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Abstract—Concentric circular antenna array (CCAA) is synthesized
to generate pencil beam with minimum side lobe level (SLL). The
comprehensive learning particle swarm optimizer (CLPSO) is used for
synthesizing a ten-ring CCAA with central element. This Synthesis
is done by finding the optimum current excitation weights and
interelement spacing of rings. The computational results show that
sidelobe level is reduced to −40.5 dB with narrow beamwith about
4.1◦.

1. INTRODUCTION

Synthesizing the array pattern of antenna arrays has been a subject
to several studies and investigations to improve the performance of
mobile and wireless communication systems through efficient spectrum
utilization, increasing channel capacity, extending coverage area,
tailoring beam shape etc. [1]. Among the different types of antenna
array, Concentric circular antenna array (CCAA) has become most
popular in mobile and wireless communications. CCAA that contains
many concentric circular rings of different radii and number of elements
has several advantages including the flexibility in array pattern
synthesis and design both in narrowband and broadband beamforming
applications [2, 3]. CCAA is also favored in direction of arrival (DOA)
applications since it provides almost invariant azimuth angle coverage.
In addition, the frequency invariant characteristics of CCAA [4, 5] have
been proved for wideband applications.
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Uniform concentric circular array (UCCA) is CCAA where all
the elements in the array are uniformly excited and the interelement
spacing in individual ring is kept almost half of the wavelength. The
sidelobe level in the UCCA drops to about 17.5 dB, especially at large
number of rings with uniform excitation. UCCA has high directivity
but it usually suffers from high sidelobe level [6]. Central element
existence in UCCA reduces the sidelobe level while minor increase in
the beamwidth [6].

Several beamforming techniques exist. For example, in [7, 8]
tapering window is used to reduce the sidelobe level in UCCA, but
reduction in the sidelobe level increases the beamwidth. Recently,
search algorithms, such as genetic algorithms (GAs) [9] and Particle
Swarm Optimization (PSO) [10], have been used in array pattern
synthesis. GA has been used in [11] to optimize the interelement
spacing and number of elements in each ring. The thinning and
synthesis of pencil beam pattern with minimum sidelobe based on
PSO have been discussed in [12, 13]. Some studies have been devoted to
compare between the GA and PSO [14, 15] and a general conclusion has
been reached. The PSO shows better performance due to its greater
implementation simplicity and minor computational time.

In this paper, we use CLPSO [16] to optimize both current
excitations and interelement spacing of the rings. The paper is

Figure 1. Concentric circular antenna array (CCAA).
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organized as follows. In Section 2, Geometry of CCAA and design
equation is presented. Then, in Section 3, particle swarm optimizer is
employed. Computational results are presented in Section 4. Finally,
we conclude the paper in Section 5.

2. GEOMETRY OF CCAA AND DESIGN EQUATION

2.1. Geometry of CCAA

The geometry of a concentric circular antenna array is shown in
Figure 1. Where there are M concentric circular rings and the mth
ring has a radius rm and the corresponding number of elements is
Nm where m = 1, 2, . . . , M . If all the elements (in all the rings) are
assumed to be isotopic sources, then the radiation pattern of CCAA
can be written in terms of its array factor only.

The array factor for the CCAA with a single element at the center
(Figure 1) is given by [11]:

AF = 1 +
M∑

m=1

Nm∑

i=1

Wmej(Krm sin θ cos (φ−φmi)+αmi) (1)

where:

M = number of rings;
Nm = number of elements in ring m;
Wm = excitation current of elements on mth ring;
rm = radius of ring m = Nmdm

2π ;
dm = interelement spacing of mth ring;
k = wave number = 2π

λ ;
λ = signal wavelength;
j = complex number;
θ = the zenith angle from the positive z axis;
φ = the azimuth angle from the positive x axis;
φmi = element angular separation measured from the positive x
axis given by:

φmi = 2π

(
i− 1
Nm

)
; m = 1, . . . ,M ; i = 1, . . . , Nm (2)

αmi = the phase difference between the individual elements in the
array given by:

αmi =−krm sin θo cos (φo−φmi); m=1, . . . ,M ; i=1, . . . , Nm (3)
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where θo and φo are the values of θ and φ (θ, φ ∈ [−π, π])
respectively where the highest peak of main lobe is obtained. If
θo = 0 and φ = constant, the radiation pattern will be a broadside
array pattern. The array factor in this case can be written as:

AF = 1 +
M∑

m=1

Nm∑

i=1

Wmej(Krm sin θ cos (φ−φmi)) (4)

Normalized absolute array factor in dB can be expressed as
follows:

AF (dB) = 20×
[
log10

|AF|
|AF|max

]
(5)

2.2. Cost Function

The cost function or fitness function is important step for CLPSO
algorithm that provides the link between the CLPSO and the problem.
The cost function for this problem which is to be minimized is given
by:

CF = W1SLLmax + W2[FNBWc − FNBWu] (6)

where SLLmax is the maximum sidelobe level, FNBWc, FNBWu are
the calculated first null beamwidth in radian for non uniform excitation
case and for uniform excitation respectively, and W1, W2 are positive
weighting factors added to control the obtained results.

3. PARTICLE SWARM OPTIMIZER EMPLOYMENT

3.1. Particle Swarm Optimizers (PSO)

Particle Swarm Optimization (PSO) is an evolutionary algorithm that
emulates the swarm behavior of bird flocking and fish schooling [17].
In PSO, each swarm member, called a particle or agent, represents a
potential solution. The swarm initially has a population of random
particles (solutions). Each particle adjusts its search direction by
learning from its own experience and the other particles’ experiences.
Each particle velocity is updated by following two optimum values.
The first one is the best solution (fitness) that has been achieved so
far. This value is called pbest. The second one is the global best value
obtained so far by any particle in the swarm. This best value is called
gbest. Each D-dimensional vector of positions represents a possible
solution [18]. The velocity and position of the dth dimension of the ith
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particle at kth iteration are updated as follows [16]:

V k
i,d = V k−1

i,d + c1 ∗ rand1k
i,d ∗

(
pbestk−1

i,d −Xk−1
i,d

)

+c2 ∗ rand2k
i,d ∗

(
gbestkd −Xk−1

i,d

)
(7)

Xk
i,d = Xk−1

i,d + V k
i,d (8)

where V k
i,d is the ith particle velocity in the dth dimension, k denotes

the current iteration and k − 1 the previous, Xk
i,d represents position

of ith particle in the dth dimension, pbestk−1
i,d is the best previous

position yielding the best fitness value for the ith particle, gbestkd
is the best position discovered by the whole population. c1 and c2

are the acceleration constants reflecting the weighting of stochastic
acceleration terms that pull each particle toward pbestki,d and gbestkd
positions, respectively, rand1k

i,d and rand2k
i,d are two random numbers

in the range [0, 1]. A particle’s velocity on each dimension is clamped
to a maximum magnitude Vmax. If |V k

i,d| exceeds a positive constant
value Vd,max specified by the user, then the velocity of that dimension
is assigned to sign(|V k

i,d|)Vd,max. The flowchart of the standard PSO is
given in (Figure 2).

The classical Inertia Weight PSO (IWPSO) and Constriction
Factor PSO (CFPSO) are the most common PSO algorithms [19]. The
main deficiency of the classical IWPSO algorithm is the premature
convergence when solving multimodal problems. In order to improve
PSO’s performance on complex multimodal problems, a variant of
the PSO was proposed [16]. Several antenna design problems are
multimodal and therefore require the use of an optimization method
that does not get trapped easily in a local optimum [18].

3.2. Comprehensive Learning Particle Swarm Optimizer
(CLPSO)

The new learning strategy in the CLPSO algorithm ensures that
the diversity of the swarm is preserved to discourage premature
convergence. This is achieved because each particle’s velocity vector
can be updated by using not only its own pbest, but also any
other particle’s pbest, which provides improved diversity in the
population [18].

The velocity updating equation in CLPSO is given by:

V k
i,d = w ∗ V k−1

i,d + c ∗ randk
i,d ∗

(
pbestkfi(d),d −Xk−1

i,d

)
(9)
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Figure 2. Flowchart of the conventional PSO.



Progress In Electromagnetics Research Letters, Vol. 29, 2012 7

where fi = [fi(1), fi(2), . . . , fi(D)] defines which particles’ pbests the
particle i should follow. pbesttfi(d),d can be the corresponding dimension
of any particle’s pbest including its own pbest, and the decision depends
on probability Pc, referred to as the learning probability, which can
take different values for different particles. For each dimension of
particle i, we generate a random number. If this random number is
larger than Pci,the corresponding dimension will learn from its own
pbest; otherwise it will learn from another particle’s pbest. We employ
the tournament selection procedure when the particle’s dimension
learns from another particle’s pbest as follows:

1- We first randomly choose two particles out of the population which
excludes the particle whose velocity is updated.

2- We compare the fitness values of these two particles’ pbest’s and
select the better one. In CLPSO, we define the fitness value the
larger the better, which means that when solving minimization
problems, we will use the negative function value as the fitness
values.

3- We use the winner’s pbest as the exemplar to learn from for that
dimension. If all exemplars of a particle are its own pbest, we will
randomly choose one dimension to learn from another particle’s
pbest’s corresponding dimension. The details of choosing fi(d) are
given in (Figure 3).
We observe three main differences between the CLPSO and the

original PSO [16].
1- Instead of using particle’s own pbest and gbest as the exemplars,

all particles’ pbest’s can potentially be used as the exemplars to
guide a particle’s flying direction.

2- Instead of learning from the same exemplar particle for all
dimensions, each dimension of a particle in general can learn from
different pbest’s for different dimensions for a few generations.
In other words, each dimension of a particle may learn from the
corresponding dimension of different particle’s pbest.

3- Instead of learning from two exemplars (gbest and pbest) at the
same time in every generation as in the original PSO (7), each
dimension of a particle learns from just one exemplar for a few
generations. More details about CLPSO can be found in [16].

4. COMPUTATIONAL RESULTS

In this section, the capabilities of the CLPSO algorithm in the
synthesis of CCAA with central element are demonstrated. For
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Figure 3. Selection of exemplar dimensions for particle i.

CLPSO algorithm, the population size is set to 120, iteration cycles for
optimization = 1000, and c = 1. The simulation is made by MATLAB.
We use MATLAB Release 2011a on a core 2 duo processor, 2.00 GHz
with 2 GB RAM. The CLPSO algorithm is used to find the current
excitations and interelement spacing for ten rings (M = 10) (5, 11,
17, 23, 29, 35, 41, 47, 53, and 59) using cost function (6). We assume
that the number of elements in the 1st ring is 5 elements and the
constant element increment is 6 elements per ring outwardly. The
limit of interelement spacing is ranging from a half wavelength to one
wavelength, d, (d ∈ [λ/2, λ]). For this case, θo = 0 and φ = π/4 are
considered so that the main lobe will be at the origin, BWFNu is set to
14.26◦ × (π/180), which is about the beamwidth of the corresponding
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Figure 4. Radiation pattern for optimized CCAA and UCCA.

UCCA.
Figure 4 shows the radiation pattern of a ten-ring CCAA using

the excitation currents and interelement spacing returned by the
CLPSO (black solid line) and uniform excitation (blue dotted line).
The returned current excitations and interelement spacing are given
in Table 1. These results have achieved an SLL of −40.5 dB, a
BWFN of 12.16 and a BWFN of 4.1◦. Where HPBW is the half
power beamwidth. We can notice the reduction in SLL with narrow
beamwidth, but the paid cost is the increase in the aperture compared
to UCCA. To achieve the same narrow beamwith with SLL equals to
−17.62 dB using UCCA, we need 15 rings (M = 15) (5, 11, 17, 23, 29,
35, 41, 47, 53, 59, 65, 71, 77, 83, and 89).

The same case (M = 10) is considered in [7] using Gaussian
window (δ = 2.5). The array factor obtained using the results of
the CLPSO will be compared to the array factor obtained using the
Gaussian window given by [7].

Figure 5 shows the array factor obtained using results in Table 1
(black solid line) compared to the results obtained using Gaussian
window (blue dotted line). It can be shown that using CLPSO
to synthesis CCAA gives a radiation pattern better than using the
Gaussian window, where using the Gaussian window reduces the SLL
to −38.96 dB while increasing HPBW to 8◦ and BWFN to 27.2◦.

In this study, by using CLPSO we obtain CCAA with decreased
SLL with narrow beamwidth but the array aperture is increased in
comparison to ten rings synthesis using Gaussian window. For the same
array aperture, Figure 6 shows the array factor obtained using results
in Table 1 (ten rings) (black solid line) and compared to nineteen rings
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Table 1. Excitation current weights (Wm), interelement spacing (d),
SLL, BWFN and HPBW for optimized CCAA and UCCA.

Optimized array

Wm and d

UCCA

with central element

current excitations (Wm)

(W1, W2, . . ., Wm)

0.9357 0.9869 0.9345

1
0.8241 0.6658 0.5077

0.3837 0.2736 0.1732

0.1020

interelement spacing (d) 0.9416 0.5

sidelobe level (SLL) −40.4654 dB −17.69 dB

BWFN 12.16◦ 14.26◦

HPBW 4.1◦ 5.98◦

gaussian window
optimized array
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Figure 5. Radiation pattern for optimized CCAA and CCAA using
Gaussian window weights [7].

(5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101,
107, and 113) that is obtained using Gaussian window [7] (blue dotted
line). It can be show that optimized array using CLPSO has narrow
beamwidth than the obtained from the Gaussian window and closed
maximum SLL. The synthesized array using CLPSO has reduced 801
elements, i.e., a reduction of 71.5% of total elements used in case of
same array aperture using Gaussian window. This will reduce the cost
of designing the array substantially.
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Figure 6. Radiation pattern for optimized CCAA and CCAA using
Gaussian window weights [7].

The same case is taken in [20] but with eleven rings deployed
(5, 11, 17, 23, 29, 35, 41, 47, 53, 59 and 65). This deployment uses
Differential Invasive Weed Optimization Algorithm (DIWO) and the
results are compared to CLPSO. The results of CLPSO are better than
DIWO results where SLL is −25.12 dB where in the BWFN is equal
to 13.81◦.

5. CONCLUSION

The application of CLPSO to design CCAA has been demonstrated in
this paper. Compared to the original PSO, CLPSO solving multimodal
problems. CLPSO is best suited for solving multimodal problems
that are common in several antenna design. The optimal design of
a ten-ring CCAA with central element has been described. This
optimal design is done by finding optimal excitation currents and
optimal interelement spacing of rings. The simulated results reveal
that the optimal design offers a considerable SLL reduction along
with reduction of HPBW compared to the corresponding UCCA. The
minimum achieved sidelobe level is −40.4654 dB for HPBW of 4.1◦.
The results are compared to CCAA which is synthesized by using
Gaussian window at the same aperture size. The comparison shows
a significant improve for the sidelobe level and the beamwidth with
70.5% reduction in the number of elements. This will reduce the cost
of designing the antenna array substationally.
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