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Abstract 
 
The possibility of extra dimensions has been considered for a long time.  In the 1920’s, Kaluza 
and Klein sought to unify electromagnetism with gravity by adding an extra dimension that was 
curled up on the order of the Planck length (10-35 m.)  Then, string theory sought to unify 
quantum mechanics and general relativity.  Although it is a major contender for a quantum 
theory of gravity, it requires 6 or 7 additional spatial dimensions that are compactified.  
Extensions of string theory led to membranes (or branes) as objects in a higher dimensional 
space.  It is possible that all of the particles and fields of the Standard Model are trapped on this 
brane, providing an explanation for why we have never observed more than our 3 spatial 
dimensions.  On the other hand, gravity would be able to travel in (4 + n) dimensions, where n is 
the number of extra dimensions.  Since we are constrained to the brane, extra dimensions need 
not be compactified, leading to theories with large extra dimensions.  One of the first theories 
was developed by Arkani-Hamed, Dimopoulos, and Dvali.  They proposed that for n = 2, the 
extra dimensions could be as large as a millimeter.  In addition to this possibility, they found that 
their model could also describe the hierarchy between the Planck mass and the electroweak 
symmetry breaking scale in terms of the large size of the extra dimensions.  Randall and 
Sundrum proposed a different brane world in which the hierarchy was due to an exponential 
warped factor caused by branes with tension in an Anti-de Sitter five-dimensional geometry.  In 
their model, the extra dimension could even be of infinite size and still reproduce our four-
dimensional gravity.  Thus, it was found that large extra dimensions were not only allowed 
theoretically, but they provided an explanation for the hierarchy problem that has been a long-
standing problem in particle physics. 

 



 It is commonly believed that we live in a universe with three spatial dimensions and one 
dimension of time.  We say that d = 3 + 1, where d is the dimensionality of space-time.  This 
belief is so ingrained that it seems unfathomable that our universe could be any other way.  Even 
Aristotle thought about this idea.  He concluded from physical experience that there are no 
physical objects described on manifolds of dimension greater than three.  It was not until the 
1850’s that the formalism to describe geometry of arbitrary dimension manifolds was created by 
Bernhard Riemann.  Since that time, the possibility of there being extra dimensions has received 
more attention.  However, if there are extra dimensions, why do we not observe them?  One 
belief is that the extra dimensions are so incredibly small (compactified to nearly the Planck 
length of 10-35 m) that we have never been able to probe them [1].  On the other hand, it has 
recently been shown theoretically that the extra dimensions could be as large as 1 mm [2], or 
they could even infinite in extent [4], and still have a universe that is consistent with our 
observations that space-time appears 4-dimensional.  As an added bonus, extra dimensions are 
not only permissible, but they can also resolve some of the puzzles present in 4 dimensions. 
 Before investigating the possibility of large extra dimensions further, it is important to 
understand what we mean by a dimension.  In terms of spatial dimensions, the number of 
dimensions is just a measure of the number of translational degrees of freedom available for 
movement in space.  For example, in our everyday experience, we can move in any of three 
dimensions.  We can move north/south, east/west, or up/down.  Similarly, the dimensionality can 
be thought of as the number of points necessary to specify a location of an event or object (x, y, z 
in Cartesian coordinates).  Mathematically, it is not difficult to add an extra dimension.  Instead 
of using (x, y, z) to specify a point, you need to have the coordinates (x, y, z, w).  In essence, you 
are introducing an extra degree of freedom.  In addition to the three spatial dimensions, 
Einstein’s Theory of Relativity taught us to think of time as a dimension.  Therefore, time can be 
thought of as another degree of freedom.  Not only must one specify the spatial location of an 
event, but they must also specify the time at which that event will occur (x, y, z, t) in space-time.  
Special relativity told us that the separation between two events in space-time is given by 
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or, written in tensor notation,  
υμ

μνη dxdxds =2      (2) 

where ds is the differential of distance in this flat, 4-dimensional Minkowski space, ημν is the 
metric for this space, and μ, ν each run from 0 to 3 and label the coordinates.  Equation (2) gives 
the metric for M4 (4-d Minkowski).  The importance of the metric when discussing large extra 
dimensions will become apparent later in this discussion. 
 Although our perceptions seem to tell us that there are (3 + 1) dimensions, there are other 
reasons why this has long been held true.  One of the strongest sources of evidence for three 
spatial dimensions comes from the inverse square laws observed in physics (e.g. electric 
Coulomb force and Newton’s gravitational force.)  Both of these major force laws have F ∝ 1/r2.  
In general, these laws can be derived from Gauss’s law.  For example, take Gauss’s law for 
electric charges and flux.  The law can be written as 
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where Ф is the electric flux, E is the electric field, dA is the area of a differential square on a 
Gaussian surface of area A with an outward facing surface normal, and Qenc is the amount of 
charge enclosed within the surface.  Even though (3) was written as if in three spatial 
dimensions, Gauss’s law can be generalized to n spatial dimensions.  Assuming that the electric 
field is isotropic and choosing an n-dimensional sphere for a Gaussian surface, the electric field 
can be factored out of the integral.  The area of the n-sphere is given by 
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Combining (3) and (4) yields the result that E ∝ 1/rn-1.  Therefore, for a universe with n = 3, we 
recover the inverse square law that we expected (since electric field is proportional to force.)  So, 
tests of the inverse square law are also tests of the dimensionality of our universe.  For the case 
of gravity, table top experiments performed here on earth and observations of the celestial bodies 
around one another all provide evidence that suggests there are (3 + 1) dimensions. 
 With all of this evidence pointing to (3 + 1) dimensions, why would anyone want to 
propose that there existed additional dimensions?  One such motivation was unification.  In 
1921, Theodor Kaluza discovered that if general relativity were extended to a five-dimensional 
space-time, then the equations could be separated out into normal 4-dimensional space-time and 
an additional set.  This additional set is equivalent to Maxwell’s equations for the 
electromagnetic field plus an additional scalar field known as the dilaton [5].  Under this 
framework, gravity and electromagnetism were unified by the addition of one extra dimension.  
The situation was analogous to when electricity and magnetism were unified into electro-
magnetism by considering these two fields as components of a larger object: the Fμυ tensor.  The 
immediate problem of Kaluza’s theory was that he provided no explanation as to why none of 
the fields varied over the extra dimension.  It was merely taken as an ad hoc assumption.  In 
1926, Oskar Klein provided an explanation for Kaluza’s assumption.  He proposed that the extra 
dimension is curled up into a circle with a radius on the order of the Planck length (10-35 m.) [6].   
 

 
 

Figure 1.  Compactification of a dimension.  Initially, the space is 
2-dimensional (a).  In (b), one of the dimensions is curled up into a 
circle.  If the radius is sufficiently small, then the space will appear 
1-dimensional at large distances (c) [16]. 

 
Since the fifth dimension is periodic, a particle moving in the extra dimension would return to 
where it began.  Due to the incredibly small size of the extra dimension, we cannot observe 
distance scales that small, and any field that began in a constant state in the extra dimension will 



remain that way.  Unfortunately, there were problems and inconsistencies in the Kaluza-Klein 
theory that caused it to fall into disfavor.  For instance, the theory predicted a unit of charge that 
was much smaller than the charge of the electron.  In addition, the theory could not incorporate 
quantum mechanics in its original form, and it was at this time that quantum mechanics was 
beginning to gain much interest and activity.  Although the possibility of unifying gravity and 
electromagnetism had looked promising at first, it quickly became little more than a curiosity.  It 
was not until the 1980’s that people started taking the ideas of Kaluza and Klein seriously again.   

With the advent of quantum mechanics, it began to become apparent that the theory was 
incompatible with the theory of general relativity.  The two theories described completely 
disparate realms.  General relativity describes large scales and cosmology with a classical 
background.  Quantum mechanics describes things at small distances with a background 
comprising of particles appearing from, and then disappearing into, the vacuum.  At this time, a 
new theory called superstring theory (or string theory at the time) proposed that fundamental 
objects were strings and not point-particles.  According to this theory, particles arose from 
excitations in the string.  It was discovered that a particular excitation of the string is a particle 
with zero mass and two units of spin [7].  These are exactly the properties of the proposed 
graviton particle: the mediator of the gravitational force.  In addition, since the strings were of 
finite size and not point-like, the strings collide at a small but finite distance.  This kept the 
graviton from interacting at zero distance (as in usual particle interactions), and the mathematics 
of the behavior of the graviton do not give nonsensical results as they were before.  It seemed as 
if string theory could be a theory of quantum gravity.  However, there came a price for accepting 
this new paradigm: superstring theory is only consistent in (9 + 1) or (10 + 1) dimensions [8].  
Therefore, there had to be 6 or 7 additional dimensions for the strings in which they could 
vibrate.  Suddenly, the Kaluza-Klein theory of compactified dimensions became more attractive.  
If string theory was to be a theory of quantum gravity, then the average size of the string should 
be near the length scale of quantum gravity.  This length scale is the Planck length, LPl,   
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with Planck’s constant ħ, the speed of light c, and Newton’s gravitational constant GN.  By this 
measure, strings are far too small to be seen by current or any future particle physics technology.  
The most powerful particle accelerator will be the LHC set to begin operation in 2007, and it will 
probe energies up to around 10 TeV.  The Planck mass,  
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given in units with c = 1, is a measure of the energy necessary to probe distance scales of the 
strings.  We are 15 orders of magnitude short in energy, making an investigation of the Planck 
scale practically impossible in this paradigm.   

The next step in string theory was to posit the existence of branes, because they are 
precisely formulated extended objects that are necessary for the consistency of string theory [9].  
The term “brane” is derived from “membrane”.  These membranes are objects that exist in a 
higher dimensional space.  It had been theorized as early as 1983 that it was possible that space-
time has (4 + n) dimensions [10].  In this scenario, the Standard Model (SM) particles and forces 
(not including gravity) are confined to a four-dimensional subspace known as a 3-brane within a 



(4 + n)-dimensional space-time.  The realization of a mechanism for the localization of the SM 
fields is non-trivial.  One possible mechanism is the trapping of zero modes on topological 
defects [10].  Here there was believed to be some potential that was flat in our 3 spatial 
dimensions and narrow in the extra n dimensions.  Another possibility comes from string theory.  
It could be that our 3-brane is a D-brane.  In this case, the ends of open strings are localized on 
the brane.  In fact, at least one the open ends must terminate on a brane, as in Figure 2.   
 

 
Figure 2.  If we do live on a D-brane, then open strings must have 
at least one end on the brane, confining them to it [17]. 

 
Therefore, most SM particles and fields are trapped to the brane, and they cannot explore the 
extra dimensions.  As far as the SM particles and fields are concerned, there are only 4 
dimensions.  The graviton, on the other hand, is a closed string.  Since it does not have to end on 
a brane, the graviton is free to traverse the extra n dimensions.  An alternative way of thinking 
about this is that the graviton is connected to the full space-time geometry.  It is coupled to 
energy everywhere in the “bulk” (the full space-time) [11]. 
 The concepts of branes opened up a new pathway for thinking about the sizes of the extra 
dimensions.  Through the use of particle accelerators, distances on the order of 10-19 m have been 
probed, and there has been no evidence of extra dimensions.  These extra dimensions would 
manifest themselves in high energy experiments in the form of Kaluza-Klein (KK) excitations 
that appear as particles of mass ~ R-1, where R is the size of the extra dimension.  This comes 
from the fact that momentum would be quantized in the compact dimensions.  Therefore, there 
was previously an upper bound of 10-19 m on the size of any extra dimension.  However, with the 
idea of all SM particles and fields trapped on the 3-brane, those high energy particles did not 
have a large enough energy to escape the brane.  Gravity would be the only way to probe extra 
dimensions.  As of 10 years ago, gravity had only been measured in the 1 cm range.  Now, there 
existed the possibility that any extra dimensions could be large, even as large as 1 mm, and we 



would have never seen them in any experiment!  This was the proposal of Nima Arkani-Hamed, 
Savas Dimopoulos, and Georgi Dvali (hereafter referred to as the ADD model) [2].  With this 
idea, something amazing happened.  The believed fundamental scale of nature where gravity 
becomes as strong as the gauge interactions, the Planck scale MPl = GN

-1/2 ≈ 1016 TeV (6), turns 
out to not be fundamental at all.  In fact, the real fundamental Planck scale in (4 + n) dimensions 
could be as small as the electroweak scale, mew ≈ 1 TeV, where electromagnetism is the same 
strength as the weak interaction.   
 What began as the exploration of the extra dimensions led to a solution of a predicament 
that had been present in particle physics for some time: the hierarchy problem.  The hierarchy 
problem was a question as to why there was such a huge disparity (believed to be around 15 
orders of magnitude) between two fundamental quantities with the same units.  Specifically, the 
hierarchy problem addresses the enormous gap between the energy scale associated with the 
electroweak symmetry breaking and the Planck energy.  This problem is also a question about 
the hypothetical Higgs boson that is thought to give mass to the W and Z bosons of the weak 
interaction, thus breaking the symmetry between the weak and electromagnetic interactions (with 
its massless photon as the carrier of the force).  Why is it that the Higgs boson is so much lighter 
than the Planck mass when large quantum contributions to the Higgs mass should make it 
massive, comparable to the Planck mass?  Previously, the most popular theory to solve the 
hierarchy problem was supersymmetry.  Supersymmetry theory makes the assertion that there is 
a fundamental symmetry between fermions and bosons.  Every fermion has a superpartner that is 
a boson, and every boson has a superpartner that is a fermion.  It is a vital part of many theories 
that go beyond the SM, including string theory.  However, supersymmetry only protects the tiny 
Higgs mass from quantum corrections, it does not account for it being small and nonzero in the 
first place. 
 The ADD model provides a framework for solving the hierarchy problem that does not 
rely on supersymmetry.  They propose that there exists n ≥ 2 new compact spatial dimensions.  
According to this model, the Planck scale is not fundamental; its enormity is due to the large size 
of the new dimensions [2].  Only the electroweak scale is fundamental; it even sets the scale for 
the strength of the gravitational interaction.  SM fields must be localized to the 4-dimensional 
submanifold (the brane), while the graviton is free to propagate into the (4 + n) bulk.  Since it is 
assumed that mew is the only short-distance scale in the theory, our brane should have a 
“thickness” mew

-1 in the extra n dimensions.  It is easy to see how the usual strength of 
gravitation can arise in such a framework with n extra compact dimensions of radius R.  The 
gravitational potential between two test masses m1 and m2 placed within a distance r << R is 
given by Gauss’s law in (4 + n) dimensions  
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in units where ħ = c = 1 and where MPl(4+n) is the Planck scale in the (4 + n) theory.  For masses 
placed a distance r >> R apart, their gravitational flux lines do not penetrate the extra 
dimensions; so, Gauss’s law obtains 
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which is the expected 1/r potential.  From this, we can get a relation between the effect MPl in 
our 4 dimensions and the fundamental unification scale MPl(4+n): 
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If we set the fundamental scale MPl(4+n) ≈ mew and demand that R reproduces the observed Planck 
mass, then we get  
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Assuming that mew ≈ 1 TeV, we find that this explains the hierarchy problem and describes the 
expected size of the extra dimensions.  For n = 1, R ≈ 1013 cm.  This implies deviations from 
Newtonian gravity over solar system distances.  Thus, n = 1 is excluded by empirical 
observations.  However, for n = 2, R ≈ 100 μm which is exactly at the range at which 
experiments are currently being done to look for deviations from Newtonian gravity. 
 One of tests for deviations was performed at the University of Washington [12].  For their 
experiment, they suspended a torsion pendulum with 10-fold symmetry from a tungsten wire.   
 

 
Figure 3.  Scale drawing of torsion pendulum and rotating 
attractor.  A large separation of 1.5 cm is shown for clarity.  The 
BeCu membrane has also been omitted [13]. 

 
The pendulum was placed above an attractor with two coaxial disks that had 10-fold symmetry 
that slowly rotated about the vertical axis of the pendulum (Figure 3).  A 20 μm beryllium-
copper membrane was placed between the attractor and the pendulum to minimize torques 
caused by spurious electric forces (since any electric forces would completely dominate any 
gravitational forces.)  Due to the 10-fold symmetry of the instrument, the torque varied at 10 
times the rotation frequency of the attractor ω.  The torque of the pendulum was measured by 
shining a laser beam off of a mirror mounted to the pendulum.  Although both upper and lower 
disks of the attractor had 10 holes bored into them, the holes of the lower disk were larger and 



rotated 18° relative to those of the upper disk.  This way, the holes of the lower disk lie half way 
between the holes of the upper disk.  If there are n = 2 extra dimensions of size R, then one 
would expect that Newtonian gravity would go from F ∝ 1/r2 to F ∝ 1/r4.  If the inverse square 
law is correct, then the lower holes should produce a twist on the ring that just cancels the twist 
induced by the upper disk.  On the other hand, if gravity becomes stronger at smaller distances 
(e.g. 1/r4), then the twist induced by lower disk, which is further from the pendulum ring, will not 
cancel the twist from the upper disk.  This will result in a strong signal in which the magnitude of 
the twist varies with the separation between the ring and the disks.  Their experiment showed no 
deviation from the 1/r2 gravitational law down to a separation of 218 μm.  Since the time of 
publication, they have further improved their setup and tested gravity at even shorter separations.  
Currently, their results set an upper bound of 200 μm on the size of the largest dimension, and 
they set an upper bound of 150 μm on the size for n = 2 large extra dimensions [13].   

In addition to bounds on the extra dimensions due to this table top experiment, there are 
also restrictions that come from observations of supernova (SN).  The largest constraint on extra 
dimensions comes from the observed duration of the SN 1987A neutrino burst.  If there are large 
extra dimensions, then the 4 dimensional graviton is accompanied by a tower of KK states.  
These gravitons would be emitted from the SN core after collapse in a process that would 
compete with cooling by neutrinos, shortening the observed duration of neutrinos.  From this 
duration, a conservative bound of R ≤ 0.9 × 10-4 mm is made for n = 2 and R ≤ 1.9 × 10-7 mm for 
n = 3 in the ADD model. 

One of the problems with the ADD model is that while it does eliminate the hierarchy 
between the weak scale mew and the Planck scale MPl, it introduces a new hierarchy between the 
compactification scale μc ≈ 1/R and mew.  Indeed, there are different higher-dimensional 
mechanisms for solving the hierarchy problem.  One such method was theorized by Lisa Randall 
and Raman Sundrum (hereafter referred to as the RS model) [3 - 4].  In fact, there are two RS 
models, RS1 and RS2, and both will be discussed.  First, it is important to qualify some of the 
things that have been said previously.  It is not necessarily true that the Planck scale is related to 
the higher dimensional scale of gravity, MPl(4+n), by (9) with n extra compact dimensions.  This 
property relies on a factorizable geometry.  Recall that the metric is a way to measure distances 
in different space-time geometries.  For flat, Minkowski space-time, the metric is given by (2).  
Now, suppose you wanted to add an extra dimension that was orthogonal to x1, x2, and x3.  The 
simplest way to do this is to put in an extra term ad hoc, such as  
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where y is the position in the fifth dimension.  In this case, the metric of our four space-time 
dimensions is not dependent of the y coordinate.  By remaining on a constant y-slice (a 3-brane), 
you recover the same metric, independent of where you are in the fifth dimension.  However, in 
the presence of a non-factorizable geometry, the Planck scale is no longer determined by the size 
of the extra dimension; instead, it is determined by the higher dimensional curvature [4].  In this 
case, it is possible that there are (4 + n) non-compact dimensions, and this would still be 
compatible with all experiments performed thus far.  The warped geometry hides the extra 
dimensions even more efficiently than ADD models of extra dimensions. 

The first model to be described by Randall and Sundrum (RS1) involved two 3-branes 
[3].  They had one extra dimension of finite size rc (which can be thought of as the 
compactification radius; space begins at one brane and ends at the location of the other, and the 
branes are separated by a distance π rc.)  The only assumptions made were the existence of two  



 
Figure 4.  Basic setup for RS1.  Gravity is trapped on the Planck 
brane, and it appears weak on our TeV brane due to the 
exponential decrease of the graviton wavefunction away from the 
Planck brane (shown as the black line) [11]. 

 
3-branes in five dimensions and their compatibility with four-dimensional Poincaré invariance in 
the xμ directions.  Solving the five-dimensional Einstein’s equations for the action in this given 
scenario resulted in the five dimensional metric 
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where 0 ≤ y ≤ π rc and k is a scale of the order of the Planck scale.  It is the exponential factor in 
(12) that causes the large hierarchy between the observed Planck and electroweak scales.  See 
Figure 4.  Indeed, since this source is an exponential function of rc, a large compactification 
radius is not necessary in generating the hierarchy.  Here, it may be beneficial to point out the 
differences between RS1 and ADD.  Although both seek to solve the hierarchy problem, using 
the two brane model of RS1 requires only one extra dimension (though there could be more) as 
opposed to n ≥ 2 extra dimensions.  While the ADD brane world had a tower of KK modes, there 
are no light KK modes in the RS1 brane world [3].  In this case, the excitations of the KK modes 
are set by the weak scale.  They should be observable at high energy colliders as spin-2 
resonances [4].  For RS1, there is the Planck brane and the TeV brane.  The Planck scale is the 
fundamental scale, and gravity is trapped on the Planck brane.  The gravitational force weakens 
away from this brane due to the exponential rescaling of masses [11].  Now, imagine that the SM 
is stuck on the TeV brane.  The electroweak force sees only this brane, while gravity probes the 
bulk.  Since the electroweak mass scale decreases exponentially from the brane that traps gravity, 
a relatively natural sized dimension is all that is required to explain the hierarchy.  The 5-d 
Planck scale is related to the geometry of the extra dimensions and the observed Planck scale by  
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Randall and Sundrum also found something else interesting.  They discovered that Λ5, the five-
dimensional cosmological constant (vacuum energy) of the bulk, was negative.  This showed that 
the space-time between the two branes was a slice of Anti-de Sitter (AdS5) geometry.  It was also 
found that the relations 
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had to be satisfied to ensure four-dimensional Poincaré invariance.  Although nothing initially 
sets the size of rc, the hierarchy scale is strongly dependent on this value.  The two branes have 
tension (and thus energy), and there is also an energy in the bulk.  There needed to be some 
mechanism that stabilized the distance between the branes without fine-tuning.  One proposed 
mechanism is that there exists an additional scalar field that is a particle whose energy is 
minimized for a particular size of the extra dimension [15]. 

The second model to be described by Randall and Sundrum (RS2) started in a way 
similar to RS1, with two branes, and achieved the same results as they did previously.   
 

 
Figure 5.  Basic setup for RS2.  In this scenario, the extra 
dimension is infinite.  Gravity is localized on our brane.  The solid 
lines are the gravitational force lines, and the dashed lines 
represent equipotential surfaces.  Note that the force lines are 
denser near the brane in this warped geometry [11]. 



 
The difference between their initial setup in this brane world and that of their previous one was 
that they interchanged the branes.  The solution for the background metric was the same, 
involving the exponential decrease from one brane to the other.  Previously, there was the 
“hidden” Planck brane to which the graviton was bound.  Our “visible” brane saw the hierarchy 
because of the exponential decrease of the mass parameter on our TeV brane that was some 
distance away from the Planck brane.  However, it is not necessary to consider the Planck scale 
as fundamental.  Instead, one can consider the electroweak scale as fundamental and the Planck 
scale as derived.  In this scenario, it is essential that the graviton be bound to our visible brane.  
This is possible, because one can show, using Einstein’s equations, that the tension of the brane 
and the negative cosmological constant of the bulk (l4) allow a bound-state mode of the five-
dimensional graviton that is highly concentrated on the brane [11].  See Figure 5.  Therefore, it 
behaves as if it were a four-dimensional graviton.  Now, we can take rc → ∞, removing the 
second brane from the setup.  The size of the extra dimension is now infinite!  Note that this is 
possible in the RS brane world using (13), but it is not possible in the context of ADD and (9).  It 
was initially thought that larger dimensions lead to weaker gravitational forces (9); therefore, 
infinite dimensions should not be possible, because they would indicate that gravity is infinitely 
weak and thus decoupled from the brane world.  Due to the concentration of the graviton on the 
brane, we would only be sensitive to the short distance scale over which gravity decreases and 
not the size of the extra dimension.  Now, an infinite extra dimension could exist, and we would 
have never observed it.  So, what would gravity look like on our brane?  It was found that the 
static potential generated by the exchange of the zero-mode and continuum KK mode 
propagators between two masses is given by [3] 
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This integral can easily be calculated, resulting in a gravitational potential  
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where k is expected to have a value that is of the same order as the fundamental Planck scale.  As 
one can see, the addition of an infinite extra dimension still produces an effective four-
dimensional theory of gravity.  Equation (16) also implies that no deviations from Newtonian 
gravity are expected at the separation distance of 100 μm that is being tested [13].  Thus, none of 
the current constraints on large extra dimensions apply to the RS brane world as they do to the 
ADD brane world. 
 The traditional belief is that there are (3 + 1) dimensions, because all of the observations 
that we have performed are consistent with three spatial dimensions.  In fact, it seems that three 
and only three spatial dimensions are required in order to agree with experiment.  
Compactification was one way to hide the extra dimensions, but they were believed to be so 
small (comparable to the Planck length) that we would never be able to probe them.  Thus, it 
provided the possibility of extra dimensions, but it was uninteresting because it could not be 
tested.  With the realization that everything in the Standard Model (photon, W/Z bosons, and 
fermions) could be confined to a 4-dimensional brane, large extra dimensions suddenly became 
possible.  However, gravitons would still be able to probe the extra dimensions.  So, any theory 
with large extra dimensions had to be consistent with experiments.  Gravity had been measured 



at millimeter and now micron distances with no deviation from Newtonian gravity, confining the 
size of the dimensions in ADD brane worlds.  RS brane worlds suffered from no such constraint.  
Separations of much less than micron distance would have to be used to test their theory.  
Another way to test both of these theories is through the use of particle accelerators.  It is 
possible that the electroweak symmetry breaking scale (TeV) is one of the fundamental scales of 
nature, and this is the energy regime at which the LHC is set to run.  In the ADD model, SM 
fields are only localized within mew

-1 in the extra dimensions.  Therefore, a particle involved in a 
sufficiently hard collision could acquire enough momentum in the extra dimension to escape 
from our brane.  This would be signaled by a sharp upper limit in the transverse momentum that 
can be seen in 4 dimensions.  In the RS models, the KK modes might be observed at the LHC as 
spin-2 resonances.  According to RS2, due to the infinite size of the extra dimension, the 
gravitons created in collisions would decay immediately and appear as missing energy.  Both 
ADD and RS models go further than probing the possibility of extra dimensions; they seek to 
answer the question of why extra dimensions could be important.  Their answer is that they solve 
problems in physics in completely natural ways.  For example, the hierarchy problem is naturally 
explained by large extra dimensions.  Hopefully in the next few years, when LHC comes online 
and when the full details of these theories are flushed out, we will be able to see whether or not 
we live in a universe with large extra dimensions. 
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