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Abstract 
 
Wider adoption of formal specification languages in industry is impeded by the lack 
of support for early development phases and for integration with older, legacy 
software. Methodology aimed at improving this situation is presented. The 
methodology uses Message Sequence Charts (MSC) as a “front-end” specification 
language and systematically applies an automatic synthesis technique to produce 
executable specifications in the telecommunications standard Specification and 
Description Language (SDL). Applications of the automatic synthesis technique for 
both forward and reverse engineering are demonstrated.  
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1. Introduction 
 

New generation Computer-Aided Software Engineering (CASE) tools based 
on Formal Description Techniques (FDTs) are aimed at practical improvements of 
software engineering in the telecommunication industry. CASE-based approaches 
offer significant improvements in quality, productivity, and time to market [5]. 
However there exist certain barriers for wider adoption of formal specification 
languages in industry. We identify two major barriers – support of early development 
phases [8,4] and support for integration with legacy software [17,2]. 

Design practice at the early phases of the software development process is not 
adequately supported by mathematical-based formal methods [8]. Requirements 
capture is an iterative and exploratory process. At this phase tentative descriptions of 
the system are suggested and frequently modified. In the initial phases of a design, 
comprehensive formal specification and verification techniques offer little help to the 
designer [8]. They appear to require a level of formality and precision that is not 
available yet. In return, only fairly abstract properties may be established. According 
to [8] the initial price to be paid is too high, the initial rewards are far too small. 

Instead, the so-called use case based methodologies are becoming 
predominant in software development [9,16].  Use case based methodologies share 
the common way of capturing the customer requirements as scenarios. Message 
Sequence Charts (MSC) [7] or Sequence Diagrams of the Unified Modeling 
Language (UML) [16] can be used to model use cases. The MSC language is 
especially attractive as a formal description technique (FDT) for the early phases of 
the software development process because it is well accepted in the 
telecommunications industry and has a low learning curve, while at the same time it 
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has a well-defined formal semantics. We believe that significant improvements of the 
time-to-market can be gained by expanding the use of FDT-based CASE tools to the 
early phases of the software development process [5,4,8].  

Apart from the support for the early design phases, there is another important 
issue, which needs to be addressed in order for the formal methods-based CASE tools 
to become common practice in industrial software engineering. Usually, formal 
methodologies are only applicable to projects, in which the system is developed 
completely from scratch. However, most projects in the industrial context involve 
older, “legacy” software. This software is being maintained, ported to new hardware 
and software platforms, updated by developing new features, or reused in new 
projects. For formal methods to be adopted in such projects, it is necessary to provide 
cost-effective methods for integrating CASE-produced components with “legacy” 
base software [1]. Legacy software systems were produced with older development 
methods, often involving a blend of higher-level code, and system-level code, with 
heterogeneous languages, architectures, and styles, and are often very poorly 
documented.  Up to now, this fact has constituted a “legacy barrier” to the cost 
effective use of formal methods-based development technologies and tools [2,17]. In 
order to overcome the “legacy barrier”, there is an increasing demand for developing 
cost-efficient re-engineering methods, which will significantly reduce the effort 
involved in creating formal specifications of the base software platforms. 

In this paper, we describe our experience in addressing methodological issues 
for wider adoption of formal methods and the corresponding FDT-based CASE tools 
in telecommunications industry. We have selected MSC as the “interface” formal 
method, intended for use by humans. An automatic synthesis technique aimed at 
producing executable specifications in another telecommunications standard formal 
language called Specification and Description Language (SDL) [6] was developed. 
We discuss methodological issues of using MSCs and synthesized SDL specifications 
at both early and later phases of the development process. Applications of the 
synthesis techniques for re-engineering formal specifications of base software [2] are 
discussed in a separate section. 

The rest of the paper has the following organization. Section 2 contains a brief 
introduction into MSC, describes some data extensions and outlines our approach to 
formal modeling of requirements at the very early phases of software development. 
Section 3 presents the key concepts of the synthesis algorithm. Section 4 describes 
applications of synthesis in forward engineering. We describe high-yield requirements 
validation and architecture validation techniques. We also provide comparison of 
several related approaches to using synthesis in forward engineering. In Section 5 
applications of synthesis in reverse engineering are discussed. We present our 
dynamic scenario-based approach to re-engineering of formal SDL specifications of 
legacy telecommunications software. We provide comparison to some related 
approaches to re-engineering formal specifications. Section 6 concludes the 
presentation. 
 
2. MSC as a “front-end” formal specification language 
 

We suggest using MSC [7] as a “front-end” formal specification language of an 
FDT-based CASE tool. Requirements for a “front-end” formal specification language 
include ease of use, low learning curve, very quick turn-around cycle, capability for 
rapid modification and maintenance of the specification. On the other hand, the CASE 
tool should support one or several “back-end” formal specification languages 
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amendable for formal verification, generation of test cases, generation of application 
code, etc. “Back-end” formal specification languages have more comprehensive 
requirements on the depth, and mathematical precision of description. SDL [6] is an 
illustration of a “back-end” specification language.  

Attempts to apply a “back-end” specification language at the early phases of 
development will probably create an impediment. We suggest using automatic 
synthesis to produce “back-end” specifications from “front-end” specifications at the 
early phases of development. We believe that this methodological step is essential to 
utilize the latent capacity of formal methods to improve time-to-market in an 
industrial context.  

In this paper we explore a combination of MSC as the “front-end” formal 
specification language and SDL – as it’s "back-end". Obviously, other combinations 
of “front-end” and “back-end” specification languages are possible. Separation of a 
“front-end” specification language allows utilizing several “back-end” specification 
languages in order to increase the capabilities of an integrated set of tools.  
 
2.1. Overview of MSC language 
 

This section provides a brief overview of Message Sequence Charts 
specification language. Complete definition is contained in [7]. Note, that the MSC 
language used in this paper is based on the so-called MSC-92 standard, to which 
certain extensions were added. The current standard, the so-called MSC-2000 
language defines several powerful constructs, which are not covered here. 
 The MSC language has a graphical notation. There are two kinds of MSC 
diagrams: Basic Message Sequence Charts (bMSC), and High-Level Message 
Sequence Charts (HMSC). A textual representation of MSC specifications is also 
available [7]. 
 Let’s consider an illustrative basic MSC (see Figure 1). A basic MSC diagram 
describes behavior of several instances. Each instance is graphically represented as a 
vertical line (called instance axis). Each instance has an instance head, which contains 
the name of the instance. An instance axis corresponds to the timeline of the instance. 
Instances exchange messages, which is shown as arrows between two instances, or 
between an instance and the frame of the diagram. An instance can be created by 
another instance, which is shown as a dashed arrow pointing at the instance head of 
the child instance.  

Message sequence charts can use timers. Figure 1 shows how timer T is set by 
instance c, and then expires, resulting in a timeout. An instance can also reset a timer 
(not shown at  Figure 1). 

A basic MSC describes events for each instance. Events on each instance axis are 
ordered: if the first event occurs higher on the instance axis than the second one, than 
the first event occurs “before” the second one. Related pairs of message output and 
message input introduce another order: message output occurs “before” the 
corresponding message input. Semantics of an MSC specification is a (transitive) 
partial ordering of the events for all instances in all basic MSC diagrams. 

The MSC standard [7] has syntax for some data-related aspects of 
specifications, but does not describe any semantics for them. Data-related elements of 
MSC specifications include parameters of messages, parameters of create events, 
parameters of timers and actions. Section 2.2 contains a brief description of our 
extensions of the data handling aspects of MSC specifications.  
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 Composition of basic MSCs is described by conditions. Composition of basic 
MSCs is represented graphically using HMSC diagrams. An HMSC diagram contains 
references to basic MSC diagrams and flowlines (see Figure 2).  
 
2.2. Data Extensions to MSC 
 

In order to allow more power to specification of scenarios, we have introduced 
some rather pragmatic extensions to the data handling capabilities of the MSC-92 
language [4]. Note, that the current MSC standard, the so-called MSC-2000, defines 
advanced data concepts. For discussion of data aspects in the new MSC standard see 
[18]. 

Our motivation is simple enough: use the semantics of the data handling 
operations from the “back-end’ language (for example SDL [6]) and use the automatic 
synthesis to transform data handling from the “front-end” MSC specifications into the 
“back-end” specification. Therefore, the semantics of our data extensions is defined 
by the automatic synthesis algorithm. 

 
1. Variable definitions. We allow to define variables of different types.  

Variable definition is placed into a text symbol in any MSC diagram. A local 
copy of each variable is created for each actor. Simplified SDL syntax is used 
for variable definitions: 

 
<variable definition> ::= dcl <var_name> <type>;

2. Actions.  We allow MSC action symbols to contain operations on local 
variables. Simplified SDL syntax is used for actions: 

 
<assignment> ::= <var_name> := <expr>
<function call> ::= <func> (<expr1>,…,<exprn> )

3. Message parameters. We allow messages  to have parameters. We restrict the 
syntax of message parameters to variable names.  

4. Create parameters. Actors are allowed to have parameters which are passed 
from the parent instance to the child instance during the create event. We 
restrict the syntax of create parameters to variable names.  

5. Local conditions. We allow to specify local decisions using boolean 
expressions over instance variables. Syntactically, local decisions are specified 
as local conditions on the axis of the corresponding instance. The boolean 
expression  is written in a comment box attached to the local condition. 
Semantics of such condition is that the subsequent events are considered only 
when  the value of the boolean expression is true.  Boolean expressions are 
restricted to the following syntax: 

 
<boolean expression> ::= <var_name> <op> <var_name>

<var_name> <op> <const>

Alternative sequences of events can be specified in a different MSC using a 
local condition with the same name and a different guard. All guards must be 
mutually exclusive. Decision is local to the instance with a local condition.  
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6. Timers. Subsequent set and timeout events on an MSC instance axis may be 
used to specify a delay during use case execution. In an abnormal scenario 
such delay may specify an expired timeout, which causes an error. Timers 
with parameters [7] are not supported. 

 
3. Synthesis of Executable SDL Specifications from MSC 
 
 In this section we present our technique for synthesis of “back-end” SDL 
specifications from scenarios formalized in a “front-end” MSC. We describe the key 
concepts of the synthesis algorithm, and provide an illustrative example. More 
detailed description is presented in [19]. 
 
3.1. Synthesis Algorithm 

 
Our synthesis algorithm is based on the concept of event automata. An event 

automaton is a finite automaton corresponding to an MSC instance, such that the 
alphabet of the input symbols for the automaton is the same as the alphabet of MSC 
events of the given MSC instance. Our synthesis algorithm constructs a particular 
kind of event automata, which we call MSC slices. An MSC slice (corresponding to 
an MSC instance i) is an event automaton, accepting all valid event sequences for the 
instance i.  

In this paper we distinguish between three categories of MSC events: input, active 
and idle events. Note, that an idle event is not defined in [7]. An idle event is a trivial 
(empty) event, which was added to simplify algorithm descriptions. 
•  input events require synchronization with other instances, decision about event is 

taken by another instance: 
- input of message m by instance i: in( i,m ) 
- create instance i by instance j: create(i,j) 
-  timeout of timer t: timeout( t ) 

•  active events do not require synchronization with other instances, decision is local 
to the current instance: 
-  output of message m by instance i: out( i,m ); 
-  action a: action( a ); 
-  set timer t  for duration d: set( t,d ); 
-  reset timer t: reset( t ); 
-  stop action:  stop; 
-  local condition over variable v with condition c: check( v, c ); 

 
The following algorithm can be used to construct MSC slices: 

1. initial states of the event automaton correspond to symbols at HMSC graph with 
idle events; 

2. for each basic MSC a (sub)sequence of states is created, corresponding to  the 
sequence of events involving the instance i; 

3. each MSC reference is replaced by the corresponding (sub)sequence of states; 
4. the start symbol of the event automaton corresponds to the HMSC start symbol; 

 
Our synthesis algorithm consists of the following steps [4]: 

1. Integrate HMSC model 
2. Construct MSC slices 
3. Make MSC slices deterministic 
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4. Minimize MSC slices 
5. Generate SDL behavior 
6. Generate SDL structure 

 
3.2. Example  
 

Let’s consider a simple MSC model shown in Figure 3. It contains two use 
cases Wait and Reply  (each of them has only one scenario). We assume sequential 
composition rule. Instance R (receiver) corresponds to the system actor and instance S 
(sender) is an external actor.  

Sender S initiates both use cases. Use case Wait is started by sender S sending 
message X. Receiver R has to wait for an unspecified period of time. Use case Reply 
is started by sender S sending message Y. Receiver R has to respond with message W. 

Figure 4 illustrates our algorithm for constructing an MSC slice for instance S. 
The first step of the algorithm constructs an event automaton from the HMSC graph 
(step 1). Then an event automaton is constructed from the instance S at MSC Wait 
(step 2). This automaton has only one transition, labeled with an active event out(x,r). 
Then the corresponding transition in the initial event automaton is substituted for the 
newly created event automaton for instance S from MSC Wait (step 3). The following 
two steps (steps 4 and 5) process instance S from MSC Reply. The resulting MSC 
slice is presented in the bottom right corner of Figure 4. It is labeled non-deterministic 
event automaton (NEA). 

Figure 5 illustrates subsequent steps of our synthesis process. The non-
deterministic MSC slice for instance S  (NEA S) is made deterministic (in the event 
automata sense) and minimized (DEA S). An SDL graph is then generated (process 
S). Figure 6 illustrates the generated SDL structure for our example. 

 
4. Applications in Forward Engineering 
 
4.1.  High Yield Requirements Validation 
 

In this section we describe the use of synthesized SDL models for 
requirements validation. Requirements validation is a systematic approach to detect 
faults in the customer requirements [5]. Requirements validation is a form of testing 
applied to an early phase. Requirements validation is an iterative process consisting of 
the following steps (see Figure 7): 

1. Formalize requirements in the form of use case scenarios 
2. Synthesize executable requirements model from scenarios 
3. Create validation scenarios 
4. Run validation scenarios through the requirements model 
5. Validate the execution sequence of each validation scenario to: 

5.1. Accept the validation scenario. In this case the validation scenario can 
be included into requirements use cases 

5.2. Reject the validation scenario. In this case the initial customer 
requirements contain a fault. E.g. the initial requirements can be 
inconsistent or incomplete. The rejected validation scenario has to be 
transformed into a use case and the initial requirements need to be 
updated by including the new use case and removing any existing 
inconsistencies. 
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6. Check termination criteria and start with a new iteration, if necessary 
(starting from step 2). 

 
High-yield requirements validation approach is being developed by  

Prof. R. Probert at the Telecommunications Software Engineering Research Group 
(TSERG) of the University of Ottawa [5]. Same considerations are applicable to 
requirements validation as to testing: one cannot test a program to guarantee that it is 
error-free. Since exhaustive testing is out of the question, we must maximize yield on 
the testing investment (i.e., maximize the number of errors found by a finite number 
of test cases. Yield of a validation scenario refers to the number of defects detected at 
by a particular scenario. An alternative definition of yield can refer to the amount of 
risk removed by the scenario. Risk refers to the “cost” associated with a failure. By 
definition, Risk R  =  PF  *  CF  (where PF is the probability of failure; CF is the cost 
of failure). 

Let us introduce some terminology for discussing validation scenarios. We 
make a distinction between primary scenarios (normal, everything works as expected, 
success paths) and secondary scenarios (alternative, exceptional, race conditions, 
collisions, known pathological sequences of client/system interactions, fail paths). All 
functional scenarios (scenarios which describe how a user achieves a particular 
service or capability) are primary, scenarios which describe how he/she was thwarted 
are secondary. Essential scenarios, which are desired by a customer, are primary. 
Primary scenarios are denoted “low-yield” since they describe situations and 
interactions, which are generally well understood.  The yield (detected or anticipated 
error count) is therefore low. Secondary scenarios on the other hand are denoted 
moderate or high-yield, since they describe situations and interactions, which are 
generally not well documented, and therefore are not well understood. The associated 
yield for such scenarios is high because designer choices are likely to differ from 
client choices, or to be non-deterministic. 

The objective of the high-yield requirements validation is to focus the effort 
on the elements with highest risk. Low-yield scenario is not likely to detect a defect by 
causing an observable failure because such scenarios are in general well understood 
by both the customers and the developers. On the other hand, high-yield scenarios 
have a high probability of detecting a defect. High-yield scenarios correspond to the 
secondary scenarios, e.g. exceptional behavior (error-handling behavior path). 
Usually, these scenarios are less well understood by the developers. 
 In [4] we suggested to automatically synthesize an SDL requirements model at 
the requirements analysis phase (Figure 7). Automatic synthesis of SDL requirements 
models from MSC has the following benefits: 
•  MSC modeling allows high-yield requirements validation by simulation of SDL 

models using high-yield scenarios 
•  MSC models can be developed concurrently while architecture integrity can still 

be maintained via iterative synthesis 
•  Regression testing is eliminated because accepted validation scenarios are added 

to the set of validation scenarios and the synthesized model is by construction 
correct with respect to the previously accepted behavior 

•  Early fault detection can be performed by the synthesizer 
•  Different compositions of use cases can be explored (single, concurrent, etc.) 
•  Slices of the MSC model can be created, explored and reused 

The synthesized requirements model (SRM) can be used to generate additional 
scenarios, which are longer than the original validation and therefore provide better 
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understanding of the requirements [14]. Simulation of the synthesized requirements 
model allows to quickly discover inconsistencies and incompleteness of the 
requirements because the synthesized model will generate many variations of the 
original scenarios, including abnormal behavior. Such scenarios are likely to be less 
well understood by the developers. 
 
4.2. Architecture Validation 
 

Automatic synthesis can also be used at the system analysis phase. During this 
phase the architecture of the system is defined and system scenarios for each 
architecture component are produced (often by independent development teams) 
(Figure 8). Formally, the input at this phase is a set of system scenarios. A system 
scenario is a refinement of the corresponding scenario from the requirements analysis 
phase, capturing the interaction of the architecture components. Structural information 
available in the system scenarios consists of the set of external actors and the 
architecture components. In the MSC model architecture components are represented 
as distinct instances. Behavioral information is available in the form of functional 
scenarios representing the typical interactions between the architectural components 
as well as between external actors and the architectural components. Additional 
behavioral information can be captured in the form of the data flows over the system 
scenarios.  The automatically synthesized model created at this phase is called the 
synthesized architecture model (SAM). SDL tools can be used to explore the SAM in 
order to validate both the system scenarios and the architecture model (Figure 8). 
Architecture validation process is a direct continuation of requirements validation 
process described in section 4.1. 

Additionally, automatic synthesis performs integration of the model from multiple 
views produced by independent development teams. Behavior of each process of the 
SDL model is synthesized by considering all interactions involving the corresponding 
architecture component in all scenarios. Final integration of the model occurs during 
synthesis of the SDL structure. Integration process reproduces architectural 
components of the system and their relations by deriving SDL blocks and channels 
from system scenarios. Blocks of the SDL system are synthesized from the instances 
in all system scenarios. Channels between the synthesized blocks are derived from 
interactions between the corresponding instances in all scenarios. Automatically 
derived relationships between components can be compared to the intended ones, 
which are described in the architecture model. In our experience inspection of the 
synthesized architecture model is helpful in uncovering system analysis faults. 
 Vertical decomposition of MSC models can be used in conjunction with our 
synthesis technique to seamlessly refine requirements models into architecture 
models. Figure 9 demonstrates this approach. In use case Reply from example at 
Figure 3, instance R is decomposed into three instances: R1, R2, R3. Message flow 
between decomposition instances has to be compatible with the message flow at the 
parent MSC diagram. Additionally, two alternative behavior paths are now specified 
for the Reply use case. Alternatives are specified using MSC condition with same 
name. The synthesized architectural SDL model is shown at Figure 10. 
 
4.3. Comparison to related work 

 
Automatic synthesis of executable models from scenarios is an active research 

field. Much work has been done on the subject of translating MSC to other languages 
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[14,10]. Synthesizing SDL specifications from MSC is addressed in [10]. Survey of 
research on a more general subject of protocol synthesis is available in [13].  

Methodological issues of using MSC for early development phases are 
considered in [8]. This paper describes synthesis of formal “back-end” specifications 
in Promela language aimed at formal requirements verification. The possibility of 
synthesizing executable specifications in the form of finite state machines was 
mentioned but not considered as a primary goal of the project. 

Methodological issues of generating a formal executable specification from a 
set of use cases are addressed in [11]. This paper summarizes experience in manually 
developing a LOTOS specification of an industrial telecommunications standard on 
the basis of use cases provided by customers. LOTOS tools were used to validate the 
specification and generate all original use cases as well as additional ones. The main 
motivation of the project was to use LOTOS tools to analyze and maintain a set of use 
cases. The benefit of using the formal executable specification for prototyping 
purposes was emphasized. 

The University of Montreal synthesizer [15] translates scenarios with timing 
constraints into timed automata. The main motivation of the project is to provide 
formalization of scenarios and ensure the accuracy of requirements analysis.  

The Waterloo synthesizer [14] translates MSC models into ROOM 
specifications. The main motivation of this project is to create an executable 
architectural model supporting design phases. Firstly, an executable architecture 
model was considered useful for prototyping purposes. Synthesized ROOM models 
can be simulated by ObjecTime Developer tool with the possibility to visualize 
execution sequences as basic MSCs. According to [14], the MSC traces are useful for 
visualizing execution sequences that are longer that the bMSC scenarios in the 
original MSC specification and therefore provide a better overview and understanding 
of the system. Executable architecture models were considered helpful in supporting 
communication and education of new team members.  Secondly, automatic synthesis 
of architectural models was considered useful in evolutionary prototyping by 
providing refinements to the model. Designers can modify the synthesized model, 
execute a number of scenarios, and then feed the results back into the domain of MSC 
specifications. The possibility of ObjecTime Developer to automatically generate 
C++ code skeletons was also considered beneficial. 

The motivation of the Moscow synthesizer is similar, however we also use 
automatic synthesis to create executable requirements models. We decided to use 
SDL as the target language because of the better tool support available for SDL.  

 The Waterloo synthesizer produces architectural models with both structural 
and behavioral components [14]. The Waterloo synthesizer derives static process 
structure based on the instances in basic MSC. Similar approach is taken in the 
Moscow synthesizer. Additionally, the Moscow synthesizer derives dynamic process 
structure by considering basic MSCs with instance creation and deletion. When 
synthesizing behavior components, the Waterloo synthesizer considers only message 
input and output events.  The Moscow synthesizer additionally considers timer events 
and supports data flow extensions to the MSC language (variables, message and 
create parameters, actions and local conditions with guards).  

The Concordia University synthesizer [10] translates MSC models into SDL 
specifications. The main motivation of the project is to eliminate validation of SDL 
specifications against the set of MSCs by ensuring consistency between the SDL 
specification and the MSC specification through automatic synthesis [10]. The main 
characteristic of the Concordia synthesizer is that the architecture of the target SDL 
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specification is required as an input to the synthesis algorithm and the question of 
implementability of the given set of MSCs within the given SDL architecture is 
addressed [10]. Thus the Concordia synthesizer produces only behavioral 
components. Composition of basic MSCs using HMSC was not addressed in [10] 
although it was considered as a direction for future work.   

Although the Moscow synthesizer was developed independently, some of the 
technical decisions are similar, e.g. the use of SDL save statement to avoid deadlocks 
in the synthesized SDL models. However the motivation of the Moscow synthesizer is 
somewhat different. The Moscow synthesizer produces both the behavioral and the 
structural components (similar to [14]) which allows to synthesize executable 
requirements models (similar to [11]) as well as executable architecture models [14]. 
Consideration of data flows in the Moscow synthesizer allows more accurate capture 
of the functional requirements as well as more accurate capture of the architectural 
issues. 

 
5. Applications in Reverse Engineering 
 

Legacy software systems were produced with older development methods, 
often involving a blend of higher-level code, and system-level code, with 
heterogeneous languages, architectures, and styles, and often very poorly 
documented.  Up to now, this fact has constituted a “legacy  barrier” to the cost 
effective use of new development technologies [5,2]. 

In order to overcome the “legacy barrier”, there is an increasing demand for 
developing automatic (or semi-automatic) re-engineering methods which will 
significantly reduce the effort involved in creating formal specifications of the base 
software platforms. Cost-effective methods for producing SDL models of the base 
software platform will allow the following benefits (Figure 11): 
•  better understanding of the operation of the legacy software through dynamic 

simulation of the SDL model, which often produces more intuitive results and 
does not involve the costly  use of the target hardware; 

•  automated generation of regression test cases for the base software platform; 
 

Additional benefits can be obtained for using formal methods for new feature 
development (Figure 12): 
•  analysis and validation of the formal specifications of the new features built on 

top of the SDL model of the base software platform; 
•  feature interaction analysis including existing and new features; 
•  automated generation of  test cases for new features; 
•  automatic generation of implementations of the new features.  
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5.1. Dynamic scenario-based approach to re-engineering 
 

In this section we describe our methodology of dynamic scenario-based re-
engineering of legacy telecommunications systems into a system design model 
expressed in SDL [2]. 

Our approach consists of  
•  placing semantic probes [2] into the legacy code at strategic locations based on 

structural analysis of the code, 
•  selecting key representative scenarios from the regression test database and other 

sources, 
•  executing the scenarios by the legacy code to generate probe sequences, which are 

then converted to MSCs with conditions  and  
•  synthesizing an SDL model from this set of MSCs using the Moscow Synthesizer 

Tool  [4]. 
This process is repeated until the SDL design model satisfies certain validity 

constraints [2]. This SDL model is then used to assess and improve the quality and 
coverage of legacy system tests, including regression tests.  The approach may be 
used to re-engineer and re-test legacy code from a black-box (environment), white-
box (source code), or grey-box (collaborations among subsystems) point of view [2]. 
 
5.1.1. Overview 
 

Dynamic scenario-based re-engineering of legacy software into SDL models is 
a process, where an SDL model is synthesized from probe traces [2], collected from 
dynamically executing the instrumented legacy system (see Figure 13,14). More 
specifically, in the process of scenario-based re-engineering, the SDL model is 
synthesized from a higher-level representation - MSC model which is abstracted from 
probe traces.  The execution is driven by a test suite [2].  

The enabling technology for our dynamic scenario-based re-engineering 
process is automatic synthesis of SDL models from a set of MSCs [4]. So far 
automatic synthesis of SDL models from MSC was considered only as a forward 
engineering technology (see Section 3). In our dynamic scenario-based re-engineering 
process we exploit the duality of MSCs as both a requirements capturing language 
and a trace description language which allows us to treat probe traces as requirements 
for the SDL model. 

Our re-engineering methodology is an iterative process, consisting of the 
following four phases.  
1. Preparation 
2. Dynamic collection of probe traces 
3. Synthesis of SDL model 
4. Investigation of the SDL model 

Each phase involves a few steps. Iterations are controlled by validity criteria, 
which are checked during the last phase.  An overview of all steps of the methodology 
is shown in Figure 13,14. In Figure 14 the methodology is presented as a dataflow 
diagram. Important artifacts are represented as rectangles; methodology steps (sub-
processes) are represented by ovals. The main artifacts of our re-engineering process 
are highlighted.  Lines in Figure 16 represent flows of data, which determine the 
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sequence of methodology steps. A detailed description of methodology steps is 
contained in the next section. 
 
5.1.2.  Preparation phase 
 
This aim of this phase is to develop a probe placement strategy and select the set of 
scenarios which will drive execution of the instrumented system and resulting probe 
trace capture.   
 
Step 1. Analyze code. This step uses well-known methods of  static structural 
analysis to select probe placements. Two models of software can be used as 
guidelines for probe placement - the architectural model of the system (major 
components and their relationships) and the call graph of the system [3].  The call 
graph of the system should identify external interfaces of the system (usually - system 
calls of the target operating system, or assembly inline code). 
 
Step 2. Select modeling viewpoint. Our approach may be used to re-engineer and re-
test legacy code from a black-box (environment), white-box (core code), or grey-box 
(collaborations among subsystems) point of view. Viewpoint determines the structure 
of the resulting SDL model.  
 
Step 3. Set coverage goal and select probes. At this step we finalize probe placement 
by selecting particular locations in the source code of the system where probes are to 
be placed, and defining the format of the information generated by each probe. By 
selecting the coverage goal we control the level of details in traces and thus determine 
the external interface of the model. The external interface of the model is determined 
in terms of locations on the architectural model of the system and the call graph, such 
that probes register desired events and collect desired data. 

Semantic probing [2] is assumed. Coverage requirement is not phrased in 
terms of syntactic entities such as statements or branches, but in terms of semantic 
entities, namely equivalence classes of program behavior [2]. These equivalence 
classes of program behavior are determined solely from the system design. Probe 
traces obtained by executing instrumented code can be related directly to the system 
design. Inspection of probe traces may drive modification of semantic probes and thus 
lead to further iterations of the re-engineering process. 
 
Step 4. Collect known primary scenarios + regression tests. The dynamic capture 
of probe traces is driven by the test suite. We suggest that the (legacy) regression test 
suite be used to drive the first iteration of scenario-based methodology.  

We start our iterative re-engineering process with regression tests. Regression 
tests consist of a blend of conformance tests (usually success paths and therefore low-
yield), primary scenarios (low-yield), and a few known important secondary scenarios 
(moderate to high yield). We continue with additional functional (primary) scenarios 
as required to improve the semantic capture of our SDL model. As our iterations 
converge, we are more interested in secondary higher-yield scenarios. Discussion of 
the yield of scenarios with respect to requirements validation was presented in Section 
4.1. 
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5.1.3.  Dynamic collection of probe traces 
 
The aim of this phase is to capture the set of probe traces, which correspond to the 
probe placement strategy and selected scenarios. 
 
Step 5. Instrument legacy. Suitable probing infrastructure for generation and 
collection of probe traces needs to be established. Probes need to be inserted into the 
source code according to the placement strategy. 
 
Step 6.  Run legacy code to generate probe traces. The legacy system needs to be 
built and executed on a test suite. The target or simulated environment together with 
the existing testing infrastructure are used. The result of this step is a collection of 
probe traces. Another result of this step is the measurement of probe coverage of the 
system by the current test suite.  
 
5.1.4. Synthesis of SDL model 
 
This is the key phase in our methodology. The aim of this phase is to synthesize an 
SDL model of the legacy system. 
 
Step 7. Translate probe traces into event-oriented MSCs. This step was introduced 
into the methodology in order to separate two different concerns - dynamically 
capturing scenarios from legacy and synthesizing SDL models from scenarios. This 
step performs a (simple) translation between traces and MSC. This step is determined 
mostly by the differences between the format of probe traces (as defined at the 
instrumentation step), and the format of input to the synthesizer tool. 
 
Step 8. Add conditions to MSCs. The aim of this step is to identify transaction-like 
sequences of interactions, corresponding to requirement use cases. Then  linear MSCs 
(corresponding to traces) are converted into an MSC model, which corresponds to 
requirement use cases. This is done by inserting conditions [7] into places where 
loops or branching are possible. We are using an extended event-oriented MSC-92 
notation as the input to the MOST-SDL tool [4]. In MSC-96 this corresponds to 
creating an HMSC. 

Adding conditions to MSCs can significantly improve the amount of 
information, contained in MSCs which will lead to synthesis of models with more 
interesting behavior. 
 
Step 9. Synthesize SDL model. This step is done automatically by applying the 
Moscow Synthesizer Tool (MOST-SDL). Synthesis technique was described in 
section 3. A more detailed description is contained in [4]. 

The outputs of this step are the 1) synthesized SDL model; and some 
complexity metrics of the model:  2) number of states in SDL model and 3) non-
determinism metric of the model. The later metric is an indirect termination criteria 
for the re-engineering process. A non-deterministic choice is generated each time 
when two or more input scenarios have different behavior on the same external 
stimulus. In practice this often means that behavior of the system is determined by the 
previous history, but the traces captured during the previous steps do not contain 
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enough data. High values of the non-determinism metric should lead to further 
iterations of the re-engineering process. 
 
5.1.5. Investigation of the synthesized SDL model 
 

The aim of this phase is to check termination criteria by investigating the 
probe coverage and complexity metrics of the synthesized model, including a very 
important non-determinism metric. 
 
Step 10. Terminating criteria. We need to make sure that the generated model 
adequately captures the behavior of the legacy system. This may require several 
iterations of the re-engineering process. Inadequate behavior of the model may be 
caused by at least two factors: 1) some important primary scenario is not captured in 
(legacy) regression tests; 2) an abstracted  interface of the system is incorrectly 
selected (missing probe or incorrectly placed probe).  

A probe can be incorrectly placed when it a) does not correspond to a desired 
behavior equivalence class (e.g. two different probes are placed in the same 
equivalence class); b) probe is placed into correct behavior equivalence class, but is 
placed in an incorrect syntactical place - into a code location which is not executed 
when at least some locations of the desired behavior class are executed (e.g. probe is 
placed into only one branch of a conditional statement).  

In our experience, incorrectly placed probes result in errors in probe coverage. 
Missed probes on input interfaces result in high values of the model non-determinism 
metric. Missed probes on output interfaces result in errors in generated test coverage. 
Thus when the probe coverage, non-determinism metric and generated test coverage 
together are satisfactory the iterations can be terminated. 
 
5.2. Comparison to related approaches 
 

In this section we compare our dynamic scenario-based approach to the so-
called direct re-engineering [1] and the so-called partial re-engineering [17]. 
Schematic representation of the transformations performed by these approaches is 
shown in Figure 15. 
 

Direct re-engineering approach derives SDL model statically from the source 
code by performing semantic-preserving translation [1]. Thus the direct SDL model 
contains at least the same  amount of information as the implementation itself. In fact, 
directly generated SDL models contain on average 8-12 times more information than 
the implementation, because the mapping from a conventional language to SDL is 
divergent, as demonstrated in [1]. In contrast, SDL models which are synthesized 
according to our dynamic scenario-based approach always contains less information 
than the implementation.  

The so-called partial re-engineering [17] is another static approach. It provides an 
interesting alternative to direct re-engineering. According to this approach, only the 
framework of the model is extracted automatically (in [17] a state machine model was 
extracted from a program in C). Extraction of any details of the legacy is controlled 
by the so-called statements map. The statements map contains all different source 
statements (in some canonical form) and their translation into the model statements 
within the automatically generated framework. The statements map is inspected and 
filled-in manually. By default, the source statements are simply skipped, thus 
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resulting in quite abstract models. Thus the statements map controls the precision of 
the extracted model. The statements map is relatively stable to the changes in the 
source code, which makes this approach suitable for evolutionary re-engineering. 

Static approaches have certain advantages over dynamic ones since they are 
independent of (legacy) regression tests, and they usually easier to achieve complete 
semantic coverage of the legacy. Another important advantage is that static 
approaches are independent of the target platform. Static re-engineering techniques in 
general require considerably deeper analysis of source code, and thus are much more 
expensive. The disadvantage of the direct mapping is that it has to handle large 
volumes of base software platform source code, therefore - SDL tools need to handle 
larger SDL models. Partial re-engineering seems quite promising, since it provides a 
balance of effort between expensive automatic static analysis and manual 
modification of the statements map. However, the automatic extraction of the state 
machine framework can be also quite expensive. In [17] cost-efficient extraction of 
the finite state machine framework was made possible because of the incidental use of 
a special notation in the code. This notation was introduced for an unrelated purpose, 
but made extraction of states fairly trivial [17].  

The biggest advantages of dynamic scenario-based approach as compared to direct 
approach, is the flexibility to produce a broad range of distinct models by varying 
input scenarios and probe placement strategies. In general, scenario-based approach 
yields more abstract models, which are free from implementation detail. Thus SDL 
tools could be easier applied to such models. Both kinds of SDL models are trace-
preserving with respect to the traces produced by the test suite. However, a directly 
generated SDL model is capable of producing more traces, than those produced by the 
original test suite, while a scenario-based SDL model is fully defined by the original 
test suite. On the other hand, traces produced by two SDL models have different 
levels of detail.  Traces produced by directly generated SDL model contain all 
implementation detail, plus some additional detail, introduced by the mapping [1]. 
The level of detail of directly generated SDL models can be controlled by selecting 
external interface of the implementation. Traces, produced by scenario-based SDL 
model are expected to contain much less detail. As demonstrated above, the level of 
detail of the scenario-based model is controlled by the probe placement strategy. 
 
 
6. Conclusions 
 

Support for early phases of the development process and support for integration 
with older, legacy software are, in our opinion, two major barriers for wider adoption 
of formal methods in industry. At the early phases, there is “too little” to formalize, 
while on the other hand, at the later phases there is often “too much” to formalize. 
However, early formalization is required because it can enable tool-aided feedback 
and thus allow rapid iterative development. Requirements for an early formalization 
technique include ease of use, low learning curve, very quick turn-around cycle, 
maintainability. It is also beneficial to be able to re-engineer formal models of legacy 
in a cost-efficient way, because it allows to use formal methods for subsequent 
development of new features, as well as to use tools for better validation of the base 
software platform. 

We presented the methodology in which MSC is used as a “front-end” 
specification language and the automatic synthesis technique is applied to hide more 
complex formal specification languages from direct manipulation by users, while still 
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allowing full benefits of formal methods-based CASE tools. MSC language proved to 
be suitable both for the forward and reverse engineering purposes. As a formal 
technique for capturing requirements, MSC satisfies all usability criteria for early 
development phases. On the other hand, MSC are suitable to capture “real” scenarios 
of legacy through collecting probe traces from suitably instrumented source code. 

 We presented our approach to synthesizing executable SDL models from 
scenarios formalized in MSC. As demonstrated in this paper, it turns out that this 
technique provides adequate support for both forward and reverse engineering. 

 We have given a broad overview of our accelerated development 
methodology, based on MSC and SDL, which can be used to significantly improve 
time-to-market in an industrial software development context. In our experience, the 
use of this accelerated development methodology combined with the use of SDL tools 
allows between 20 and 30% speedup in time-to-market for a typical 
telecommunication system. The use of tools in a related project was found to yield a 
20-25% improvement in time-to-market; therefore the estimate above is likely quite 
conservative. 
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