
comput. complex. 9 (2000), 1–15

1016-3328/00/010001-15 $ 1.50+0.20/0
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Abstract. We consider the class Σk
3 of unbounded fan-in depth three

Boolean circuits, for which the bottom fan-in is limited by k and the top
gate is an OR. It is known that the smallest such circuit computing the
parity function has Ω(2εn/k) gates (for k = O(n1/2)) for some ε > 0, and
this was the best lower bound known for explicit (P-time computable)
functions. In this paper, for k = 2, we exhibit functions in uniform NC 1

that require 2n−o(n) size depth 3 circuits. The main tool is a theorem
that shows that any Σ2

3 circuit on n variables that accepts a inputs and
has size s must be constant on a projection (subset defined by equations
of the form xi = 0, xi = 1, xi = xj or xi = x̄j) of dimension at least
log(a/s)/log n.

Key words. Circuit complexity, nonlinear lower bounds, constant depth
circuits.

Subject classifications. 68Q99.

1. Introduction

Considerable progress has been made in understanding the limitations of un-
bounded fan-in Boolean circuits of bounded depth. The results of Ajtai (1983),
Furst et al. (1981), Yao (1985), H̊astad (1986), Razborov (1986), Smolensky
(1987), among others, show that if the size of the circuit is not too large, then
any function computed by such a circuit must be constant on a large subcube
or can be approximated by a small degree polynomial. Such limitations of small
size bounded depth circuits can be used to show that certain explicit functions
such as parity and majority require a large number of gates. More precisely,
a result of H̊astad (1986) says that computing the parity function in depth d
requires Ω(2εn1/(d−1)

) gates for some ε < 1. Except for the constant ε this result
is essentially tight.
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Recently, H̊astad et al. (1993) described a top down approach for proving
lower bounds on depth 3 circuits. However, these and other techniques seem
incapable of proving a lower bound on depth 3 circuits of the form Ω(2h(n)

√
n)

with h(n) unbounded, for any explicit Boolean function. Here, as usual, the
term “explicit function” is a somewhat informal term, which is taken to mean
“uniformly and efficiently computable”, in, say P or NC.

To clarify the situation, it is useful to parameterize the lower bound in terms
of the maximum fan-in of the bottom gates. Define Σk

d to be the set of depth
d circuits with top gate OR such that each bottom gate has fan-in at most k.
Then it follows from known results that there is a constant ε ≤ 1 such that
for any k ≥ 1, any Σk

3 circuit for the parity function or the majority function
requires Ω(2εn/k) gates at level 2, and such bounds are tight for k = O(

√
n).

As in H̊astad et al. (1993), our motivation is to prove stronger lower bounds
on depth 3 circuits that go beyond the above trade-off between bottom fan-in
and size. We note that even for constant bottom fan-in k ≥ 2, currently known
lower bound techniques seem incapable of providing a lower bound better than
2n/k on the number of gates at level 2. There is another independent compelling
motivation for studying the depth 3 model with limited fan-in. Valiant (1977)

showed that linear-size logarithmic-depth Boolean circuits with bounded fan-in
can be computed by depth 3 unbounded fan-in circuits of size O(2n/log log n)
and bottom fan-in limited by nε for arbitrarily small ε. Also, if we consider
linear-size logarithmic-depth circuits with the additional restriction that the
graph of the connections is series-parallel, then such circuits can be computed
by depth 3 unbounded fan-in circuits of size 2n/2 with bounded bottom fan-in.
Thus, strong exponential lower bounds on depth 3 circuits would imply non-
linear lower bounds on size of fan-in 2 Boolean circuits with logarithmic depth,
an open problem proposed some twenty years ago in Valiant (1977).

In this paper, we take a modest step towards proving such strong bounds on
depth 3 circuits. We show that for some explicit function, contained in logspace
uniform NC1, any Σ2

3 circuit that computes it must have at least 2n−o(n) gates.
We obtain this result by showing that the function computed by a small Σ2

3

circuit must be constant on a large “nicely structured” subset of the cube.
These subsets, called projections, are defined by equating literals to each other
or to constants.

The starting point for our argument is the top-down approach used in
H̊astad et al. (1993), which says that if the number of gates at level 2 of a Σ3

circuit is small, there must be a depth 2 subcircuit that accepts a large num-
ber of inputs. We prove that such a depth 2 subcircuit (which in our case is a
2-CNF formula) must accept a projection of large size. We then give two con-
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structions of functions such that any Σ2
3 or Π2

3 circuit computing them requires
2n−o(n) size. For the first construction, we show that the set of codewords of an
error-correcting code is not identically one on any large projection. Thus, any
Σ2

3 circuit accepting this set requires large size. It then follows that the n + 1-
variable function g(x1, . . . , xn, xn+1) = xn+1f(x1, . . . , xn) + x̄n+1f̄(x1, . . . , xn)
requires large size Σ2

3 and Π2
3 circuits. In the second construction, we construct

a function which has a subfunction with the stronger property of not being
constant on any large projection. To do so, we first show that, with high prob-
ability, a randomly chosen homogeneous multilinear n-variable polynomial of
degree 2 over GF (2) is nonconstant on every large projection. We then use
derandomization techniques to construct a specific Boolean function with the
property that it has a subfunction on a large enough set of variables which is
not constant on any large projection. This property is stronger than what we
needed to prove lower bounds on depth 3 fan-in 2 circuits, and may be useful
in other settings.

The rest of the paper is organized as follows: In section 2, we review some
basic definitions and results, including a proof that any symmetric function
can be computed by a Σ2

3 circuit of size at most poly(n)20.59n. In section 3, we
show that any 2-CNF which accepts a large number of inputs must necessarily
accept a projection with large dimension. Using this result, in sections 4 and 5
we construct functions which do not have depth 3 bottom fan-in 2 circuits of
size less than 2n−o(n).

2. Preliminaries

2.1. Boolean variables, literals and assignments. Let X denote the set
{x1, x2, . . . , xn} of variables and L denote the set {x1, x̄1, x2, x̄2, . . . , xn, x̄n} of
literals. If V is a subset of L, then V denotes the set {v̄ | v ∈ V }. An assignment

of X is a function α : X → {0, 1}, and a partial assignment is a function α
from a subset of X to {0, 1}. Associated to any partial assignment α is the
subset X(α) ⊆ X of variables set to 1 by α and the set L(α) ⊆ L of literals set
to 1 by that assignment.

2.2. 2-CNF formulae. We briefly review some basic facts about 2-CNF for-
mulae. A 2-CNF formula Φ on a variable set X can be associated naturally
with its implication digraph D(Φ), whose vertex set is L. Each clause v ∨ w
(where v and w are literals) gives rise to two edges v̄ → w and w̄ → v. Each
singleton clause v gives rise to the edge v̄ → v. Note that the map that ex-
changes each pair of complementary literals and reverses the direction of all
edges is an isomorphism of D(Φ).
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We say that literal v implies literal w if there is a directed path in D(Φ) from
v to w. The implies relation is clearly transitive. The digraph D(Φ) defines a
partition of L into strong components, i.e., maximal subsets V with the property
that for any two vertices v and w in V , v implies w and w implies v. Note that
V ⊆ L is a strong component if and only if V is a strong component. A subset
V of literals is said to be initial in D(Φ) if there is no edge entering V from
outside V , and is said to be final if there is no edge from a vertex in V to a
vertex outside V . Trivially each initial set and each final set is a union of strong
components. If Φ is satisfiable, we say that the literal v is fixed by Φ if the value
of v is the same for every satisfying assignment of Φ.

We state without proof the following facts, which are easy to prove and
belong to the folklore about 2-CNF formulae.

Proposition 2.1. Let Φ be a 2-CNF formula on {x1, . . . , xn}. Then:

1. An assignment α satisfies Φ if and only if L(α) is a final set in D(Φ).

2. If the relation “v implies w” holds in D(Φ) then in any satisfying assign-
ment of Φ, v = 0 or w = 1.

3. Φ is satisfiable if and only if for each variable xi, the literals xi and x̄i lie
in different strong components.

4. If V is a strong component of D then in any satisfying assignment of Φ,
either all literals in V are true or all literals in V are false.

5. If V is a strong component of D, and Φ is satisfiable, then one of the
following two situations holds: either V consists entirely of fixed literals
or there exist two satisfying assignments of Φ that differ precisely on the
variables of V .

A strong component consisting entirely of fixed literals is a fixed component ;
otherwise it is an unfixed component.

2.3. Circuits. As usual, for an integer d, Σd (resp. Πd) denotes the class of
layered unbounded fan-in Boolean circuits with d alternating levels of ANDs
and ORs, and a single OR gate (resp. AND gate) at the top. The inputs are
viewed as feeding into the first level, and the top gate is at the d-th level. Similar
to H̊astad et al. (1993), we define Σk

d (resp. Πk
d) to be the class of circuits in

Σd (resp. Πd) such that all gates at the first level have fan-in at most k. For
a Boolean function f , we define sk

d(f) to be the size (number of gates) of the
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smallest Σk
d circuit computing f (here we assume d ≥ 3, so that sk

d(f) is well
defined). We are interested in computing lower bounds on sk

3(f) for explicit
functions f , and will obtain such bounds for the case k = 2.

If C is a Σ3 circuit having M AND gates at level 2, we write C1, C2, . . . , CM

for the Π2 subcircuits at level 2. Each of the circuits C i is equivalent to a CNF
formula of the inputs. If C is a Σk

3 circuit, then each of the C i computes a
k-CNF formula. If f is the function computed by C, then f is the OR of
the functions f1, . . . , fM computed by the circuits C1, . . . , CM . Let κ(f) be
the minimum number M such that f can be written as an OR of M 2-CNF
functions. Trivially, s2

3(f) ≥ κ(f) and since any 2-CNF on n variables can be
expressed as a Π2

2 circuit with at most 4n2 gates we have:

Proposition 2.2. Let f be a Boolean function on n variables. Then

κ(f) ≤ s2
3(f) ≤ κ(f)4n2.

So to approximate s2
3(f) it suffices to analyze κ(f). It is useful to think

of the determination of κ(f) as a cover problem: we want to cover the subset
A = f−1(1) of {0, 1}n by subsets of A each of which can be expressed as the
accepting set of a 2-CNF.

As an example, consider s2
3(f) for symmetric Boolean functions. Consider

first the slice functions: Sn
k is the n-variable function that is one on inputs of

weight k (where the weight is the number of 1’s in the input). It is easy to
see that κ(Sn

k ) = κ(Sn
n−k) (given a circuit for Sn

k , replace all literals by their
complements to get one for Sn

n−k), so assume k ≤ n/2.
We want to cover the set of assignments of weight k by 2-CNFs. We can

only use 2-CNFs whose accepting set consists of inputs of weight k.
To get an upper bound, consider the set G of Boolean formulas that can be

constructed in the following way. Partition the variables arbitrarily into k + 1
sets V, P1, . . . , Pk where each of the Pi is of size 2 and V is of size n−2k. Define
the formula Φ having clauses x̄i for xi ∈ V and clauses xi ∨ xj and x̄i ∨ x̄j for
each Pr = {xi, xj}. Then the assignment α satisfies Φ if and only if α is 0 on
all variables in V and for each Pi, one variable is set to 1 and the other is set
to 0. Hence each formula in G accepts only inputs of weight k.

We claim that there exists a set of such formulae having size M ≤ n20.59n

that cover all assignments of weight k. Let α be an assignment of weight k. If
Φ is a formula chosen uniformly at random from G then the probability that
Φ covers α, i.e., that α satisfies Φ, is the probability that the k variables set
to 1 by α belong to k distinct pairs Pi, which is easily shown to be 2k/

(

n
k

)

.
Therefore, if we choose Φ1, . . . , ΦM independently and uniformly from G, the
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probability that none of them cover α is (1−2k/
(

n
k

)

)M ≤ e−M2k/(n
k). Since there

are
(

n
k

)

such assignments, the probability that there is an assignment that is
uncovered is at most

(

n

k

)

e−M2k/(n
k).

Thus, if M is at least m(k) = 2−k
(

n
k

)

ln
(

n
k

)

, then this probability is less

than one, and some choice of Φ1, . . . , ΦM is a cover. m(k) is maximized when
k = n

3
− c for some constant c, and is at most 20.59n.

Now any symmetric Boolean function is the OR of at most n slice functions
and so if f is a symmetric Boolean function then κ(f) ≤ n220.59n and s2

3(f) ≤
20.59n+O(log n).

Our goal in this paper is to exhibit concrete functions which require cir-
cuits of much larger size S, that is, circuits of size S such that (log2 S)/n
approaches 1.

3. Projections

In this section, we prove that if a 2-CNF formula accepts many inputs, then it
must accept a projection of large dimension.

A projection for a variable set X is a subset of the set of all assignments
(or, equivalently, a subset of {0, 1}n), defined by equations of the form vi = 0,
vi = 1, or vi = vj where vi and vj are literals. Trivially, the condition vi = 0
is equivalent to v̄i = 1 and the condition vi = vj is equivalent to v̄i = v̄j. A
projection is an affine subspace of GF (2)n, and the dimension of a projection
is its dimension as an affine subspace. A projection of dimension d can be
specified by 2(d + 1) sets (A0, B0, A1, B1, A2, B2, . . . , Ad, Bd) where Ai ∪ Bi are
disjoint for i ≥ 0,

⋃

i≥0(Ai ∪ Bi) = X, and Ai ∪ Bi are nonempty for i ≥ 1. The
projection P specified by such a sequence of sets consists of all assignments α
which are 0 on the variables of A0, 1 on the variables of B0, and such that for
each j ≥ 1, all the variables in Aj are equal and all the variables in Bj are
equal to the negation of the variables in Aj. When we say that a projection
defines a partition, the partition defined is a partition of the variables not set
to constants into the sets Ai ∪ Bi for 1 ≤ i ≤ d. These sets are referred to as
the parts of the partition. For a subset S of assignments, we define π(S) to be
the dimension of the largest projection P such that P ⊆ S. If f is a Boolean
function, we write π(f) for π(f −1(1)).

The following result gives a lower bound on the number of gates at level 2,
κ(f) (and hence on the circuit size s2

3(f)) in terms of π(f):
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Theorem 3.1. Let f be a Boolean function on n variables and suppose that
π(f) ≤ d. Then

s2
3(f) ≥ κ(f) ≥ |f−1(1)|

∑d
i=0

(

n
i

) .

Theorem 3.1 is an immediate consequence of the following:

Lemma 3.2. If Φ is a 2-CNF formula on n variables then Φ accepts at most
∑π(Φ)

i=0

(

n
i

)

assignments.

Theorem 3.1 follows since if f is covered by 2-CNFs Φ1, . . . , ΦM , then
π(Φi) ≤ π(f), and so the lemma implies that each Φi accepts at most

∑d
i=0

(

n
i

)

assignments and hence M is at least |f −1(1)|/∑d
i=0

(

n
d

)

.
So it suffices to prove the lemma. We begin with a definition. A set Y =

{xj1 , . . . , xjk
} of variables is said to be free with respect to the set S of assign-

ments if any assignment to the variables in Y can be extended to an assignment
in S, i.e., for any assignment β to the variables in Y , there exists α ∈ S such
that α(xji

) = β(xji
) for i ∈ [k]. Define φ(S) to be the size of the largest set of

free variables with respect to S.
If P is a projection of dimension d, and V = {xj1 , . . . , xjd

} is a set of
representatives from the nonconstant classes of P , then it is easy to see that V
is free with respect to P , and hence also free with respect to any superset of
P . Hence we have:

Proposition 3.3. For any set S ⊆ {0, 1}n, φ(S) ≥ π(S).

In general φ(S) can be much larger than π(S), but the following lemma
shows that if S is the set of inputs accepted by a 2-CNF formula then equality
holds:

Lemma 3.4. Let S ⊆ {0, 1}n be the set of inputs accepted by a 2-CNF formula
Φ. Then if V is a set of variables that is free with respect to S then there exists
a projection P ⊆ S for which the variables in V are in distinct nonconstant
classes. Hence π(S) = φ(S).

Proof. We will call a literal free if the associated variable is free, and nonfree

otherwise. Consider the implication digraph D(Φ). By definition, no free literal
can imply another. Since the implies relation is transitive, we see that for each
nonfree literal y exactly one of the following holds:
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1. y is in the same strong component as some free literal.

2. y is implied by one or more free literals, but does not imply any free
literals.

3. y implies one or more free literals, but is not implied by any free literals.

4. y neither implies nor is implied by a free literal.

We now construct a projection that satisfies all the clauses. Let α be any
satisfying assignment. For each variable xi of type (4), assign it according to
α. For each variable of type (2), set it equal to 1. For each variable of type
(3), set it equal to 0. Each remaining literal is set equal to the free literal to
whose strong component it belongs. It is easily verified that every assignment
consistent with this projection satisfies the formula Φ. 2

To complete the proof of Theorem 1, observe that φ(S) is the VC-dimension
(Vapnik & Chervonenkis 1971) of S when considered as a family of subsets of
an n-element set. Lemma 3.2 now follows from φ(S) = π(S) and the following
standard result from the theory of VC-dimension (see, e.g., Sauer 1972):

Lemma 3.5. If A is a family of subsets of an n-element set, and A has VC-dim-
ension at most d, then

|A| ≤
d
∑

i=0

(

n

i

)

.

4. Constructing hard functions: Codes

In this section, we give a simple construction of a function g in logspace
uniform NC1 which requires depth 3 circuits of size Ω(2n−o(n)). To do so,
we first produce a function f on n bits that has the property that f −1(1)
does not contain any large-dimensional projections. Then, by Theorem 3.1,
f cannot be computed by small Σ2

3 circuits. Finally, we use f to construct
another function on n + 1 bits which indexes f and f̄ . To do so, we define
g(x1, . . . , xn, xn+1) = xn+1f(x1, . . . , xn) + x̄n+1f̄(x1, . . . , xn). If f is hard for Σ2

3

circuits, f̄ is hard for Π2
3 circuits, and g is hard for all depth 3 circuits.

To construct f , we start with a simple observation: If a set A contains a
d-dimensional projection, then the set A has two points at a Hamming distance
of at most n/d: If P is a d-dimensional projection, then the partition of the
variables it creates must contain a part with at most n/d variables, and by
fixing all the variables outside the part consistent with the projection we get
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two points which are at a distance of at most n/d. If A is a set of codewords
for a code with rate r and distance δ, then A has size 2rn and cannot contain
a projection of dimension larger than n/δ. We can use constructions of linear
codes to come up with “dense” sets with no large projections (for examples,
see Van Lint 1992). For example, one can construct binary BCH codes with
codeword length n, dimension n − 1 − t log n and distance 2t + 1. Let ft be the
Boolean function which is 1 on the codewords of a BCH code with dimension
n−1−t log n. Then ft is not identically 1 on any projection of dimension larger
than n/(2t + 1). On the other hand, by Theorem 3.1, any Σ2

3 circuit computing
ft in size S must accept a projection of dimension at least log(|f −1

t (1)|/S)/log n.

Hence, by taking t =
√

n/2, it follows that S must be at least Ω(2n−
√

2n log n).
Summarizing, we have:

Theorem 4.1. The function g defined above requires depth 3 circuits of size
Ω(2n−

√
2n log n).

5. Constructing hard functions:

Low-degree polynomials

In this section, we will exhibit another explicit function in logspace uniform
NC1 for which s2

3(f) = 2n−o(n). The lower bound on this function will be
weaker than that for the function constructed in the previous section using
codes. However, this function will have the property that it is not constant

on any large projection, once certain index bits have been properly instanti-
ated. By comparison, the function constructed in the previous section only has
the property that it is not identically one on any large projection. Thus, this
construction may be useful in other settings where the previous one is not.

The main idea is to consider the set H2(X) of multilinear GF (2) polynomials
in the variable set X that are homogeneous of degree 2. Each such polynomial
is specified by a function a defined on the set E(X) of edges of the complete
graph on {1, 2, . . . , |X|}, where, for e = {i, j}, ae ∈ {0, 1} is the coefficient of
xixj in the polynomial. First we will prove:

Lemma 5.1. Let ε > 0 and X be sufficiently large (depending on ε). If f is a
polynomial chosen uniformly at random from H2(X) then the probability that
π(f) ≥ |X|1/2+ε is strictly less than 1.

Now, this fact, Theorem 3.1, and the easily proved and well known fact that
a nonzero degree 2 polynomial over GF (2) is 1 on at least 2|X|−2 inputs implies
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that for |X| sufficiently large, there is a degree 2 GF (2) polynomial f for which

s2
3(f) ≥ κ(f) ≥ 2|X|−|X|1/2+ε log2 |X|. In fact, the proof of Lemma 5.1 shows that

for sufficiently large X, almost all functions in H2(X) satisfy this inequality.
The problem, as usual, is to give a uniform construction of such polynomials,
which we do not know how to do. Instead we proceed as follows. Lemma 5.1
can be strengthened to show that one can get good upper bounds on π(f) if f
is chosen from a k-wise independent distribution.

Lemma 5.2. Let ε > 0 and k be sufficiently large (depending on ε). Let X be
a set of size at least k and let D be a probability distribution over H2(X) such
that for any set {e1, . . . , ek} of k edges in E(X), the coefficients ae1 , . . . , aek

are
independent and unbiased. If f is a polynomial chosen from H2(X) according
to D then the probability that π(f) ≥ |X|/k1/2−ε is strictly less than 1.

It is well known (see, e.g., Alon et al. 1992) that for any integers k ≤ m,
there is an explicitly constructible set S(m, k) of vectors in {0, 1}m having size
at most (2m)d(k+1)/2e such that for a vector v chosen uniformly at random
from S(m, k), the coordinates of v are k-wise independent random variables.
Furthermore, using the construction in Alon et al. (1992), the basis vectors
which generate this set can be computed in logarithmic space. Noting that
each function in H2(X) is specified by a vector in {0, 1}m with m =

(

|X|
2

)

,

we define H2(X, k) to be the subset of H2(X) consisting of those polynomials
whose coefficient vector is chosen from S(m, k). Each function in H2(X, k) can
be explicitly indexed by a sequence of at most b(X, k) = (k + 2) log |X| bits.

Again, by Theorem 3.1 and Lemma 5.2 we have:

Corollary 5.3. Given ε > 0 and k sufficiently large, for |X| ≥ k there exists
a function g in H2(X, k) for which

s2
3(g) ≥ 2|X|(1−k−1/2+ε log2 |X|).

Now define the function fX,k on the variable set X∪Y where |Y | = b(X, k) as
follows: for an assignment α of X and β of Y , the assignment β of the variables
in Y indexes a function gβ in H2(X, k), and fX,k(α, β) = gβ(α). Trivially,
s2

3(fX,k) ≥ s2
3(g) for any g ∈ H2(X, k). By the above corollary, for k sufficiently

large, s2
3(fX,k) ≥ 2|X|(1−k−1/2+ε log2 |X|). For fixed δ > 0 and all sufficiently large

n, we define the Boolean function fn on n variables as follows. View the first
n − n2/3+δ/2 variables as X and the last n2/3+δ/2 variables as Y . Y is large
enough to specify a function in H2(X, k) for k = n2/3. Then we have:
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Corollary 5.4. For n sufficiently large and for any δ > 0, fn is logspace
uniformly computable in NC1 and

s2
3(fn) ≥ 2n−n2/3+δ

.

The fact that fn is logspace uniformly computable in NC1 follows from the
observation that the basis for the space of vectors with limited independence
can be generated by a logspace machine. So it remains to prove Lemma 5.1 and
its generalization, Lemma 5.2.

Proof of Lemma 5.1. We need to upper bound the probability that a random
function in H2(X) has a large projection on which it is 1. Fix an integer d and
let P be a projection of dimension d. As described in section 3, we can represent
P by a sequence (A0, B0, A1, B1, . . . , Ad, Bd) of subsets of the variables. If f is
a polynomial in H2(X) and Gf is the corresponding graph defined on X, let
fP be the function on variables y1, . . . , yd obtained from f by substituting 1 for
each variable in A0, 0 for each variable in B0, and for i ∈ [d] substituting yi for
each variable in Ai and 1 + yi for each variable in Bi. Then f is constant on
P if and only if fP is a constant polynomial. We upper bound the probability
that fP is constant by upper bounding the probability that its degree is at
most 1. Let bi,j be the coefficient of yiyj in fP . Then the event that fP has
degree at most 1 is the event that all of bi,j are 0. Now bi,j is just the number
(mod 2) of edges in Gf between the sets Ai ∪ Bi and Aj ∪ Bj. For a randomly
chosen function in H2(X), bi,j is uniformly random and the bi,j are mutually

independent. Hence the probability that fP has degree at most 1 is 2−(d
2). Note

that the event that fP has degree at most 1 only depends on the sequence of
sets (A0 ∪ B0, A1 ∪ B1, A2 ∪ B2, . . . , Ad ∪ Bd) representing the projection. Since
the number of ways to choose such a sequence is at most (d + 1)n we can upper
bound the probability that there exists a projection such that fP has degree at

most 1 by 2−(d
2)(d + 1)|X|. For d = |X|1/2+ε, this is less than 1. 2

Proof of Lemma 5.2. To show that the probability that π(f) ≥ |X|/k1/2−ε

is strictly less than 1, we need the following:

Claim 5.5. Let f be a Boolean function on a variable set X and h, d ≤ |X| be
positive integers. If there is a projection of dimension d on which f is constant
than there is a projection of dimension at least dh/|X|−1 on which f is constant
and such that the number of unfixed variables is at most h.
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Proof. To see the claim, consider a projection φ of dimension d on which
f is constant, and let P = (A0, B0, A1, B1, . . . , Ad, Bd) be a sequence of sets
representing the projection, with the parts ordered so that |A1 ∪B1| ≤ |A2 ∪B2|
≤ . . . ≤ |Ad ∪ Bd|. Let j be the largest integer such that the number of the
variables in the smallest j parts is at most h. Consider the projection φ′ obtained
from φ by fixing, for each i > j, all the variables in Ai to 1 and all variables in
Bi to 0. Then φ′ has at most h unfixed variables. Also it is a subset of φ, and
so f is fixed on φ′. It can easily be seen that j, the dimension of φ′, is at least
h/(|X|/d) − 1 since |X|/d is the average part size. 2

Returning to the proof of Lemma 5.2, let D be a k-wise independent distri-
bution on H2(X) and suppose f is selected according to D. By the claim, to
upper bound the probability that f has a projection of dimension d it suffices
to upper bound the probability that it has a projection with h = dk1/2e unfixed
variables of dimension at least d′ = dh/|X| − 1. Consider a projection P with
h unfixed variables. Note that for such a projection, the number of pairs of
unfixed variables is

(

h
2

)

≤ k. Hence, the random variables ai,j where xi, xj are
unfixed are mutually independent. Thus we can now proceed exactly as in the
previous lemma and say that the probability that fP has degree at most 1 is

at most 2−(d′

2 ). As before we note that the event that fP has degree at most
1 only depends on the d′ parts {A1 ∪ B1, . . . , Ad′ ∪ Bd′}. Now we only need to
count the d′-part partitions with at most h unfixed variables, and there are at
most (|X|d′)h of these and so the probability that for f chosen according to D,
there exists a dimension d′ projection P with h unfixed variables on which f is

constant is at most (|X|d′)h2−(d′

2 ). For d′ ≥ |X|/k1/2−ε and k sufficiently large,
this probability is less than 1. 2

6. Conclusions and open problems

The obvious question that is suggested by this work is whether a large set
accepted by a k-CNF (k > 2) must necessarily contain a projection of large
dimension. However, it can be shown that there are large sets defined by even
linear size 4-CNF which can only contain projections of dimension bounded
by a constant. This follows from the existence of sparse parity check matrices
which define codes with linear distance and constant rate in Gallager (1963)

and Sipser & Spielman (1994). Results in Gallager (1963) show that there exist
matrices with at most 4 1’s in each row which are parity check matrices for
codes with linear distance. The set of codewords defined by such a matrix is
just the AND of many 4-variable parity constraints, and so can be accepted by



cc 9 (2000) Depth three Boolean circuits 13

a 4-CNF. Because this set of codewords has linear distance, the same argument
used in section 4 shows that this set is not 1 on any projection whose size is
larger than some fixed constant. This implies that using the idea of projections
to prove nonlinear lower bounds on circuit size using Valiant’s reduction to
depth 3 unbounded fan-in circuits cannot work.

However, it may still be possible to apply the technique directly to linear
size and logarithmic depth circuits. In particular, we do not know the answer
to the following question: Let S ⊆ {0, 1}n be recognizable by a linear size and
logarithmic depth (or just even linear size) circuit. Does S or S̄ contain a pro-
jection of dimension Ω(nε) for some ε > 3/4? If we have an affirmative answer
to the question, then it follows that the hard function constructed in section
5 would require nonlinear circuit size. The codes discussed in section 4 would
not suffice since their complements contain large-dimensional projections.

One can also consider more general types of nice subsets of {0, 1}n. For
instance: consider the set of subsets of {0, 1}n that are affine subspaces. Is it
true that for constant k, every Σk

3 circuit is constant on an affine subspace of
dimension Ω(nε) for some ε (or even Ω(n))? Can one construct an explicit func-
tion which has no such subspace? A counting argument shows that almost all
homogeneous multilinear polynomials of degree 3 over GF (2) have the prop-
erty that they are not constant on any affine subspace of dimension more than
Ω(n2/3), but we do not yet know how to make this explicit.
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