot of vibl'ation frequency as a fnnct,ioll 
is also shown in Fig. 13. 

Similar results were obtained for the steel on steel comhillatioll 
although some inconsistencies in vibmtion behaviol' cxisted 
which were found to be critically associated with th" ext.ent. of 
the black deposit on the disk track. 

For both systems the equivalent vibrating mass was J.2 Ib, 
the equivalent beam stiffness was 59 lb/in., and t he viS(~Olls 

damping coefficient was 0.01 lb/in/sec. The foregoing valllcs 
gave a damped natuml frequency of 138 rad/sec for tJw slider 
support system. 

Transactions of the ASME 
Downloaded From: https://tribology.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Discussion 

0 

~ '0 

0 

-' 
Q1 
.J 

ILl,.. 
U 
rr .., 
u. 

z: ,., 
~.:~-
u 

cr: 
u. 

~-

r-
c, 

0 
~ 
0 

'" 
r. 
c~ _ 

a:i 
:> 

u. 
t::'~ 

-, 

~ XXX EXf'ERIMENTRL 

EXf'ClNENTIRL FIT 

PIlLYNClHIRL FIT 

.-' 
/'/ 

/'/' / 
// / 

FREQUENC7' /' /' "'-J 
/' /~ AMPLITUDE 

. _____ ~ / / OF VIBRATION 

a.. 
>; 
CI: 

~ x~1< /~ 
r ! & II 1/ "'--UNSTABLE 
B # I 

x x '------ STABLE 11 

o 
g 

... 
LI 
z: 
UJ 

0::;) 
'0 

'=UJ 
a: 
u 

g .. A/ ( 
- -----r------r----'r, ----,,---

,00 ,15 1.50 2.25 3.00 
VELDCITY IN/SEC 

-r ---,-,---,.-._-- ~ 

3.75 14.50 5.25 6.00 

Fig. 13 (a) Experimental friction-force versus velocity compared with the exponential and 
polynomial functions 

(b) Comparison of experimental results and theoretical predictions for vibration amplitude 
versus disk velocity 

(c) Vibration frequency versus disk velocity 

.00 

Lc" 
W ' 
20' 
W 
'-.J 
a:: 
...J 
0.(.0 
n CD -. ...,; 

,~ L~D 2.25 3 • .JO 3. I~ 
SLIO!NG VFLOCITY. DIMENSIONI E3~ 

Fig. 14 Phase-plane diagram (computer solution) of the hard excitation case of quasi
harmonic vibration 

The (:xpollenlial !md polYllOinial functiolls (equations (2) an(l 
(:;» were computer-fitted to thn nxperirnent.al friction-vclocity 
('mvn of Fig. lao The expolI('II(,i:d eqllation was applied t.o t.hc 
t.heory dcvcloped earlicr ill the paper (cquation (Iii) to give the 

theomtical nmplitude-velocity CtlI'VCS displayed in Fig. 13, 

Theomii(:al, amplitudc values derived from eqllatioll (1ii) werc 

inserted illt.o e(jllation (16) in order to check the ~tabiliLy. A 

~imil!l.r procedllre Wl\~ followcd for the polynomin.J approximat.ion 

Pl!lployill/!: equations (21) an (I (22), In Fig, 1:1 til!: !lIllplitllil('
vc]ol'ity (!urV(~ for the polynomial t,heory is shown for t.he region 
il 1.0 If only. 

The alllj;litude-vdoc:ity Ctll'VCS of Fig. I:: ilJllslrate that tllP 

expm'iment.ai result.s and t.he predictiolls by the cxpoll(mti,tl alld 
polynomial t.heories arc in reasollable agrcement.. It shollid be 
noled that the expcrimcllt.al poillts to I.he left· of A l'cpresellt 
st,ick-slip amplitlldc values. III theory and by CXlleriIllcnt the 
qllasi-harmonic oscillat,ioll (!ommcnc(!s at a dis(:ret.e velocity A 1 

[md the amplitude of vibration incre!l.ses ill It near-lillea,I' fflshioll 
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with ilwreasing velocit.y nnt.il vibralion suddcnly d(!cays at H. 
Theory prediets that the vibmtion is stable bet.wcen the vel()(,it.y 
limits 11 and n. To t.lw right of JJ inslabilit.y is possihle, and in 
fact t.wo vibration IImplit.ll<I(!s arc prcdi<:led at. cadI velocity. 
The vibration of Inrger amplit.ll<le is st.able whewas the lower 
clII've repl'csents an nnstab"! condilion. If the systcm is pel'
t.nri)(!d to an amplit.nde bctwcen t.he two elll'ves, t.lw npper alllpli
t·nde will be adoptcd for st(!ady-st.al(! vibration. Alt.el'llativ(~ly, 

if t.he pel't.lII'bat.ion displ:wemcnt. is hclow t.he lower cnl've, vibra
t.ion will lIot. oecnl'. Vibmt iOIl in the I'(!gioll A t·o 8 (",rresponcls to 
soft. cxcitation, whcl'd).v thc syst.cm departs from an nnstable 
singnlarit.y and arrivc!s at. a st.ate of stcady-sUlte vibration with 
a stable amplitnde [121. To t.lw right of H tlw singnlnl'it.y is stable 
and hard excitation prevails. Undcl' these condit.ions Uw barriPl' 
presentc!d by an unst.abl(! limit c!)'C'le mnst. be c,rossed beforc a 
stahle vibrat.ion can exist. Fig. 14 illnstrales a phase-plane dia
gram of t·he hard exeitat.ion ease oblained by eOlllpnt.el' for thc 
blotting papel'-st.eP! sys(cm. ExpNim(!n tally, the vibration 
tended to diminish at point. U largel,\' becanse ilwonsislencies in 
frict.ion between t·he disk arul slider I)(!rmit t·(!d n. 1'(>(lnct.ion in vi
bration amplitnde. However, OIwe !.lw vibrat.ioll had decayed 
(0 a small amplit\lde valtl(! (bdow t.he lower ltmplit.ll(h~ elii've), it. 
cOllld not. rPllll'n t.o t.he miginal st(!ady-state vibmt.ion tlncler hard 
ex"it.at.ion condit.ioIlP. 

The eOllst·ants (,'1 to C, for the exponential flllldioll werc de
termine(1 to he 

(.'1 = -0.022.'i; (;2 = 0 . .'iH2!l; C3 = 2.7:18;;; C. = -0.0048.'i; 
Cr, = 1.0.'i!l. 

i-lllbstitlltion of t.hese values int.o eqllat.ion (7) gave all est.imate of 
(.he damping coeffi(,i(!nt I'(!quil'ed fOl' eomplete ext.illction of vibra
t.ion over t.hc cnt.il'e range of slidillg vdocitics. The damping eocf
ficimll obtailled from this eaklllat ion was 0.077. A t.est was per
fOl'me(lllsing a perl\ulI\(!nt. magnet. a~ (Iamper whi('.h had a d:lIllJ)
ing codIicicnt of approximatdy 0.0:-;. With this damper only 
st.iek-slip oseillation was obs(!l'ved in t.he low-vdoeit.y region allli 
quasi-harllloni(, os('illat.ion (Ii(inot ()(·('ur. Hence, it is possible t.o 
intl'Oduce ('ontrollcd damping int.o clw system in order to prohibit. 
qllasi-harmoni(, os"illat.ion. This finding could be! ut·ilihed in the 
drsign of praelical systems where vibrat·ion is IIndesired. 

In all t.csts, t.he freqllency of quasi-hllrmonic vibration was of 
t.he ord(!r l:n ra(i,!sec whi('h almost. eoincid(!d wit.h the (hlrnp(!d 
nat.ural frequency of llw s!i(ler support. s,\'st.elll. In the majority 
of systems subjrcted to sdf-in(ltwed vibl'atioll, thc frrqllency of 
quasi-harmollic vibrat·ion is vPl'y nearly equal to the syst(!m 
natUl'al frrqllen('y. 

It. is of some intrl'est. t.o observe t.hat a eompal'llLivel.v small 
hUIllP in t.he fl'ittion-velo('it.y ,,"rvc c··an lead Lo substallt.ial vi
bration alllplit.udes. :\'0 \'Inally, frid.ion-in(lu('e(1 oscillation is 
a,'sociat.ed with slow-sp(~ed sliding whereas the prcsent wOI'k 
demonstrates that. vibration may exist. over a large vcloci ty 
rangc. The presence! of vibrat.ion of t.lw CJuasi-harlllonic form 
could influen('c t.he performance of pract.ical Ill!whinc elemcnt.s 
such as alltomat.ic, transmissions, brakes, and clut.ches. 
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Conclusion 
A t.heordieal and expcrinwlltal stlllly of qllasi-harmonic vibra. 

tion has bcen described. The reslllts of the investigat.ion Illay be 
slIllInutrihedas follows: 

quasi-harIllonic friction-induced vibratioll may exist pro
vided t.lw dynami(' fridiol\ eUl've is of a. part.icnlar form. 

2 1 f the necessary frielion-vdoeit.,Y ('\\I've exist s, t IWII t.he vihra
t.ion comIl1(m('es at somc lower vclo('i t.y boundary. As t.lw sliding 
velo('it.y increas(!s, the amplitnd(! of vibralion incrcases until the 
mot.iOl; suddenly ccases at all upper crit.i(!al vei(wity. 

:l Damping and Lhe form of t.he dYlIllmic friction ("Irve playa 
role ill (ietel'mining (·he range of velocit.y for whi"h Lhe vibrat.ion 
exisls. SufIi"ient ill('rease in damping will lead t.o (.he eomplde 
ext.inetion of t.he vibration over the entire velocity range!. 

4 Tlw t.heorct.ieal pre(licLions and t.he expcrinlPnt.al results 
arc in reasonable agn!ement. for t.lw friet.ion materials an(1 lllbri
canLs employcd ill the pr('s(~nt work. 

.'i In gmwml, quasi-haI'IlIoni(, vibrat.ion IlIay exist at ('oIllpara
tively high sliding vdocit.ies alld as a consequenee !\lay be clet.l'i
IIwntal in Lhe op(~rati()n of frict.ional IIlltdlille clc!men(s such as 
automatic: t.l'ansmi.o.;siolls, b1'!lkcs, alld dlltellPs. 
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