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Abstract – Biometric systems are designed by expert developers who 
look – with trial-and-error approaches – for reasonable solutions by 
considering the available hardware architecture, some –possibly 
conflicting–  quality goals, and the application constrains. Typically 
drawbacks of these approaches are waste of time and results far from 
the optimum.  
In this paper we propose a new design methodology for multimodal 
biometric systems that applies high-level system design techniques to 
better structure the design procedure. The proposed methodology 
avoids the drawbacks of the common design practice and allows to 
create a flexible general-purpose and effective design environment 
for multimodal biometric systems. 
 
Keywords – multimodal biometric systems, design of biometric 
systems, system evaluation, high-level design.  
 

I. INTRODUCTION 

Biometric systems are defined as systems exploiting 
“automated methods of recognizing a person based on 
physiological or behavioural characteristics” (biometric 
identifiers, also called features) [1]. Physiological biometrics 
is based on data derived from direct measurement of a body 
part (e.g., fingerprints, face, retina, iris), while behavioural 
biometrics is based on measurements and data derived from a 
human action (e.g., gait and signature) [2].  

Biometric systems are composed by one or more sensors 
included into an embedded system, or connected to a PC , or to 
a distributed system. Examples of embedded biometric 
systems are biometric door locks and cellular phones with 
biometric authentication system for credit card transactions. 
Examples of distributed biometric systems are biometric 
authentication systems in airports with many sensors units and 
a shared biometric traits database placed in another location. 

If a biometric system exploits one single biometric trait is 
called monomodal, otherwise it is multimodal (Figure 1) [1]. 
The computation performed by a monomodal biometric 
system is divided into three cascaded actions:  

• filtering, to enhance the quality and the readability of the 
biometric samples; 

• feature extraction, to extract relevant features from the 
biometric samples; 

• matching, to compare the features extracted from the 
samples to the ones of persons stored in a database.  

The cascade Filtering / Feature Extraction / Matching is called 
biometric chain. The matching produces a matching value that 

is evaluated by the decision algorithm in order to produce the 
authentication answer (authorized/not-authorized). These 
components are described at high-abstraction level by 
algorithms. 

Multimodal systems acquire different biometric traits and 
have a complete chain for each type of acquired trait. For 
example, a tri-modal system can have in input fingerprint, 
voice, and face samples. Each chain produces a matching 
value for each biometric trait. These values are collected by 
the decision algorithm, which then produces the authentication 
answer.  

 

  
Fig. 1. Processing structure for monomodal and  

multimodal biometric systems 

Nowadays, the algorithms for a biometric system are 
designed by expert developers, who try to satisfy given 
requirements by taking into account the available hardware 
architecture. The design process looks for a trade-off among 
requirements (e.g., accuracy, computational complexity, 
memory usage, system cost), that are competitive against each 
others. On the other hand, biometric hardware architectures 
are very often required to be small and low-power consuming 
(e.g., cellular phones and smart cards with biometric 
authentication).  



The trade-off among requirements is typically achieved by 
a trial-and-error, which leads to wasting time and results in 
solutions often far from the optimum (Figure 2). 

 

 

Fig. 2. Iterative trial-an-error approach for biometric system design 

Differently from the classical approach, in this paper we 
propose to apply the knowledge available in high-level system 
design [21, 22] to the semi-automatic design of biometric 
systems. This paper deals in fact with the choice of algorithms 
to be inserted into the biometric system and the optimization of 
the hardware system architecture implementing these 
algorithms. The output produced by our methodology is a 
ready-to-compile code and a suitable configuration of the 
hardware architecture.  

The paper is structured as follows. In section II we describe 
the methodology, its inputs, and the generated output, and how 
to apply the methodology into application cases. Then, the 
system optimization is described. Section III describes a 
prototype implementation of the methodology by means of an 
object-oriented toolbox and the experimental results. 

II.  A NEW DESIGN METHODOLOGY 

Current designing procedures for biometric chains have 
evident drawbacks (e.g., time consuming, non optimality). 
These negative aspects can be avoided by a more 
comprehensive approach that aims to automate the trivial and 
repetitive design tasks and to allow designers to better explore 
the design space. The proposed methodology can produce 
benefits such as results closer to the optimum than traditional 
trial-and-error approaches and time saving in the design 
process. In addition, the design experience of experts can be 
shared easier and in an automated way. These goals can be 
effectively achieved by means of high-level design techniques. 

High-level synthesis is the process of mapping a 
behavioural description at the algorithmic level to a structural 
description in terms of functional units, memory elements, and 
interconnections [41]. The term behavioural description refers 
to a description of the input/output relationship of the system 
to be implemented. This is typically given by means of an 
algorithm written, e.g., in C, C++ , VHDL, and System C.  

The proposed methodology can be considered as a 
high-level optimum synthesis approach and can be 
summarized in the three following main activities: 
(1) to model the possible hardware architectures that are 

available in the design environment to implement the 
biometric systems; 

(2) to specify the behavioural description of the biometric 
system for the envisioned application, by including both 
the functional description and the non-functional 
characteristics and constrains;  

(3) to map the behavioural description for the specific 
application into a hardware model with the given 
non-functional constrains by means of an iterative 
procedure composed by the following operations:  
a) the behavioural description is mapped onto the 

hardware architecture by satisfying the designer’s 
requirements; 

b) proper figures of merit are evaluated by considering the 
current system; 

c) system’s independent variables are tuned in order to 
better satisfy the designer requirements, by searching 
for an optimal solution achieved by iterating these three 
operations (multi-objective constrained optimization). 

 

In our case both the hardware description and the 
behavioural description can contain independent variables to 
be optimized during the mapping phases. For example, the 
biometric algorithm given as behavioural description can be 
parameterized: its parameters will be added to the independent 
variables of the biometric system to be mapped.  

Figure 3 shows the overall methodology. Once the 
behavioural description, A, of the biometric system is selected, 
it is mapped onto the hardware architecture model, HW, thus 
producing the complete model of the complete biometric 
system, bio=HW(A). Then, proper figures of merit (figures) 
are computed by using the obtained bio system. 

 

  

  OPTIM     A     HW   

  figures   

b io   =   HW ( A )   

 
Fig. 3. Application of the methodology. A: behavioural description; HW: 
hardware architecture model; figures: processed figures of merit based 

on the biometric system bio; OPTIM: optimization system.   

The optimization engine OPTIM changes the independent 
variables of the behavioural description and the independent 
variables of the hardware architecture model in order to 



enhance the figures of merit by following the policy given by 
the designer. Let us now detail all proposed steps and 
components. 

A. The hardware architecture model 

The hardware architecture model, HW, aims to describe the 
available hardware supporting the biometric system and its 
characteristics. The hardware architecture model we propose 
describes a general – possibly distributed- biometric system, 
composed by a collection of suitably interconnected hardware 
modules (e.g., dedicated or configurable integrated circuits, 
dedicated boards, personal computers, servers).  The model 
can contain design parameters such as the topological graph of 
the hardware architecture modules, their interconnections, cost 
and computational performances.  

The basic idea is to describe where and how each single 
module of a multimodal biometric system can/must be 
implemented. The model can be easily upgraded and it is 
flexible. For example, by setting the graph parameters, the 
model can effectively describe an embedded system: in this 
case all modules belong to the same hardware board. At the 
other extreme, also distributed systems can be described: as an 
example, let us consider a multimodal system in an airport 
where a multimodal sensor unit queries a remote database of 
biometric data.  

The general schema of the hardware architectural model is 
shown in Figure 4. N sensors are used to acquire N traits of an 
individual (biometric samples). Samples are processed by the 
filtering algorithms (FILT1, … FILTN) and then the feature 
extraction algorithms (FE1, … FEN) produce sets of extracted 
features. These sets are used as input for the N matching 
algorithms. These algorithms can query different databases 
containing reference features (called biometric templates), 
possibly also located in different sites. Each matching 
algorithms computes a matching score. All the matching 
scores are transferred to a decision algorithm, which produces 
the authentication value. 

 

 
Fig. 4. Hardware architecture model  

of a multimodal distributed biometric system 

Filtering and feature extraction may process on different 
hardware boards, thus considering algorithms pipelining to 
increase the system throughout. The N chains are independent 
and, hence may be parallel architecture to enhance the system 
performance. A multimodal biometric system can be built by 
grouping together commercial-of-the-shelf components for 
monomodal systems. Our model describes also these 
configurations. 

Each algorithm described in our model, can be 
implemented into a specific hardware module (e.g., PC, board, 
integrated circuits), labelled by a unique numeric identifier k; 
the type of the hardware module is identified by PCk.  

The allocation of each algorithm which is present in the 
model is described by a the mapping function P(AL) whose 
value is the identifier k of the hardware module on which the 
generic algorithm AL is be implemented. A possible 
implementation of the mapping function consists of a mapping 
table, as described in section II.C. 

Since each algorithm requires a specific amount of memory 
to be processed (if not directly implemented in hardware), the 
total memory available for applications to be installed in the 
k-th hardware module must be equal to the sum of the memory 
hosted on this unit if all algorithms must reside in the memory 
at the same time. Less memory may be sufficient if algorithms 
run serially by adopting a memory overlaying approach, or are 
executed in a time-sharing environment by using a virtual 
memory management approach. Performance will change 
according to the adopted memory management strategy. 

Execution time of each algorithm is also considered: T1, 
T3, T4, T6, T8 are vectors containing the execution times for 
sample acquisition, filtering, feature extraction, matching, DB 
querying, of each biometric chain, respectively. T10 is the 
time that the decision algorithm needs to process the 
authentication decision. Since the system can be distributed, 
data transfer time is considered. T2, T5, T9 are vectors of time 
needed to transfer samples, features, and matching score 
between parts, respectively. T7 is the vector of maximum time 
requested to query the databases. Finally, T11 is the 
transferring time of the authorization value to the input units.  

In our methodology the environment includes all hardware 
architecture models that may implement any possible 
application. All described configurations of the hardware 
architectures have to be collected into a hardware architecture 
database, DBHW. During the optimal mapping, the 
optimization engine will test possible hardware configurations 
by exploring this database and by taking into account the 
designer requirements. 

B. The behavioural description  

The behavioural description, A, of the biometric system 
consists of the sequence of the operations that allow the 
biometric system to identify the person presented at its input 
sensors. The behavioural description is typically stated by the 
designer by means of a list of algorithms and by specifying 
how they must be combined into the computational flow of the 



biometric system. More in detail, our behavioural description 
represents both monomodal and multimodal biometric 
systems in terms of the processing architecture (Figure 1) and 
which algorithms will be used in the structure.  

We assume that the designer collects the available 
algorithms in the algorithm databases, namely the filtering 
algorithms DBFiltering, the feature extraction algorithms 
DBFeatureExtraction, and the matching, and DBMatching.  

During the optimization of the biometric system, the 
optimization engine will produce different compositions of 
algorithms by exploring these databases. Different releases of 
the same algorithm may be present in the databases. We 
assume that all algorithms are parameterized: each algorithm 
has a number of parameters that can affect its operation, 
accuracy, and computational complexity: default values for 
each algorithm are provided. 

A behaviour description of a multimodal biometric system 
can thus be compactly given as follows: 
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where C is Nx3 matrix of biometric chains algorithms, ALi1 is a 
a filtering algorithm, ALi2 is a feature extraction algorithm, 
ALi3 is a matching algorithm.  

For example, the filtering algorithm Fij corresponds to the 
j-th filtering algorithm available for the i-th biometric 
modality. Similarly we use the same notation for the feature 
extraction algorithm FEij and the matching algorithm Matchij.  

Each algorithm AL(.) is a function of the configuration 

parameters’ vector θ ; in equation (2) ijθ is the vector of 

parameters that characterizes the j-th algorithm available for 
the i-th biometric modality.  

Equation (1) indicates with DC the decision algorithm and 

with Dθ its vector of parameters. The decision algorithm 

combines the matching scores produced by the different 
biometric modalities to generate the authorization output. Also 
the decision algorithm DC is a function of the configuration 
parameter vector 

dθ . Decision algorithms are stored in the 

DBDecision database.  
Common strategies implemented in the decision algorithm 

include majority voting, product rules, k-NN classifiers, 
SVMs, decision trees, and Bayesian methods [35-40]. In 

monomodal systems the decision algorithm simply 
implements a threshold for the scores provided by the single 
matching algorithm. In multimodal biometric systems the 
simplest form of combination would be to take the thresholded 
weighted average of the scores from the multiple modalities.  

C. Mapping the behavioural description onto the hardware 
model  

The goal of the mapping phase consists of binding each 
component of the behavioural description A to the 
corresponding hardware resources HW, which implement its 
computation in the biometric system. Mapping must take into 
account the requirements given by the designer.  

The optimum mapping is an iterative process in which 
proper figures of merit are evaluated by considering the 
current system, and in which system’s independent variables 
are tuned to enhance the system’s figures of merit while 
satisfying the design requirements. The multi-objective 
optimization process is repeated by searching for optimal 
solution. The figures of merit and the optimization issue are 
detailed in the next sections.  

It is worth noting that the mapping procedure is not trivial 
since not all of the algorithms, which are in databases can be 
combined into the biometric system. Hence, the composition 
of algorithms are present into the behavioural description 
should not be randomly explored since random combinations 
of algorithms may not be compatible solutions according to 
constrains. Precise rules must be followed by taking into 
account the semantic of each component. In addition, 
algorithms of different chains (for example two matching 
algorithms) cannot be interchanged due to possible different 
syntactic characteristics of the interface (e.g., input/output 
data-types).   

The relationship between the behavioural description and 
the hardware model can be implemented, for example, by 
using mapping tables, while the semantic and input/output 
analysis can be implemented by means of a rule-based system.  

Table I shows an example for a single-board embedded 
monomodal biometric system. The table permits to locate each 
single algorithm belonging to the behavioural description A of 
the biometric system into the hardware model HW. The first 
column identifies the algorithm; the second column contains 
the algorithm’s name contained into the algorithm database. 
The third column locates the hardware module present in the 
hardware architecture, which executes the considered 
algorithm. 

 
TABLE  I 

Mapping for a single-board embedded  
monomodal biometric system 

Algorithm ID Algorithm NAME  LOCATION 
AL11 FILT1 PC1 
AL 12 FE12 PC1 
AL 13 MATCH12 PC1 
D KNN1 PC1 



     More complex architectures can also be represented by 
using the mapping table. For example, Table II shows the 
mapping table for a distributed bimodal system that uses 3 
separated PC (one for each biometric chain and one 
implementing the decision algorithm). 

 
TABLE  II 

Mapping for a distributed multimodal biometric system 
SW MODULE ID Algorithm NAME  LOCATION 
AL11 FILT1 PC1 
AL12 FE12 PC1 
AL13 MATCH12 PC1 
AL21 FILT24 PC2 
AL22 FE32 PC2 
AL23 MATCH23 PC2 
D KNN2 PC3 

 
The knowledge about how to combine algorithms in 

biometric chains has been formalized by means of rules. The 
list of rules defines the semantic and syntactic compatibilities 
of the algorithms to be used to solve the application. 

To support the selection of compatible algorithms a 
rule-based system can be adopted. The main advantages of the 
rule system are given by its flexibility and scalability; new 
algorithms can be easily inserted since the matrix of the 
achievable chains can be automatically reprocessed.  

The goal of the rule-based system is to produce a list of 
admitted chains by correctly composing their algorithms by 
considering their semantic and synthetic characteristics.  

Figure 5 shows a graphic representation of the rule-based 
system, which is composed by the following three correlated 
lists: 
• the filtering list contains the available filtering algorithms 

and the corresponding class; two filtering algorithms 
belong to the same class if their outputs are semantically 
equivalent (e.g., Gabor filtering and band-pass filtering 
belong to class 1); 

• the feature extraction list contains, for each feature 
extraction algorithm, the compatible filtering algorithms 
classes, the available feature extraction algorithms, and the 
corresponding class; two different feature extraction 
algorithms belong to the same class if their outputs are 
semantically equivalent; 

• the matching list contains the compatible feature 
extraction algorithms classes for each available matching 
algorithm.  

 
The final complete list of valid chains can be easily created 

by combining the items in the algorithm databases under the 
constraints given by the rules. Figure 6 shows the correct 
connections between classes of components (with dotted lines) 
in an applicative case. Each possible path that starts from the 
first list and ends to the last list represents a correct chain. Each 
chain can be stored by using the notation [Fi , FEj ,  MATCHk]. 
Hence, the output of the rule-based system is the N Mx3 matrix 

where M is the number of valid chains that has been found for 
N biometric traits that are included into the multimodal 
biometric system. 
 
 

 

Fig 5. Biometric rule-based system 

 

 

Fig. 6. Extraction of the valid chains from the rule-based system 

D. Figures of merit for a multimodal biometric system  

The most common figures of merit considered for a 
biometric system characterized its accuracy. Accuracy is 
usually evaluated by a set of indexes based on the concept of 
error of misclassification. Typically, the accuracy evaluation 
of the biometric system is performed by means of the 
procedure called evaluation scenario [13]. This procedure 
evaluates the accuracy indexes by considering a standard 
database of biometric features (e.g., a database of fingerprint 
images).  



In the literature many indexes are used to reflect the 
effectiveness of a biometric system [8, 10-15, 20]. The False 
Match Rate (FMR) is the expected probability that a sample is 
falsely declared to match a single randomly-selected template 
(false positive). The False Non-Match Rate (FNMR) is the 
expected probability that a sample is falsely declared not to 
match a template of the same measure from the same user 
(false negative) [8]. Both indexes are functions of the 
threshold value t used to compare the matching value to make 
the decision.  

Other indexes can complete the accuracy description. The 
EER (Equal Error Rate) is often considered. It is computed as 
the point where FMR(t) = FNMR(t). EER must be often 
interpolated by the quantized data [14,15]. ZeroFMR is the 
lowest FNMR for FMR = 0% (ideal is ZeroFMR = 0%); 
ZeroFNMR is the lowest FMR for FNMR = 0% (ideal is 
ZeroFNMR = 100%);  

The evaluation of the overall accuracy level of a biometric 
chain is often computed by considering two error plots. The 
first one is the Receiving Operating Curve (ROC), where 
(1− FNMR) is plotted as a function of FMR for all available 
values of the threshold t. The second, and most used, one is the 
plot of FNMR vs. FMR in a logarithmic chart, called the 
Detection Error Trade-off (DET) plot. In order to select the 
best system, a comparison among the DET curves is to be 
done. The best system is the one with the DET curve below all 
the others. An overall explanation of the accuracy indexes 
commonly used in literature is provided in [8, 13].  

Other figures of merit are related to the hardware 
architecture and the implemented algorithms, for example the 
response time and the memory usage [15].  

The response time is the total time required to complete the 
biometric authentication. It includes the execution time and 
the transfer time of all the considered modules. We should also 
include the possible waiting time on time-shared processors. If 
the complete biometric system is implemented on a single 
board, transition times T1, T5, T9 and T11 can be typically 
ignored. In a distributed biometric system, transfer time must 
be considered.  

Once the final hardware architecture of the biometric 
system is defined, each available algorithm belonging to the 
behavioural description A can be tested and its execution time 
can thus be evaluated. Of course simulators [23] of the final 
hardware architecture can be used. Since more than one 
module can be hosted on a single processing hardware module, 
the total computation load must be considered.   

The memory usage is another important figure of merit for 
biometric systems. Given the model of the hardware 
architecture, proper profiling tools [23, 24] permit the 
evaluation of the memory usage of an algorithm. Again when 
more than one module is implemented on a single processing 
hardware module, the overall memory consumption must be 
considered.  

Interestingly, some figures of merits are directly related 
only to the algorithms used (such as accuracy). These figures 
of merit can be calculated using a very simplified hardware 

architecture model. Just few information such as number of 
digits and the presence of floating point unit are required to 
evaluate the figures of merit. Others figures of merit depend 
only on the hardware architecture (e.g., transfer time between 
modules like T2, T5, T7 and T11).  

Of course, designers can add others figures of merits into 
the methodology (such as the economical cost of the system), 
until the description of biometric system bio is enough 
complete. This scalability is allowed by the structured 
organization of the methodology. 

E. Design requirements 

Given the biometric model bio = HW(A) obtained by 
mapping the behavioural description A on the hardware 
architecture model HW and the data benchData required to test 
the system, it is possible to evaluate the figures of merit. We 
use the following notation: 

 

( )( )benchDataAHWfiguresfff m ,],,,[ 21 =�
 (4) 

 

where the function figures returns a vector of numerical 
features [f1, f2, …, fm] which quantitatively describes the 
aspects of the biometric system that the designer wants to 
consider.  

At this stage, the design requirements are expressed by the 
designer as a set of equations in the figures of merit: 

 

Pfffh m ≤),,,( 21 �
 (5) 

where P is the requirements vector.   
Let assume for example that a designer considered the 

following figures of merit: EER, zeroFMR, zeroFNMR, 
responseTime, memoryOccupation. Hence, the design 
requirements can be a set of equations similar to the following:  
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In the given example we consider three figures of merit 

(EER, zeroFMR and zeroFNMR) related to the accuracy and 
two both related to the activities and the hardware architecture 
(responseTime and memoryOccupation). Last two values have 
to be processed by proper simulation and profiling tools.  

The designer can also constrain the exploration of the 
available algorithms present into the DBFiltering, DBFeatureExtraction 
and DBMatching databases to a subset of them. Similarly, the 
designer can reduce the exploration of the available hardware 
architecture contained into the DBHW database to a reduced 
subset. 

 

F. Optimization  

For his/her specific application, the designer is assumed to 
specify, the behavioural description A, the benchmark data 



benchData, the dataset of algorithms (DBFiltering, 
DBFeatureExtraction, DBMatching and DBDecision), the database of 
hardware architectures DBHW , the set of figures of merits [f1, 
f2, …, fm], the designer requirements stated as a set of equation 
in [f1, f2, …, fm], and an optimization function J (given as a 
function of the figures of merit).  

The optimization process selects by means of an iterative 
approach the values of the design independent variables that 
provide the best value of the multi-objective optimization 
function.  

Let us now describe the independent variables X of the 
optimization. The first set X1 of independent variables comes 
from the behavioural description. They characterize the 
algorithms that are chosen and mapped onto the hardware 
architecture HW. By using the proposed formalism, we have 
Nx3 variables ALij in equation (1), which can assume the 
values specified in equation (2) (the D1 domain). This set of 
variables is always present. 

The second set X2 of independent variables comes from the 
specification of the decision algorithm. If the decision 
algorithm is fixed, hence no variable have to be added into the 
optimization model. If the decision algorithm is 
parameterized, all its free parameters and their ranges (the D2 
domain) become independent variables for the optimization 
engine. For example, we can consider as decision algorithm a 
kNN classifier where the k parameters are not fixed (e.g., 
k∈ [1,3,..15]). 

The third set X3 of independent variables have to be 
considered in the case in which the algorithms ALij stored into 
the databases are parameterized (

ijθ ). In this case all 

parameters contained into the 
ijθ  vectors have to be 

considered as design variables of the optimization problem 
with their ranges (the D3 domain). 

The fourth set X4 of independent variables have to be 
considered when different hardware architectural choices have 
to be described. We in fact to set which processing hardware 
module PCk will execute the algorithm ALij. Furthermore we 
have to describe if the hardware architecture can exploit 
parallel processing. Let name the domain of these variables 
D4. 

A formalization of the optimization problem can therefore 
be stated as follows:  

• the independent variables vectors and their ranges: 

44332211 ;;; DXDXDXDX ⊆⊆⊆⊆ ; 

• the figures of merit: 

( )( )benchDataXXXXAHWfiguresfff m ,),,,(],,,[ 432121 =�

; 

• the constrains: 

0),,,( 21 ≤mv fffh �
; 

• multi-objective optimization function: 

( )],,,[ 21 mfffgJ �= . 

Typically, in the literature, biometric designers consider 
simpler problems or make problems simpler by a priori 
settings the values of some design independent variables, but 
without any concern to optimization (e.g., they may limit the 
hardware solution or adopt algorithms in which some/all 
parameters are set). 

III.  EXPERIMENTAL RESULTS 

To verify the feasibility and the usability of the proposed 
methodology, we implemented a prototype of the 
methodology by means of an object-oriented toolbox written 
in Matlab. The general descriptor of the biometric data as been 
introduced by means of a object oriented approach: this object 
is called biodata. The operations that compose the 
methodology have been implemented as biodata’s methods by 
using the polymorphic property. As such, the rule-based 
system is independent from the biometric data. Flexibility and 
scalability are thus guaranteed. 

Since we aimed only to show the viability of the 
methodology, we did not cared for completeness, accuracy in 
evaluation, and exhaustiveness at present time. In this 
prototype we introduced well-known biometric chains for 
pre-filtering, feature extraction, and matching algorithm which 
are available in the literature. For fingerprint-based systems 
we included algorithm described in [25-30], while for 
iris-based system we adopted algorithm described in [31-34]. 
The rule-based system allowed to create of candidate chains. 
In the current prototype the implemented figures of merit are 
EER, zeroFMR, and zeroFNMR.  

The optimization system has been implemented by using 
the Matlab environment: the algorithms stored in the databases 
have fixed parameters.  

An automated performance reporting method has been 
implemented. The polymorphic method can plot, for example, 
accuracy graphs, ROC curve, tables of selected figures of 
merits, sample plotting, and comparison. 

IV.   CONCLUSIONS 

The proposed methodology represents an effective 
approach to describe the design activities for biometric chains 
and to support optimization.  

We showed that many repetitive and time-consuming 
design tasks can be automated by using high-level design 
approaches. The proposed methodology was implemented and 
tested in an object-oriented prototype toolbox by allowing to 
create a flexible and easy-to up-date design environment.  

Future research will address the more detailed analysis and 
the evaluation of the hardware alternatives, extensions of the 
biometric algorithm, multi-objective optimization algorithms, 
more integrated multimodal operations, and multi-agent 
collaborative biometric environment. 
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