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ABSTRACT 

In this paper a class of  risk processes in which claims occur as a renewal 
process is studied. A clear expression for Laplace transform of the finite time 
ruin probability is well given when the claim amount distribution is a mixed 
exponential. As its consequence, a well-known result about ultimate ruin 
probability in the classical risk model is obtained. 
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1. INTRODUCTION 

Much of the literature on ruin theory is concerned with deriving results for 
the classical risk model, in which claims occur as a Poisson process. Sparre 
Andersen (1957) considered the situation in which claims occur as a general 
renewal process, and an explicit result for the ultimate ruin probability was 
derived for a particular case. Since then, much of  the study of these models 
has concentrated on numerical procedures for calculating ruin probabilities 
[see, for example, Dickson (1998)]. Apart from purely mathematical break- 
through, Andersen's contribution allowed us to assume contagion between 
claims, i.e., to deal with non-Poissonian claims' arrivals. In fact, renewal non- 
Poissonian risk models do not look like a mere analytical over-complication, 
modern mass media and telecommunication networks could introduce sub- 
stantial and sometimes unpredictable dependence into behaviour of insured 
persons which eventually could make an assumption on the Poissonian origin 
of claims' arrival suspicious [see Malinovskii (1998)]. 

In this paper a class of collective risk model with non-Poissonian claims' 
arrival processes is considered. A clear expression for Laplace transform of the 
finite time ruin probability is well given when the claim amount distribution 
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is the mixture of  two exponentials. As its consequence, one result by Mali- 
novskii (1998) about the expression for Laplace transform of  the ruin proba- 
bility within finite time is obtained when the claim amount  distribution is a 
exponential. Finally, a well-known result in Gerber  (1979) about ultimate ruin 
probability in the classical risk model is proved again. 

This paper is organized as follows. Section 2 begins with some definitions, 
notations, and gives a main theorem and its proof. Two corollaries are given 
in Section 3. 

2. MAIN RESULT AND ITS PROOF 

Consider a Sparre Andersen risk process 

R t)=u+a-Z i) ri, 
defined in terms of  the following values: u = R(0) > 0 is the initial risk reserve, 
c > 0 is the premium received continuously per unit time, { T/, i > 1 } are the (iid) 
interclaim time, N(t) denotes number  of  claims having occurred up to time t, 
i.e., N(t) = max {n : Tl + 7"2 + . . .  + Tn -< t}, and { Yi, i > 1 } are the (iid) amounts 
of  claims. Throughout  this paper, we suppose that { T/, i _> 1 } and { Yj, j > 1 } are 

£ . E T  l independent,  and the relative security loading A = ~ - 1 > 0, which means 

that the premium received per unit time exceed the expected claim payments 
per unit time. Denote  by ~u(t, u), ~u(u) and ~0(t, u) the probability of  ruin within 
finite time, the probability of  ultimate ruin and the probability of  survival to 
time t, respectively. Clearly, ~u(t,u) = 1 - ~o(t,u). Our main result is the follow- 
ing theorem. 

Theorem 1 Let the claim sizes { Y/, i > 1 } and interoccurrence times { T/, i > 1 } 
be mutually independent and i.i.d. Let Y/be a mixed exponential and its p.d.f. 
bep21 e-~-~y + q~2 e-n~v, y > 0,0 < ~.1 < ~2, P + q = 1,0 <p,  q < 1. Assume that 7(a) 
= fo°°e-~UPr(du) is the Laplace transform of  T1, where Pr(u) is the distribution 

function of  T1. Then 

a foo °~e-at ~ (t, u) dt:  (21 - 22 ) [Yl (a) fie (a) e - ~' (a) u _ Y2 (a)E1 (12) e - P2 (~)u] 
(21- f12 (a))(22- fll (a))- (21- fll (C/))('~'2-- f12 (a)) ' a ) O, 

(2.1) 

/~2Ca) 1 ~2Ca) a a where Yl(a)=( 1-~''~)]{1-~'¢a)],h /~ ,~2 }'Ya(a)= ( 1 - - - - ~ 1 ) ( - ~ 2  ) 'fll~ )'fl2f ) a r e '  respec- 
tively, the unique solutions of  the equation 

(/].1--1~)(,~2--~)--[,~1,~,2--(p/~l +q22)fl]~(a+cfl) = 0, a > 0  (2.2) 

2122 
in (0, 21] and [fl0, 22], and fl0 = p21+ q22" 
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Remark 1 Equation (2.2) has the unique root, respectively, in (0, 21] and [rio, 22]. 
In fact, Let 

f(fl) = (21 - fl) (22 - fl) - [~1~2 - (P)~I + q~'z)fl] Y (a + c/3), 

then f (0)  > 0, f ( 2 0  < 0, f(fl0) < 0, f(22) > 0. By the existence theorem of  root 
we know that Equation (2.2) has the roots in (0, 21] and [rio, 22]. On the other 
hand,  it is very easy to prove the uniqueness of  roots by the positiveness of  
relative security loading and the convexity of  y(a + cfl) with respect to ft. 

Proof Let r = inf{t > 0 : R(t) < 0} be thefirst time of  ruin with the under-  
standing that z = oo if R(t) > 0 for all t. Let Un = ~--],7:t Ti, U0 = 0, v = inf{n > 
1 : R(Un) < 0}, and v is the index of  that claim which causes the first ruin. If  
for each n, R(U,) > O, then v = oo. Clearly, r = Uv. For t,x > O, denote Qn(t,x) 
= P{Un < t, R(Un) < x,n < v}, H(t,x) =~,>_oQ"(t,x), and Laplace transform of  
H(t,x) denoted by I:l(a,fl). Then 

^ _ o o  o o  - a t - f i x  n>_oE[e-aU.-fiR(U.) O. H(a,fl)-fo fo e H(dt, dx)=~a I{v>n}], a, fl> (2.3) 

Obviously, (2.3) is analytical. Since 

(p(t, u ) :  P(r > t) 

= ~ , e ( z > t ,  Un< t< Un+l) 
n_>0 

= n) 
n > O  

= ~a>_ofot fo°°Q~(dp, dz) (1-Pr( t - lO)  

: f t  H(dlu, oo) (1-  P~ (t-/.t)), 
dO 

(2.4) 

then we get 

d~ (t, u ) : - f 0 '  Pr( t - l t )H(dp ,~)d t+ H(dt,~). (2.5) 

Consequently, 

afo°°e-at~(t,u)dt = - f o ° ~ ( t ,  u)de -at 

f? : e-atd~o(t,u) 

= fo °° fot e-at( - P ;  ( t -  p))H(dp, oo)dt + fo°°e -~t H(dt, oo) 
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= fo~ fo~e-~e-a(t-~)(-P~(t-lu))H(dlu,~)dt+I?I(a,O) 

o o  - -  ~ - - a  l - -  

=fo e ~ (  f e (~)(-PT(t-p))dt)H(dl2,Oo)+I2l(a,O) 

= fore  -a~' f o ' e  -ay (- PT.(y))dyH(dp, oo)+171 (a, O) 

= - foo~7 (a ) e -°~ H (d/.z, oo ) + fI  (a, O) 

=/4(a, 0)(1-), (a)). 

Now we turn our attention to computation of/~(a, 0). 
To this end, denote On = a{ Yl, 7"1, I12, T2, "", Yn, Tn}. Noting that 

: foR(U"-l)+CT"exp {- f l  (R (Un_ l ) + c Tn- y) } (p)h e -~'y + q2ze-Z2Y)dy 

P'~x [e-fl(R(Un-l)+CTn)_e-Al(R(Un-l)+CTn)] 
= 21__ ~ 
+ q22 [e-~(R(U._l)+Cr.)_e-h(R(u.-O+cr.)], 

(2.6) 

we get 

[ ~-aUn-flR(Un) 1 ~'~n- 1] E [: • (R(u,)>__0} 

=E[E(e-~u"-13"(v") I{R(v.) _> o} ~"~n-1, T. I a._,] 

_ P21 e-aU._l[e-PR(u~-o)~(a+cfl)_e-).l(R(U.-l)y(a+C~l)] 

+ - ~ f l  e-"V. - ' [ e-PR(v" - O y (a + c/3) - e-h (R(v"- @ (a + c h )  ]. 

(2.7) 

Therefore, by using (2.7) we get 

/4 (a, fl) - e -/~u = ~,  E[ e -aU"- pn(u.) I{v >n t ] 
n>_l 

=~,E[E(e-aU"-pR(u")I(v>n}lOn_l)] 
n>_l 
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- / . ~ - ~ / ' ( v > n - 1 ) ~  e "{R(U.)>_O), ~n-I  1] n_>l ~ 

p2~ 
- 2, - ,8  [7(a + cfl)I:I(a, f l ) -7(a + c2,)/4(a, 2~)] 

+ ~ q ~  [~(a + cb3B(a,/~)- r (a + c ~ ) ~ ( a ,  2:)]. 

(2.8) 

It is easy from (2.8) to get that 

I:I (a, fl) = e-#U- ~-~ 7(a + c20I?-I (a' )h ) -~ -Z  Y(a + c22)I:I (a'2z) 
qh 

1-{ e~' + -~-~) 7(a + c~ ka~-~ 

(~-N0tz -N e -~  -P~1 (X~-N)' (a + c,tl )~0 (a, ,t I ) - q~  (~1-~ ~' (a + c~.= )~  (a,)t2 ) 
(21-fl)(22-fl)- [2122- (p2~ + q22)fl] 7 (a + cfl) (2.9) 

Since ill(a) and fl2(a) are two roots of Equation (2.2), and H(a, fl) is analytical, 
thus ill(a), fl2(a) satisfy the following equations: 

(~'1 -- Pl (a)) (~2 - fll (a)) e -~' (a) ~ -  p2~ (22 - ~1 (~)) ~ (12 -I- c~. 1 ) /~  (~, ~1 ) 

= q22 (2~- fll (a ) )  ~ (a -I- c~ 2 ) /~  (~, ~2) ,  

(21 - f12 (a)) ( 22 -  f12 (a)) e -#: (~) u_ p21 (22 -  f12 (a)) y (a + c21 )/4 (a, 21 ) 

= q22 (21- f12 (a)) y (a + c22 )/4 (a, 22 ). 

Solving the above equations we obtain 

(~1-/~1 (a)) (~l-& (a))[(~-~, (a)) e-P~ ~°~u - (Z2-& (a)) e -~: ¢°~"] 
7(a + c~l)I?I(a'~'l)= p~l[(~_fl2(a))(,~2_fll(a))_(,~l_fll(a))(~,2_fl2(a)) ] ' 

(,~2-fll (a) ) (,~2-fl2 (a) ) [ (,~l-fl2 (a) ) e-fl2(a)u-( )~l-fll (a) ) e-fll(a)u ] 
Y (a "l- £'~2 ) /~ (a' '~2 ) ---- q,~2[(,~l_fl2(a))(,~2_fll(a))_(,~l_fll(a))(,~2_fl2(a)) ] 

Thus 

/~ (a, 1~) ---- [(/~l--/~)(~2--fl) -- [~1 )~2 -- (P/~I d- q22 )fl] Y (a + cfl)] -1 

× {(~,-l~(~2-~e -~u- [(~1-~2(a))(~2-P,(a))-(~l-~,(a))(~:-~2(a))]-1 

× [(~2-/~(~1-/~1 (a)) (~l-& (a))[('h-P1 (a))e -plC°)u _ (~2-¢= (a)) e-~ Ca)~] 

+ } . 
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Let fl = 0, then 

H(a,0)= 1 (2.10) 

x 1 - ~ " ' l - ' ~ 2 J [ [ ' - - 7 - ~ - l J [ ' - - " ~ - } l ~ ' 2 1 " ~ l ~  - k  ---TT-~J~ ----~}fll(a) e-p2(~)" 
( ,~,-~2 (~) ) ( ~-~ ,  (~) ) - ( , ~ - ~ ,  (a) ) ( ,~-~2 (~) ) 

By (2.6) and (2.10) we have 

f o o  - -~ l  / 

aJo e ~off, u)dt=I?t(a,O)(1-y(a)) 

= 1 - (21- 22) Yl(a)fl2(a)e-~l(a)U-y2(a)fll(a)e-~2(a)u 
(/~i- ~2 (a) ) ( /~2- ~l(a)) -  (~1- ~l (a) ) ( ~2- ~2 (a) ) ' 

(2.11) 

wherey,(a) :  [ ----~ )[ ----g-),Y21. ) : ( 1 - ~ ) ) ( 1 - ~ ) .  Since gt(t ,u):  1-~o(t,u), 
(2.1) follows immediately from (2.11). 

Remark 2 Theorem 1 shows an exact numerical technique which requires merely 
numerical inversion of the Laplace transform of the ruin probability within 
finite time. Numerical methods of such an inversion could be found in Abate 
(1992), and we don't discuss it here. On the other hand, it is well known that 
the probabilities of  ruin ~,(t, u) and ~,(u) can be identified with the virtual and 
limiting waiting time distributions, respectively, in a single server queue fed by 
a renewal process and having the service time distribution B. So, it is possible 
to prove Theorem 1 by virtue of related results from the theory of queues [see, 
for example, Prabhu (1965, 1980)]. 

3. Two COROLLARIES 

As one application of Theorem 1, we can get the following two corollaries. 
The first Corollary is about the expression for Laplace transform of the ruin 
probability within finite time when the claim amount distribution is an expo- 
nential, which was obtained by Malinovskii (1998). The second Corollary is 
concerned with a result about ultimate ruin probability in the classical risk 
model which was proved by Gerber (1979). 

Corollary 1 [Malinovskii (1988)] Let the sizes of claims { Y,, i > 1 } and the 
interclaims { T/, i > 1 } be iid and mutually independent. Assume that I11 ~ Expo- 
nential (2), 2 > 0, and y(a) = fo~e-aUPr(du) is the Laplace transform of T1. 
Then 

afo~e-~t~p(t,u)dt = 1-y(a)exp{-u2(1-y(a))} ,  a > 0, (3.1) 
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where y(a) is the unique root in (0,1) of Equation 

Y = 7 (a + c2 (1- y)), a > 0 (3.2) 

Proof Taking p = 1, 21 = 2 in (2.2) of Theorem 1 yields 

(22-/~)('~ - ~ -  ,l~(a + c~))= o,a > o. (3.3) 

Therefore we get that fl2(a) = 22, and ill(a) is the unique root of Equation 

2 -  ~ -  2~,(a + c#)= O,a > O. (3.4) 

Moreover, y , (a ) :  ( 1 - - ~ ) ( 1 - ~ ) ,  y2(a)= 0, and the right side of (2.1)is (1- ~'~ ---2) 

e -p'C~)". Put y(a)= 1- P,~___2. Then 

( 1 - - ~ )  e -/~'(a)u = y (a)exp {-  u2 (1- y (a))}. 

Again by (3.4) we see that y(a) is the unique root of the Equation (3.2) in (0, 1). 
Finally, (3.1) follows immediately from (2.1) by ~(t, u) = 1 - tp (t, u). 

Corollary 2 [Gerber (1979)1 For the classical risk model, in the case of expo- 
nential claim amounts, the ultimate ruin probability is an exponential function 
of the initial surplus measured in mean claim amounts. In other words, if the 
interclaims {T,., i > 1} - Exponential(g), p > 0, the sizes of claims { Y,., i > 1} - 

2 > 0 .  Then~/ (u)=  i ~ A u Exponential (,~), exp ~ l + A  E~y1 )., where A = ugr,c - 1 

= C!_l .  p 

Before we give the proof  of this Corollary, we need the following Lemma, 
whose proof  is very easy by induction, and so is omitted. 

Lemma 1 When 0 < x _< ¼, for any nonnegative integer n, the following equal- 
ity always holds: 

~,, (n+2k), k 1 ( 1 + ~ )  -(n+l) 
k=o k ! (n+k  +l)! x - (n+l)  (3.5) 

Remark 3 

Proof 

~ ( n + l ) ( n + 2 k ) l k  n+k+l [ 1, 0 < p ~ - ,  
P q = / ( q ]  n*l l < p <  1. k=0 k ! (n+k+l ) !  t~Tj , 

Evidently, 0 < pq <_ 1. Therefore by Lemma 1 we see that 

k=0 k ! (n+k+l ) !  (pq)k= ~ 

When 0 < p < 1,0 < q < 1, p + q = 1, for any nonnegative interger n, 

(3.6) 
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Consequently,  

~, (n+l)(n+2k), ( 1 + 1 1  2p])(n+l)= {(q  n+l 
,~:o k!(n+k +l)! pkq,+k+l= qn+l - 1, 

0 < p <  1, 

½<p<l. 

The following (3.7) comes immediately f rom the above (3.6). 

_ 1 _ I+A Remark 4 Let p - 2-7X, q - 2--4X, where A is the relative safety loading, A > 0. 
Then  for any nonnegat ive integer n we have 

~,, (n + l )(n + 2k)' ( 1 f { l + A ] "+k+l 
k:o k!(n+k+l)! ~ \ 2 + A }  =1.  (3.7) 

The Proof  of Corollary 2 Since { T,., i > 1 } ~ E(~),/~ > 0, y (a) = ~ by Corol- -- a + / t ~  

lary 1 we have y (a) = y (a + c2 (1 - y (a))) = i, a + c2(1-y(a))+ It' i.e., 

c,~.y2(a)-(a+ fl+c~.)y(a)+ fl = O. 

Again by Corollary 1 we get 

y(a)= 4t~(v/a + (v/~ + v/~)2  + V/a + (v/~ + v/~)2)  -2. (3.8) 

Put  x = (v/~ + ¢ /~)2 ,  Y = (v/~ _ v /~)2 ,  then 

+ (3.9) 

Thus  y(a)is the Laplace t ransform of  vf~e-°~+c~)tt-lll(2 ~ ) ,  where Ii(z) = 
~ 1 / z ]  2k+l 

M.I'(k+2) ~2] is the first k ind  of  Bessel funct ion  (see Feller (1971)). On  
k=0 e~ -at 
the other  hand,  afo e ~o(t,u)dt= l -y (a )  exp{-u2(l-y(a)}, a > 0, and af~e -a' 

.,'0 
~o (t, u)dt = 1- E (e-at ). Hence 

E(e-a~)=e-U,~ ~,, (u2)" n + l r .  
----ny. y ta) 

n=0 

- U 2 n ~ _ _ O ~ ( ~ c ~ ) n + l (  ~ - - x - 2 \ n  + 1 =e (x-y)(~d--+x + via+y) ) . 
(3.10) 

-,,,l '~(uaf~) " fV .  +l)e-0~+c,~)t i , ,+l(2~),  The (3.10) is the Laplace transform of e 2.; ~ ( ~ t n  
n=0 

where I,,(z) = ~,, l [_~,,+2k k!F(n+k+l) ~2] (see Feller (1971)). Hence 
k=0 
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V(t,u): P(r < t) 

= f te-u2 2 (U,~. fl~/'~)n~C ~ -'o ,=o n!s (n+l)e-O~+c~)sI"+l-2--s-ds( ~ ) 

[ u u "~n .+t 

- Ite-"~ 2 t--e-) [ tl ] 2 fte_O,+c~) ~ n+___~l I,+ (2 ~v/-~s)ds. 
- -  C,~, S 1 n=O--W. ~ 1  ~0 

(3.11) 

Thus, letting t --* ~ and using Remark 4 gives 

~/(u)= P(z < oo) 
u# n 

_ e-U  
- - ~  ~o "! kc~! 

_ ~ e - ~  ~-,t-~) [ F' ~ - -  
- c;~ ~ o - ~ . ~ - ~ ]  

_ . . 

- c~ o .~o-W. t-~ ] 

n+l 

2 f=e_O+c~)Sn+sl in+l(2flv/~s)ds 
dO 

n+l 

:f~e-~,+c~,~ ,+1 2 1 S)"+2k+'ds 
-,o s k ! F ( n + k + 2 ) ( ~  k=O 

n~-I oo F(n+2k+l)(~v//~) n+2k+l 
(n+l) ~--o k!F(n+k+2) (u+c2) "+2k+l 

_ It _-.~ ~-~ n+l[ulu]" ~ F(n+2k+l)  {c2~'+k+S(l+c2]-("+zk+l) 
- ~  ~o---y--., ~-2- ) ~ok!r(n+k+Z)~,~j ~," /~] 

l + A  e .__~o ~ l--g'A- (n+l) 2 (n+2k)! / l + A ~  ~÷k+l 1 
- k!(n+k+l)! ~ ]  k=0 

1 e-~,~ e,~X 
I+A 

-,+AX ex {-A 
_ 1  ex { u t I+A I+A ECY1) " 
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