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1 Introduction

The problem of the Dutch national flag was formulated by Dijkstra (1976) as follows:

There is a row of buckets numbered from 1 to n. It is given that:
P1: each bucket contains one pebble;
P2: each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in
such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch
national flag.

The mini-computer in question should perform this rearrangement using two commands:

• swap (i, j) for 1 6 i 6 n and 1 6 j 6 n exchanges the pebbles stored in the buckets
numbered i and j;

• read (i) for 1 6 i 6 n returns the colour of the pebble currently lying in bucket
number i. Dijkstra originally named this operation buck.

Finally, a solution should also satisify the following two non-functional requirements:

• the mini-computer may only allocate a constant amount of memory;
• every pebble may be inspected at most once.

This pearl describes how to solve and verify the problem of the Dutch national flag in
type theory. For the sake of presentation, most of this paper considers the problem of the
Polish national flag, where the pebbles are either red or white. Initially, we will only be
concerned with finding a satisfactory solution to the problem (Sections 3–5). Although I
will not cover the proof of correctness in detail, I will sketch the key lemmas and definitions
(Section 6) and discuss how it may be extended to handle the case for three colours
(Section 7).

I will use the dependently typed programming language Agda (Norell, 2007) throughout
this paper and assume that you have had some previous exposure to programming with
dependent types. If you are unfamiliar with either of these topics, you may want to consult
one of the many articles that are currently available on these topics (Bove & Dybjer, 2008;
McBride, 2004; Norell, 2008; Oury & Swierstra, 2008).
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2 A functional specification of the mini-computer

Before we can tackle the problem of the Dutch national flag, we need to give a type
theoretic account of the mini-computer and its commands.

The primitive commands with which we can program the mini-computer take numbers
between 1 and n as their arguments. One way to represent these numbers is as follows:

data Index : Nat → Set where
One : Index (Succ n)
Next : Index n → Index (Succ n)

The type Index n has n canonical inhabitants. You may already be familiar with some ex-
amples of such finite types: Index 0 is isomorphic to the empty type; Index 1 is isomorphic
to the unit type; Index 2 is isomorphic to the Boolean type.

Note that in the typeset code, I will adopt Haskell and Epigram’s convention of implic-
itly universally quantifying any unbound variables in type signatures. For example, the
variable n used in both constructors of the Index type is implicitly quantified at the start of
both type declarations. To make such implicit arguments explicit, either in a type signature
or in a function definition, they will be enclosed in a pair of curly brackets.

The Buckets n data type below describes the pebbles that are currently in each of the n
buckets:

data Pebble : Set where
Red : Pebble
White : Pebble

data Buckets : Nat → Set where
Nil : Buckets Zero
Cons : Pebble → Buckets n → Buckets (Succ n)

The solution we present here will be structured using a state monad:

State : Nat → Set → Set
State n a = Buckets n → Pair a (Buckets n)

I will use Haskell’s notation for the unit (return) and bind (>>=) operations.
A function in the state monad can be executed to observe its effects:

exec : State n a → Buckets n → Buckets n
exec f bs = snd (f bs)

We can now define the read function, that returns the pebble stored at the bucket with
its argument index. We do so using an auxiliary dereferencing operator that looks up the
pebble stored at a particular index:

! : Buckets n → Index n → Pebble
Nil ! ()
(Cons p ps) ! One = p
(Cons p ps) ! (Next i) = ps ! i

read : Index n → State n Pebble
read i bs = (bs ! i,bs)
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Note that the dereferencing operator is total. In the Nil branch, we know that there is no
possible inhabitant of Index Zero and we supply the ‘impossible’ pattern () and omit the
right-hand side of the definition accordingly.

Before defining the swap operation, it is convenient to define the following functions:

write : Index n → Pebble → State n Unit
write i p bs = (unit,update i p bs)

where
update : Index n → Pebble → Buckets n → Buckets n
update One x (Cons p ps) = Cons x ps
update (Next i) x (Cons p ps) = Cons p (update i x ps)

Calling write i p replaces the pebble stored in bucket number i with its argument pebble.
Although the interface of the mini-computer does not support this operation, we can use it
to define swap as follows:

swap : Index n → Index n → State n Unit
swap i j = read i>>=λpi →

read j>>=λp j →
write i p j >>

write j pi

Providing definitions for swap and read completes the functional specification of the
mini-computer. This specification is in fact a degenerate case of the functional specification
of mutable state in my thesis (Swierstra, 2008). As the mini-computer cannot allocate new
buckets, it is considerably simpler.

3 A first attempt

It’s now time to sketch a solution to the simplified version of the problem with only two
colours. In the coming sections, we will refine this solution to a valid Agda program.

Dijkstra’s key insight is that during the execution of any solution, the row of buckets
must be divided into separate zones of consecutively numbered buckets. In the simple
case with only two colours, we will need three disjoint zones: the zone of buckets storing
pebbles known to be red; the zone of buckets storing pebbles known to be white; and the
zone of buckets storing pebbles of indeterminate colour.

To delineate these zones, we need to keep track of two numbers r and w. Throughout the
execution of our solution, we will maintain the following invariant on r and w:

• for all k, where 1 6 k < r, the pebble in bucket number k is known to be red;
• and for all k, where w< k 6 n, the pebble in bucket number k is known to be white.

Note that this invariant does not say anything about the pebbles stored in buckets numbered
k for r 6 k 6 w. In particular, if we initialize r and w to 1 and n respectively the invariant
is trivially true.

With this invariant in mind, we might arrive at the (pseudocode) solution for the problem
of the Polish national flag in Figure 1.
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sort : Index n → Index n → State n Unit
sort r w = if r ≡ w then return unit

else read r >>=λc →
case c of

Red → sort (r +1) w
White → swap r w>> sort r (w−1)

Fig. 1. A pseudocode definition of the sort function

If r ≡ w, there is no further sorting necessary as a consequence of our invariant. Oth-
erwise we inspect the pebble stored in bucket number r. If this pebble is red, we have
established the invariant holds for r + 1 and w. We can therefore increment r and make a
recursive call without having to reorder any pebbles.

If we encounter a white pebble in bucket number r, there is more work to do. The call
swap (r,w) ensures that all the pebbles in buckets with a number k, for w 6 k 6 n, are white.
Put differently, after this swap we can establish that our invariant holds for r and w−1. In
contrast to the previous case, the recursive call decrements w instead of incrementing r.

There are several problems with this definition. Firstly, it is not structurally recursive and
therefore it is rejected by Agda’s termination checker. This should come as no surprise: the
function call sort r w only terminates provided r 6 w, as the difference between w and r
decreases in every recursive step. The Agda solution must make this informal argument
precise.

Furthermore, we have not defined how to increment or decrement inhabitants of Index n.
Before we try to implement the sort function in Agda, we will have a closer look at the
structure of such finite types.

4 Finite types

How shall we define the increment and decrement operations on inhabitants of Index n?
You might be tempted to use the constructor Next as our increment operation. Recall

that Next has type Index n → Index (Succ n), whereas we would like to have a function of
type Index n→ Index n. Similarly, “peeling off” a Next constructor does not give yield to a
decrement operation of the desired type.

The Next constructor, however, is not the only way to embed an inhabitant of Index n
into Index (Succ n). Another choice of embedding is the inj function, given by:

inj : Index n → Index (Succ n)
inj One = One
inj (Next i) = Next (inj i)

Despite appearances, inj is not the identity function. The inj function maps One : Index n to
One : Index (Succ n) – thereby changing its type. We can visualise the difference between
inj and Next, mapping Index 3 to Index 4, in Figure 2.

Figure 2(a) contains the graph of the inj function. I have numbered the elements of
Index 3 and Index 4 on the left and right respectively. The inj function maps the One
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Fig. 2. The graph of the inj function (a) and the Next constructor (b) on Index 3

element of Index 3 to the One element of Index 4; similarly, Next i is mapped to Next (inj i).
As the Figure 2(b) illustrates, the Next constructor behaves quite differently. It increments
all the indices in Index 3, freeing space for a new index, One : Index 4.

From this picture, we can make the central observation: we should only increment
indices in the image of inj and only decrement indices in the image of Next.

The question remains: how do we know when an index is in the image of inj or Next?
Surprisingly, we will acquire this information as a consequence of making the algorithm
structurally recursive.

5 A structurally recursive solution

To revise our definition of sorting, we need to make the structure of the recursion explicit.
Informally, we have previously established that the function call sort r w function will
terminate provided r 6 w. The usual choice of order on inhabitants of Index n is given by
the following data type:

data 6 : (i j : Index n)→ Set where
Base : (i : Index (Succ n))→ One 6 i
Step : (i j : Index n)→ i 6 j → Next i 6 Next j

The base case states that One is the least inhabitant of any non-empty finite type. Provided
we have already established that i 6 j, the Step constructor proves that Next i 6 Next j.

This definition, however, does not reflect the structure of our algorithm. A better choice
is to define the following data type, representing the difference between two inhabitants of
Index n:

data Difference : (i j : Index n)→ Set where
Same : (i : Index n)→ Difference i i
Step : (i j : Index n)→ Difference i j → Difference (inj i) (Next j)

The base case, Same, captures the situation when the two indices are the same; the Step
constructor increases the difference between the two indices by incrementing the greater
of the two.
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sort : (r : Index n)→ (w : Index n)→ Difference r w → State n Unit
sort bic bic (Same i) = return unit
sort binj ic bNext jc (Step i j p) =

read (inj i)>>=λc →
case c of

Red → sort (Next i) (Next j) (nextDiff i j p)
White → swap (inj i) (Next j)>>

sort (inj i) (inj j) (injDiff i j p)

Fig. 3. The definition of the sort function

Using this definition of Difference, we define our sorting function by induction on
the difference between r and w in Figure 3. Note that Agda does not provide local case
statements – the accompanying code defines sort using a fold over the Pebble type. I have
chosen to typeset this fold as a case statement for the sake of clarity.

The pattern matching in this definition deserves some attention. In the first branch, we
match on the Same constructor. As a result of this pattern match, we learn that r and w can
only be equal to the argument i of the Same constructor. This information is reflected by
the forced pattern bic that we see in place of the arguments r and w.

By pattern matching on the Step constructor, we also learn something about r and w:
as they are not equal, r and w must be in the images of inj and Next respectively. The
definition of this branch closely follows the pseudocode solution we have seen previously.
It reads the pebble in bucket number inj i. If it is red, we continue sorting with Next i and
Next j, thereby incrementing inj i. If it is white, we perform a swap and continue sorting
with inj i and inj j, thereby decrementing Next j. This is where we apply our observation on
incrementing and decrementing inhabitants of Index n from the previous section.

To perform the recursive calls, we need to define two lemmas with the following types:

nextDiff : (i j : Index n)→ Difference i j → Difference (Next i) (Next j)

injDiff : (i j : Index n)→ Difference i j → Difference (inj i) (inj j)

Both these lemmas are easy to prove by induction on the Difference between i and j.
Unfortunately, this definition of sort is still not structurally recursive. The sort function

is defined by induction on the difference between r and w, but the recursive calls are not
to structurally smaller subterms, but rather require the application of an additional lemma.
Therefore it is still not accepted by Agda’s termination checker.

The solution is to revise our Difference data type once again. Instead of requiring the
application of the above two lemmas, we bake the proofs required for the two recursive
calls into the data type over which we recurse:

data SortT : (i j : Index n)→ Set where
Base : (i : Index n)→ SortT i i
Step : (i j : Index n)→

SortT (Next i) (Next j)→ SortT (inj i) (inj j)→ SortT (inj i) (Next j)
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sort : (r : Index n)→ (w : Index n)→ SortT r w → State n Unit
sort bic bic (Base i) = return unit
sort binj ic bNext jc (Step i j pDiff pInj) =

read (inj i)>>=λc →
case c of

Red → sort (Next i) (Next j) pDiff
White → swap (inj i) (Next j)>>

sort (inj i) (inj j) pInj

Fig. 4. The final definition of the sort function

Of course, we can show this definition to be equivalent to the original Difference type
using the nextDiff and injDiff lemmas. I have chosen the name SortT for this data type as
it encodes a the conditions under which the sort function will terminate. More generally,
this is an instance of the Bove-Capretta method (Bove & Capretta, 2005), that calculates
such a type from any non-structurally recursive definition.

The final definition of the sort function, using the SortT predicate, is given in Figure 4.
All that remains to be done to solve the problem of the Polish national flag is to call

sort with suitable initial arguments. We initialise r to One and w to maxIndex k, the largest
inhabitant of Index (Succ k). To kick off the sorting function, we must still provide a proof
that SortT One (maxIndex k) is inhabited, calculated by the terminates function.

polish : (n : Nat)→ State n Unit
polish Zero = return unit
polish (Succ k) = sort One (maxIndex k) terminates

where
maxIndex : (n : Nat)→ Index (Succ n)
maxIndex Zero = One
maxIndex (Succ k) = Next (maxIndex k)
terminates : SortT One (maxIndex k)
terminates = toSortT One (maxIndex k) (Base (maxIndex k))

The easiest way to prove termination is by exploiting the equivalence between i 6 j and
SortT i j, witnessed by the function toSortT . Clearly One 6 maxIndex k, by the Base
constructor. Passing this proof as an argument to toSortT then gives the required proof of
termination. The definition of toSortT proceeds by recursion over the two Index arguments.

This completes our solution to the problem of the Polish national flag. Now all we need
to do, is prove it correct.

6 Verification

With this relatively simple definition, the verification turns out to be straightforward. Step-
ping through large proof terms written in type theory can be rather tedious and hence I
will refrain from doing so. To give you some idea of how the verification proceeds, I shall
present the key definitions, formulate the necessary lemmas, and sketch their proofs.
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Many of the proofs use the following property of the swap function:

swapProp : Buckets n → (i j k : Index n)→ Set
swapProp bs i j k =

let bs′ = exec (swap i j) bs in
(k 6≡ i)∧ (k 6≡ j) → (bs′ ! k ≡ bs ! k) ∧ (bs′ ! j ≡ bs ! i) ∧ (bs′ ! i ≡ bs ! j)

It states that swap i j exchanges the pebbles in buckets i and j, but leaves all other buckets
unchanged. Recall that the (!) operator looks up the pebble stored at a particular index.

We continue by formalizing the invariant stated at the beginning of Section 3. We define
the following property on two indices and an array of buckets:

Invariant : (r w : Index n)→ Buckets n → Set
Invariant r w bs = (∀ i → i< r → (bs ! i)≡ Red)∧ (∀ i → w< i → (bs ! i)≡ White)

As you would expect, this property states that all buckets to the left of the index r contain
red pebbles and all buckets to the right of the index w contain white pebbles.

The key statement we prove is the following:

sortInv : Invariant r w bs →∃m : Index n, Invariant m m (exec (sort r w d) bs)

In words, it says that if the above invariant holds initially for some array of buckets bs, the
invariant still holds after executing our sort function.

To prove this statement, we need to identify three separate cases.

Base case In the base case, r and w are equal. The sort function does not perform any
further computation and we can trivially re-establish that the invariant holds.

No swap If the pebble in bucket r is red, the algorithm increments r and recurses. To
re-establish the invariant, we need to prove that for every index i such that i < r + 1
the pebble in bucket number i is red. After defining a suitable view on the Index data
type (McBride & McKinna, 2004), we can distinguish two cases:

• if i ≡ r, we have just established that the pebble in this bucket is red.;
• otherwise i< r and we can apply our assumption.

Swap If the pebble in bucket r in white, the algorithm swaps two pebbles, decrements w,
and recurses. This is the only tricky case. To re-establish our invariant we need to show
that:

• the pebbles in the buckets numbered from One to r are all red after the swap. This
follows from our assumption, together with the first conjunct of swapProp.

• the pebbles in buckets numbered from w−1 onwards are all white. This case closely
mimics the branch in which no swap occurred. The only difference is that we need to
use the second conjunct of the swapProp to show that the pebble in bucket number
w is now indeed white.

Finally, we use this lemma to establish our main result:

correctness :∃m : Index n, Invariant m m (exec polish bs)

To complete this proof, we use the fact that the sort function respects our Invariant. All
that remains to be done is to show that the invariant is trivially true for the initial call to the
sort function.
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7 Discussion

Two colours or three? There is still some work to be done to verify the problem of the
Dutch National Flag. The good news is that the structure of the algorithm is almost identi-
cal. Specifically, we can use the same termination argument: in every step of the algorithm
the difference between two indices decreases. The only real change is that the number of
cases grows from two to three. Consequently, the invariant that must be maintained and the
corresponding proofs grow.

There is one detail I have swept under the rug. The final correctness result states that all
pebbles to the left of some index m are red and all pebbles to the right of m are white. It
does not say anything about m itself. The reason is that the sort function as defined here
ends when its two arguments are equal. That is fine for the case with two colours; when
there are three colours this may lead to incorrect results. Fixing this entails duplicating a
bit more code: in the base case we should also check if there is a swap necessary.

Related work The Problem of the Dutch National Flag is also covered as one of the
final examples in Programming in Martin-Löf’s Type Theory (Nordstrom et al., 1990).
The program presented there is a bit different from Dijkstra’s original solution: it does not
use an in-place algorithm that swaps pebbles as necessary, but instead solves the problem
using bucket sort. While this does produce correctly sorted results, I would like to think
that the solution presented here is truer to Dijkstra’s original.
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