
 1

Automatic Synthesis of SDL from MSC and its Applications in
Forward and Reverse Engineering

Nikolai Mansurov

Department for CASE tools
Institute for System Programming,
25 B. Kommunisticheskaya,
Moscow 109004, Russia
Email: nick@ispras.ru

Abstract

Wider adoption of formal specification languages in industry is impeded by the lack
of support for early development phases and for integration with older, legacy
software. Methodology aimed at improving this situation is presented. The
methodology uses Message Sequence Charts (MSC) as a “front-end” specification
language and systematically applies an automatic synthesis technique to produce
executable specifications in the telecommunications standard Specification and
Description Language (SDL). Applications of the automatic synthesis technique for
both forward and reverse engineering are demonstrated.

Keywords: requirements engineering, formal specifications, synthesis of programs,
use cases, scenarios, MSC, SDL, forward engineering, reverse engineering

1. Introduction

New generation Computer-Aided Software Engineering (CASE) tools based
on Formal Description Techniques (FDTs) are aimed at practical improvements of
software engineering in the telecommunication industry. CASE-based approaches
offer significant improvements in quality, productivity, and time to market [5].
However there exist certain barriers for wider adoption of formal specification
languages in industry. We identify two major barriers – support of early development
phases [8,4] and support for integration with legacy software [17,2].

Design practice at the early phases of the software development process is not
adequately supported by mathematical-based formal methods [8]. Requirements
capture is an iterative and exploratory process. At this phase tentative descriptions of
the system are suggested and frequently modified. In the initial phases of a design,
comprehensive formal specification and verification techniques offer little help to the
designer [8]. They appear to require a level of formality and precision that is not
available yet. In return, only fairly abstract properties may be established. According
to [8] the initial price to be paid is too high, the initial rewards are far too small.

Instead, the so-called use case based methodologies are becoming
predominant in software development [9,16]. Use case based methodologies share
the common way of capturing the customer requirements as scenarios. Message
Sequence Charts (MSC) [7] or Sequence Diagrams of the Unified Modeling
Language (UML) [16] can be used to model use cases. The MSC language is
especially attractive as a formal description technique (FDT) for the early phases of
the software development process because it is well accepted in the
telecommunications industry and has a low learning curve, while at the same time it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357318659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

has a well-defined formal semantics. We believe that significant improvements of the
time-to-market can be gained by expanding the use of FDT-based CASE tools to the
early phases of the software development process [5,4,8].

Apart from the support for the early design phases, there is another important
issue, which needs to be addressed in order for the formal methods-based CASE tools
to become common practice in industrial software engineering. Usually, formal
methodologies are only applicable to projects, in which the system is developed
completely from scratch. However, most projects in the industrial context involve
older, “legacy” software. This software is being maintained, ported to new hardware
and software platforms, updated by developing new features, or reused in new
projects. For formal methods to be adopted in such projects, it is necessary to provide
cost-effective methods for integrating CASE-produced components with “legacy”
base software [1]. Legacy software systems were produced with older development
methods, often involving a blend of higher-level code, and system-level code, with
heterogeneous languages, architectures, and styles, and are often very poorly
documented. Up to now, this fact has constituted a “legacy barrier” to the cost
effective use of formal methods-based development technologies and tools [2,17]. In
order to overcome the “legacy barrier”, there is an increasing demand for developing
cost-efficient re-engineering methods, which will significantly reduce the effort
involved in creating formal specifications of the base software platforms.

In this paper, we describe our experience in addressing methodological issues
for wider adoption of formal methods and the corresponding FDT-based CASE tools
in telecommunications industry. We have selected MSC as the “interface” formal
method, intended for use by humans. An automatic synthesis technique aimed at
producing executable specifications in another telecommunications standard formal
language called Specification and Description Language (SDL) [6] was developed.
We discuss methodological issues of using MSCs and synthesized SDL specifications
at both early and later phases of the development process. Applications of the
synthesis techniques for re-engineering formal specifications of base software [2] are
discussed in a separate section.

The rest of the paper has the following organization. Section 2 contains a brief
introduction into MSC, describes some data extensions and outlines our approach to
formal modeling of requirements at the very early phases of software development.
Section 3 presents the key concepts of the synthesis algorithm. Section 4 describes
applications of synthesis in forward engineering. We describe high-yield requirements
validation and architecture validation techniques. We also provide comparison of
several related approaches to using synthesis in forward engineering. In Section 5
applications of synthesis in reverse engineering are discussed. We present our
dynamic scenario-based approach to re-engineering of formal SDL specifications of
legacy telecommunications software. We provide comparison to some related
approaches to re-engineering formal specifications. Section 6 concludes the
presentation.

2. MSC as a “front-end” formal specification language

We suggest using MSC [7] as a “front-end” formal specification language of an
FDT-based CASE tool. Requirements for a “front-end” formal specification language
include ease of use, low learning curve, very quick turn-around cycle, capability for
rapid modification and maintenance of the specification. On the other hand, the CASE
tool should support one or several “back-end” formal specification languages

 3

amendable for formal verification, generation of test cases, generation of application
code, etc. “Back-end” formal specification languages have more comprehensive
requirements on the depth, and mathematical precision of description. SDL [6] is an
illustration of a “back-end” specification language.

Attempts to apply a “back-end” specification language at the early phases of
development will probably create an impediment. We suggest using automatic
synthesis to produce “back-end” specifications from “front-end” specifications at the
early phases of development. We believe that this methodological step is essential to
utilize the latent capacity of formal methods to improve time-to-market in an
industrial context.

In this paper we explore a combination of MSC as the “front-end” formal
specification language and SDL – as it’s "back-end". Obviously, other combinations
of “front-end” and “back-end” specification languages are possible. Separation of a
“front-end” specification language allows utilizing several “back-end” specification
languages in order to increase the capabilities of an integrated set of tools.

2.1. Overview of MSC language

This section provides a brief overview of Message Sequence Charts
specification language. Complete definition is contained in [7]. Note, that the MSC
language used in this paper is based on the so-called MSC-92 standard, to which
certain extensions were added. The current standard, the so-called MSC-2000
language defines several powerful constructs, which are not covered here.
 The MSC language has a graphical notation. There are two kinds of MSC
diagrams: Basic Message Sequence Charts (bMSC), and High-Level Message
Sequence Charts (HMSC). A textual representation of MSC specifications is also
available [7].
 Let’s consider an illustrative basic MSC (see Figure 1). A basic MSC diagram
describes behavior of several instances. Each instance is graphically represented as a
vertical line (called instance axis). Each instance has an instance head, which contains
the name of the instance. An instance axis corresponds to the timeline of the instance.
Instances exchange messages, which is shown as arrows between two instances, or
between an instance and the frame of the diagram. An instance can be created by
another instance, which is shown as a dashed arrow pointing at the instance head of
the child instance.

Message sequence charts can use timers. Figure 1 shows how timer T is set by
instance c, and then expires, resulting in a timeout. An instance can also reset a timer
(not shown at Figure 1).

A basic MSC describes events for each instance. Events on each instance axis are
ordered: if the first event occurs higher on the instance axis than the second one, than
the first event occurs “before” the second one. Related pairs of message output and
message input introduce another order: message output occurs “before” the
corresponding message input. Semantics of an MSC specification is a (transitive)
partial ordering of the events for all instances in all basic MSC diagrams.

The MSC standard [7] has syntax for some data-related aspects of
specifications, but does not describe any semantics for them. Data-related elements of
MSC specifications include parameters of messages, parameters of create events,
parameters of timers and actions. Section 2.2 contains a brief description of our
extensions of the data handling aspects of MSC specifications.

 4

 Composition of basic MSCs is described by conditions. Composition of basic
MSCs is represented graphically using HMSC diagrams. An HMSC diagram contains
references to basic MSC diagrams and flowlines (see Figure 2).

2.2. Data Extensions to MSC

In order to allow more power to specification of scenarios, we have introduced
some rather pragmatic extensions to the data handling capabilities of the MSC-92
language [4]. Note, that the current MSC standard, the so-called MSC-2000, defines
advanced data concepts. For discussion of data aspects in the new MSC standard see
[18].

Our motivation is simple enough: use the semantics of the data handling
operations from the “back-end’ language (for example SDL [6]) and use the automatic
synthesis to transform data handling from the “front-end” MSC specifications into the
“back-end” specification. Therefore, the semantics of our data extensions is defined
by the automatic synthesis algorithm.

1. Variable definitions. We allow to define variables of different types.

Variable definition is placed into a text symbol in any MSC diagram. A local
copy of each variable is created for each actor. Simplified SDL syntax is used
for variable definitions:

<variable definition> ::= dcl <var_name> <type>;

2. Actions. We allow MSC action symbols to contain operations on local
variables. Simplified SDL syntax is used for actions:

<assignment> ::= <var_name> := <expr>
<function call> ::= <func> (<expr1>,…,<exprn>)

3. Message parameters. We allow messages to have parameters. We restrict the
syntax of message parameters to variable names.

4. Create parameters. Actors are allowed to have parameters which are passed
from the parent instance to the child instance during the create event. We
restrict the syntax of create parameters to variable names.

5. Local conditions. We allow to specify local decisions using boolean
expressions over instance variables. Syntactically, local decisions are specified
as local conditions on the axis of the corresponding instance. The boolean
expression is written in a comment box attached to the local condition.
Semantics of such condition is that the subsequent events are considered only
when the value of the boolean expression is true. Boolean expressions are
restricted to the following syntax:

<boolean expression> ::= <var_name> <op> <var_name>

<var_name> <op> <const>

Alternative sequences of events can be specified in a different MSC using a
local condition with the same name and a different guard. All guards must be
mutually exclusive. Decision is local to the instance with a local condition.

 5

6. Timers. Subsequent set and timeout events on an MSC instance axis may be
used to specify a delay during use case execution. In an abnormal scenario
such delay may specify an expired timeout, which causes an error. Timers
with parameters [7] are not supported.

3. Synthesis of Executable SDL Specifications from MSC

 In this section we present our technique for synthesis of “back-end” SDL
specifications from scenarios formalized in a “front-end” MSC. We describe the key
concepts of the synthesis algorithm, and provide an illustrative example. More
detailed description is presented in [19].

3.1. Synthesis Algorithm

Our synthesis algorithm is based on the concept of event automata. An event

automaton is a finite automaton corresponding to an MSC instance, such that the
alphabet of the input symbols for the automaton is the same as the alphabet of MSC
events of the given MSC instance. Our synthesis algorithm constructs a particular
kind of event automata, which we call MSC slices. An MSC slice (corresponding to
an MSC instance i) is an event automaton, accepting all valid event sequences for the
instance i.

In this paper we distinguish between three categories of MSC events: input, active
and idle events. Note, that an idle event is not defined in [7]. An idle event is a trivial
(empty) event, which was added to simplify algorithm descriptions.
• input events require synchronization with other instances, decision about event is

taken by another instance:
- input of message m by instance i: in(i,m)
- create instance i by instance j: create(i,j)
- timeout of timer t: timeout(t)

• active events do not require synchronization with other instances, decision is local
to the current instance:
- output of message m by instance i: out(i,m);
- action a: action(a);
- set timer t for duration d: set(t,d);
- reset timer t: reset(t);
- stop action: stop;
- local condition over variable v with condition c: check(v, c);

The following algorithm can be used to construct MSC slices:

1. initial states of the event automaton correspond to symbols at HMSC graph with
idle events;

2. for each basic MSC a (sub)sequence of states is created, corresponding to the
sequence of events involving the instance i;

3. each MSC reference is replaced by the corresponding (sub)sequence of states;
4. the start symbol of the event automaton corresponds to the HMSC start symbol;

Our synthesis algorithm consists of the following steps [4]:

1. Integrate HMSC model
2. Construct MSC slices
3. Make MSC slices deterministic

 6

4. Minimize MSC slices
5. Generate SDL behavior
6. Generate SDL structure

3.2. Example

Let’s consider a simple MSC model shown in Figure 3. It contains two use
cases Wait and Reply (each of them has only one scenario). We assume sequential
composition rule. Instance R (receiver) corresponds to the system actor and instance S
(sender) is an external actor.

Sender S initiates both use cases. Use case Wait is started by sender S sending
message X. Receiver R has to wait for an unspecified period of time. Use case Reply
is started by sender S sending message Y. Receiver R has to respond with message W.

Figure 4 illustrates our algorithm for constructing an MSC slice for instance S.
The first step of the algorithm constructs an event automaton from the HMSC graph
(step 1). Then an event automaton is constructed from the instance S at MSC Wait
(step 2). This automaton has only one transition, labeled with an active event out(x,r).
Then the corresponding transition in the initial event automaton is substituted for the
newly created event automaton for instance S from MSC Wait (step 3). The following
two steps (steps 4 and 5) process instance S from MSC Reply. The resulting MSC
slice is presented in the bottom right corner of Figure 4. It is labeled non-deterministic
event automaton (NEA).

Figure 5 illustrates subsequent steps of our synthesis process. The non-
deterministic MSC slice for instance S (NEA S) is made deterministic (in the event
automata sense) and minimized (DEA S). An SDL graph is then generated (process
S). Figure 6 illustrates the generated SDL structure for our example.

4. Applications in Forward Engineering

4.1. High Yield Requirements Validation

In this section we describe the use of synthesized SDL models for
requirements validation. Requirements validation is a systematic approach to detect
faults in the customer requirements [5]. Requirements validation is a form of testing
applied to an early phase. Requirements validation is an iterative process consisting of
the following steps (see Figure 7):

1. Formalize requirements in the form of use case scenarios
2. Synthesize executable requirements model from scenarios
3. Create validation scenarios
4. Run validation scenarios through the requirements model
5. Validate the execution sequence of each validation scenario to:

5.1. Accept the validation scenario. In this case the validation scenario can
be included into requirements use cases

5.2. Reject the validation scenario. In this case the initial customer
requirements contain a fault. E.g. the initial requirements can be
inconsistent or incomplete. The rejected validation scenario has to be
transformed into a use case and the initial requirements need to be
updated by including the new use case and removing any existing
inconsistencies.

 7

6. Check termination criteria and start with a new iteration, if necessary
(starting from step 2).

High-yield requirements validation approach is being developed by

Prof. R. Probert at the Telecommunications Software Engineering Research Group
(TSERG) of the University of Ottawa [5]. Same considerations are applicable to
requirements validation as to testing: one cannot test a program to guarantee that it is
error-free. Since exhaustive testing is out of the question, we must maximize yield on
the testing investment (i.e., maximize the number of errors found by a finite number
of test cases. Yield of a validation scenario refers to the number of defects detected at
by a particular scenario. An alternative definition of yield can refer to the amount of
risk removed by the scenario. Risk refers to the “cost” associated with a failure. By
definition, Risk R = PF * CF (where PF is the probability of failure; CF is the cost
of failure).

Let us introduce some terminology for discussing validation scenarios. We
make a distinction between primary scenarios (normal, everything works as expected,
success paths) and secondary scenarios (alternative, exceptional, race conditions,
collisions, known pathological sequences of client/system interactions, fail paths). All
functional scenarios (scenarios which describe how a user achieves a particular
service or capability) are primary, scenarios which describe how he/she was thwarted
are secondary. Essential scenarios, which are desired by a customer, are primary.
Primary scenarios are denoted “low-yield” since they describe situations and
interactions, which are generally well understood. The yield (detected or anticipated
error count) is therefore low. Secondary scenarios on the other hand are denoted
moderate or high-yield, since they describe situations and interactions, which are
generally not well documented, and therefore are not well understood. The associated
yield for such scenarios is high because designer choices are likely to differ from
client choices, or to be non-deterministic.

The objective of the high-yield requirements validation is to focus the effort
on the elements with highest risk. Low-yield scenario is not likely to detect a defect by
causing an observable failure because such scenarios are in general well understood
by both the customers and the developers. On the other hand, high-yield scenarios
have a high probability of detecting a defect. High-yield scenarios correspond to the
secondary scenarios, e.g. exceptional behavior (error-handling behavior path).
Usually, these scenarios are less well understood by the developers.
 In [4] we suggested to automatically synthesize an SDL requirements model at
the requirements analysis phase (Figure 7). Automatic synthesis of SDL requirements
models from MSC has the following benefits:
• MSC modeling allows high-yield requirements validation by simulation of SDL

models using high-yield scenarios
• MSC models can be developed concurrently while architecture integrity can still

be maintained via iterative synthesis
• Regression testing is eliminated because accepted validation scenarios are added

to the set of validation scenarios and the synthesized model is by construction
correct with respect to the previously accepted behavior

• Early fault detection can be performed by the synthesizer
• Different compositions of use cases can be explored (single, concurrent, etc.)
• Slices of the MSC model can be created, explored and reused

The synthesized requirements model (SRM) can be used to generate additional
scenarios, which are longer than the original validation and therefore provide better

 8

understanding of the requirements [14]. Simulation of the synthesized requirements
model allows to quickly discover inconsistencies and incompleteness of the
requirements because the synthesized model will generate many variations of the
original scenarios, including abnormal behavior. Such scenarios are likely to be less
well understood by the developers.

4.2. Architecture Validation

Automatic synthesis can also be used at the system analysis phase. During this
phase the architecture of the system is defined and system scenarios for each
architecture component are produced (often by independent development teams)
(Figure 8). Formally, the input at this phase is a set of system scenarios. A system
scenario is a refinement of the corresponding scenario from the requirements analysis
phase, capturing the interaction of the architecture components. Structural information
available in the system scenarios consists of the set of external actors and the
architecture components. In the MSC model architecture components are represented
as distinct instances. Behavioral information is available in the form of functional
scenarios representing the typical interactions between the architectural components
as well as between external actors and the architectural components. Additional
behavioral information can be captured in the form of the data flows over the system
scenarios. The automatically synthesized model created at this phase is called the
synthesized architecture model (SAM). SDL tools can be used to explore the SAM in
order to validate both the system scenarios and the architecture model (Figure 8).
Architecture validation process is a direct continuation of requirements validation
process described in section 4.1.

Additionally, automatic synthesis performs integration of the model from multiple
views produced by independent development teams. Behavior of each process of the
SDL model is synthesized by considering all interactions involving the corresponding
architecture component in all scenarios. Final integration of the model occurs during
synthesis of the SDL structure. Integration process reproduces architectural
components of the system and their relations by deriving SDL blocks and channels
from system scenarios. Blocks of the SDL system are synthesized from the instances
in all system scenarios. Channels between the synthesized blocks are derived from
interactions between the corresponding instances in all scenarios. Automatically
derived relationships between components can be compared to the intended ones,
which are described in the architecture model. In our experience inspection of the
synthesized architecture model is helpful in uncovering system analysis faults.
 Vertical decomposition of MSC models can be used in conjunction with our
synthesis technique to seamlessly refine requirements models into architecture
models. Figure 9 demonstrates this approach. In use case Reply from example at
Figure 3, instance R is decomposed into three instances: R1, R2, R3. Message flow
between decomposition instances has to be compatible with the message flow at the
parent MSC diagram. Additionally, two alternative behavior paths are now specified
for the Reply use case. Alternatives are specified using MSC condition with same
name. The synthesized architectural SDL model is shown at Figure 10.

4.3. Comparison to related work

Automatic synthesis of executable models from scenarios is an active research

field. Much work has been done on the subject of translating MSC to other languages

 9

[14,10]. Synthesizing SDL specifications from MSC is addressed in [10]. Survey of
research on a more general subject of protocol synthesis is available in [13].

Methodological issues of using MSC for early development phases are
considered in [8]. This paper describes synthesis of formal “back-end” specifications
in Promela language aimed at formal requirements verification. The possibility of
synthesizing executable specifications in the form of finite state machines was
mentioned but not considered as a primary goal of the project.

Methodological issues of generating a formal executable specification from a
set of use cases are addressed in [11]. This paper summarizes experience in manually
developing a LOTOS specification of an industrial telecommunications standard on
the basis of use cases provided by customers. LOTOS tools were used to validate the
specification and generate all original use cases as well as additional ones. The main
motivation of the project was to use LOTOS tools to analyze and maintain a set of use
cases. The benefit of using the formal executable specification for prototyping
purposes was emphasized.

The University of Montreal synthesizer [15] translates scenarios with timing
constraints into timed automata. The main motivation of the project is to provide
formalization of scenarios and ensure the accuracy of requirements analysis.

The Waterloo synthesizer [14] translates MSC models into ROOM
specifications. The main motivation of this project is to create an executable
architectural model supporting design phases. Firstly, an executable architecture
model was considered useful for prototyping purposes. Synthesized ROOM models
can be simulated by ObjecTime Developer tool with the possibility to visualize
execution sequences as basic MSCs. According to [14], the MSC traces are useful for
visualizing execution sequences that are longer that the bMSC scenarios in the
original MSC specification and therefore provide a better overview and understanding
of the system. Executable architecture models were considered helpful in supporting
communication and education of new team members. Secondly, automatic synthesis
of architectural models was considered useful in evolutionary prototyping by
providing refinements to the model. Designers can modify the synthesized model,
execute a number of scenarios, and then feed the results back into the domain of MSC
specifications. The possibility of ObjecTime Developer to automatically generate
C++ code skeletons was also considered beneficial.

The motivation of the Moscow synthesizer is similar, however we also use
automatic synthesis to create executable requirements models. We decided to use
SDL as the target language because of the better tool support available for SDL.

 The Waterloo synthesizer produces architectural models with both structural
and behavioral components [14]. The Waterloo synthesizer derives static process
structure based on the instances in basic MSC. Similar approach is taken in the
Moscow synthesizer. Additionally, the Moscow synthesizer derives dynamic process
structure by considering basic MSCs with instance creation and deletion. When
synthesizing behavior components, the Waterloo synthesizer considers only message
input and output events. The Moscow synthesizer additionally considers timer events
and supports data flow extensions to the MSC language (variables, message and
create parameters, actions and local conditions with guards).

The Concordia University synthesizer [10] translates MSC models into SDL
specifications. The main motivation of the project is to eliminate validation of SDL
specifications against the set of MSCs by ensuring consistency between the SDL
specification and the MSC specification through automatic synthesis [10]. The main
characteristic of the Concordia synthesizer is that the architecture of the target SDL

 10

specification is required as an input to the synthesis algorithm and the question of
implementability of the given set of MSCs within the given SDL architecture is
addressed [10]. Thus the Concordia synthesizer produces only behavioral
components. Composition of basic MSCs using HMSC was not addressed in [10]
although it was considered as a direction for future work.

Although the Moscow synthesizer was developed independently, some of the
technical decisions are similar, e.g. the use of SDL save statement to avoid deadlocks
in the synthesized SDL models. However the motivation of the Moscow synthesizer is
somewhat different. The Moscow synthesizer produces both the behavioral and the
structural components (similar to [14]) which allows to synthesize executable
requirements models (similar to [11]) as well as executable architecture models [14].
Consideration of data flows in the Moscow synthesizer allows more accurate capture
of the functional requirements as well as more accurate capture of the architectural
issues.

5. Applications in Reverse Engineering

Legacy software systems were produced with older development methods,
often involving a blend of higher-level code, and system-level code, with
heterogeneous languages, architectures, and styles, and often very poorly
documented. Up to now, this fact has constituted a “legacy barrier” to the cost
effective use of new development technologies [5,2].

In order to overcome the “legacy barrier”, there is an increasing demand for
developing automatic (or semi-automatic) re-engineering methods which will
significantly reduce the effort involved in creating formal specifications of the base
software platforms. Cost-effective methods for producing SDL models of the base
software platform will allow the following benefits (Figure 11):
• better understanding of the operation of the legacy software through dynamic

simulation of the SDL model, which often produces more intuitive results and
does not involve the costly use of the target hardware;

• automated generation of regression test cases for the base software platform;

Additional benefits can be obtained for using formal methods for new feature
development (Figure 12):
• analysis and validation of the formal specifications of the new features built on

top of the SDL model of the base software platform;
• feature interaction analysis including existing and new features;
• automated generation of test cases for new features;
• automatic generation of implementations of the new features.

 11

5.1. Dynamic scenario-based approach to re-engineering

In this section we describe our methodology of dynamic scenario-based re-
engineering of legacy telecommunications systems into a system design model
expressed in SDL [2].

Our approach consists of
• placing semantic probes [2] into the legacy code at strategic locations based on

structural analysis of the code,
• selecting key representative scenarios from the regression test database and other

sources,
• executing the scenarios by the legacy code to generate probe sequences, which are

then converted to MSCs with conditions and
• synthesizing an SDL model from this set of MSCs using the Moscow Synthesizer

Tool [4].
This process is repeated until the SDL design model satisfies certain validity

constraints [2]. This SDL model is then used to assess and improve the quality and
coverage of legacy system tests, including regression tests. The approach may be
used to re-engineer and re-test legacy code from a black-box (environment), white-
box (source code), or grey-box (collaborations among subsystems) point of view [2].

5.1.1. Overview

Dynamic scenario-based re-engineering of legacy software into SDL models is
a process, where an SDL model is synthesized from probe traces [2], collected from
dynamically executing the instrumented legacy system (see Figure 13,14). More
specifically, in the process of scenario-based re-engineering, the SDL model is
synthesized from a higher-level representation - MSC model which is abstracted from
probe traces. The execution is driven by a test suite [2].

The enabling technology for our dynamic scenario-based re-engineering
process is automatic synthesis of SDL models from a set of MSCs [4]. So far
automatic synthesis of SDL models from MSC was considered only as a forward
engineering technology (see Section 3). In our dynamic scenario-based re-engineering
process we exploit the duality of MSCs as both a requirements capturing language
and a trace description language which allows us to treat probe traces as requirements
for the SDL model.

Our re-engineering methodology is an iterative process, consisting of the
following four phases.
1. Preparation
2. Dynamic collection of probe traces
3. Synthesis of SDL model
4. Investigation of the SDL model

Each phase involves a few steps. Iterations are controlled by validity criteria,
which are checked during the last phase. An overview of all steps of the methodology
is shown in Figure 13,14. In Figure 14 the methodology is presented as a dataflow
diagram. Important artifacts are represented as rectangles; methodology steps (sub-
processes) are represented by ovals. The main artifacts of our re-engineering process
are highlighted. Lines in Figure 16 represent flows of data, which determine the

 12

sequence of methodology steps. A detailed description of methodology steps is
contained in the next section.

5.1.2. Preparation phase

This aim of this phase is to develop a probe placement strategy and select the set of
scenarios which will drive execution of the instrumented system and resulting probe
trace capture.

Step 1. Analyze code. This step uses well-known methods of static structural
analysis to select probe placements. Two models of software can be used as
guidelines for probe placement - the architectural model of the system (major
components and their relationships) and the call graph of the system [3]. The call
graph of the system should identify external interfaces of the system (usually - system
calls of the target operating system, or assembly inline code).

Step 2. Select modeling viewpoint. Our approach may be used to re-engineer and re-
test legacy code from a black-box (environment), white-box (core code), or grey-box
(collaborations among subsystems) point of view. Viewpoint determines the structure
of the resulting SDL model.

Step 3. Set coverage goal and select probes. At this step we finalize probe placement
by selecting particular locations in the source code of the system where probes are to
be placed, and defining the format of the information generated by each probe. By
selecting the coverage goal we control the level of details in traces and thus determine
the external interface of the model. The external interface of the model is determined
in terms of locations on the architectural model of the system and the call graph, such
that probes register desired events and collect desired data.

Semantic probing [2] is assumed. Coverage requirement is not phrased in
terms of syntactic entities such as statements or branches, but in terms of semantic
entities, namely equivalence classes of program behavior [2]. These equivalence
classes of program behavior are determined solely from the system design. Probe
traces obtained by executing instrumented code can be related directly to the system
design. Inspection of probe traces may drive modification of semantic probes and thus
lead to further iterations of the re-engineering process.

Step 4. Collect known primary scenarios + regression tests. The dynamic capture
of probe traces is driven by the test suite. We suggest that the (legacy) regression test
suite be used to drive the first iteration of scenario-based methodology.

We start our iterative re-engineering process with regression tests. Regression
tests consist of a blend of conformance tests (usually success paths and therefore low-
yield), primary scenarios (low-yield), and a few known important secondary scenarios
(moderate to high yield). We continue with additional functional (primary) scenarios
as required to improve the semantic capture of our SDL model. As our iterations
converge, we are more interested in secondary higher-yield scenarios. Discussion of
the yield of scenarios with respect to requirements validation was presented in Section
4.1.

 13

5.1.3. Dynamic collection of probe traces

The aim of this phase is to capture the set of probe traces, which correspond to the
probe placement strategy and selected scenarios.

Step 5. Instrument legacy. Suitable probing infrastructure for generation and
collection of probe traces needs to be established. Probes need to be inserted into the
source code according to the placement strategy.

Step 6. Run legacy code to generate probe traces. The legacy system needs to be
built and executed on a test suite. The target or simulated environment together with
the existing testing infrastructure are used. The result of this step is a collection of
probe traces. Another result of this step is the measurement of probe coverage of the
system by the current test suite.

5.1.4. Synthesis of SDL model

This is the key phase in our methodology. The aim of this phase is to synthesize an
SDL model of the legacy system.

Step 7. Translate probe traces into event-oriented MSCs. This step was introduced
into the methodology in order to separate two different concerns - dynamically
capturing scenarios from legacy and synthesizing SDL models from scenarios. This
step performs a (simple) translation between traces and MSC. This step is determined
mostly by the differences between the format of probe traces (as defined at the
instrumentation step), and the format of input to the synthesizer tool.

Step 8. Add conditions to MSCs. The aim of this step is to identify transaction-like
sequences of interactions, corresponding to requirement use cases. Then linear MSCs
(corresponding to traces) are converted into an MSC model, which corresponds to
requirement use cases. This is done by inserting conditions [7] into places where
loops or branching are possible. We are using an extended event-oriented MSC-92
notation as the input to the MOST-SDL tool [4]. In MSC-96 this corresponds to
creating an HMSC.

Adding conditions to MSCs can significantly improve the amount of
information, contained in MSCs which will lead to synthesis of models with more
interesting behavior.

Step 9. Synthesize SDL model. This step is done automatically by applying the
Moscow Synthesizer Tool (MOST-SDL). Synthesis technique was described in
section 3. A more detailed description is contained in [4].

The outputs of this step are the 1) synthesized SDL model; and some
complexity metrics of the model: 2) number of states in SDL model and 3) non-
determinism metric of the model. The later metric is an indirect termination criteria
for the re-engineering process. A non-deterministic choice is generated each time
when two or more input scenarios have different behavior on the same external
stimulus. In practice this often means that behavior of the system is determined by the
previous history, but the traces captured during the previous steps do not contain

 14

enough data. High values of the non-determinism metric should lead to further
iterations of the re-engineering process.

5.1.5. Investigation of the synthesized SDL model

The aim of this phase is to check termination criteria by investigating the
probe coverage and complexity metrics of the synthesized model, including a very
important non-determinism metric.

Step 10. Terminating criteria. We need to make sure that the generated model
adequately captures the behavior of the legacy system. This may require several
iterations of the re-engineering process. Inadequate behavior of the model may be
caused by at least two factors: 1) some important primary scenario is not captured in
(legacy) regression tests; 2) an abstracted interface of the system is incorrectly
selected (missing probe or incorrectly placed probe).

A probe can be incorrectly placed when it a) does not correspond to a desired
behavior equivalence class (e.g. two different probes are placed in the same
equivalence class); b) probe is placed into correct behavior equivalence class, but is
placed in an incorrect syntactical place - into a code location which is not executed
when at least some locations of the desired behavior class are executed (e.g. probe is
placed into only one branch of a conditional statement).

In our experience, incorrectly placed probes result in errors in probe coverage.
Missed probes on input interfaces result in high values of the model non-determinism
metric. Missed probes on output interfaces result in errors in generated test coverage.
Thus when the probe coverage, non-determinism metric and generated test coverage
together are satisfactory the iterations can be terminated.

5.2. Comparison to related approaches

In this section we compare our dynamic scenario-based approach to the so-
called direct re-engineering [1] and the so-called partial re-engineering [17].
Schematic representation of the transformations performed by these approaches is
shown in Figure 15.

Direct re-engineering approach derives SDL model statically from the source
code by performing semantic-preserving translation [1]. Thus the direct SDL model
contains at least the same amount of information as the implementation itself. In fact,
directly generated SDL models contain on average 8-12 times more information than
the implementation, because the mapping from a conventional language to SDL is
divergent, as demonstrated in [1]. In contrast, SDL models which are synthesized
according to our dynamic scenario-based approach always contains less information
than the implementation.

The so-called partial re-engineering [17] is another static approach. It provides an
interesting alternative to direct re-engineering. According to this approach, only the
framework of the model is extracted automatically (in [17] a state machine model was
extracted from a program in C). Extraction of any details of the legacy is controlled
by the so-called statements map. The statements map contains all different source
statements (in some canonical form) and their translation into the model statements
within the automatically generated framework. The statements map is inspected and
filled-in manually. By default, the source statements are simply skipped, thus

 15

resulting in quite abstract models. Thus the statements map controls the precision of
the extracted model. The statements map is relatively stable to the changes in the
source code, which makes this approach suitable for evolutionary re-engineering.

Static approaches have certain advantages over dynamic ones since they are
independent of (legacy) regression tests, and they usually easier to achieve complete
semantic coverage of the legacy. Another important advantage is that static
approaches are independent of the target platform. Static re-engineering techniques in
general require considerably deeper analysis of source code, and thus are much more
expensive. The disadvantage of the direct mapping is that it has to handle large
volumes of base software platform source code, therefore - SDL tools need to handle
larger SDL models. Partial re-engineering seems quite promising, since it provides a
balance of effort between expensive automatic static analysis and manual
modification of the statements map. However, the automatic extraction of the state
machine framework can be also quite expensive. In [17] cost-efficient extraction of
the finite state machine framework was made possible because of the incidental use of
a special notation in the code. This notation was introduced for an unrelated purpose,
but made extraction of states fairly trivial [17].

The biggest advantages of dynamic scenario-based approach as compared to direct
approach, is the flexibility to produce a broad range of distinct models by varying
input scenarios and probe placement strategies. In general, scenario-based approach
yields more abstract models, which are free from implementation detail. Thus SDL
tools could be easier applied to such models. Both kinds of SDL models are trace-
preserving with respect to the traces produced by the test suite. However, a directly
generated SDL model is capable of producing more traces, than those produced by the
original test suite, while a scenario-based SDL model is fully defined by the original
test suite. On the other hand, traces produced by two SDL models have different
levels of detail. Traces produced by directly generated SDL model contain all
implementation detail, plus some additional detail, introduced by the mapping [1].
The level of detail of directly generated SDL models can be controlled by selecting
external interface of the implementation. Traces, produced by scenario-based SDL
model are expected to contain much less detail. As demonstrated above, the level of
detail of the scenario-based model is controlled by the probe placement strategy.

6. Conclusions

Support for early phases of the development process and support for integration
with older, legacy software are, in our opinion, two major barriers for wider adoption
of formal methods in industry. At the early phases, there is “too little” to formalize,
while on the other hand, at the later phases there is often “too much” to formalize.
However, early formalization is required because it can enable tool-aided feedback
and thus allow rapid iterative development. Requirements for an early formalization
technique include ease of use, low learning curve, very quick turn-around cycle,
maintainability. It is also beneficial to be able to re-engineer formal models of legacy
in a cost-efficient way, because it allows to use formal methods for subsequent
development of new features, as well as to use tools for better validation of the base
software platform.

We presented the methodology in which MSC is used as a “front-end”
specification language and the automatic synthesis technique is applied to hide more
complex formal specification languages from direct manipulation by users, while still

 16

allowing full benefits of formal methods-based CASE tools. MSC language proved to
be suitable both for the forward and reverse engineering purposes. As a formal
technique for capturing requirements, MSC satisfies all usability criteria for early
development phases. On the other hand, MSC are suitable to capture “real” scenarios
of legacy through collecting probe traces from suitably instrumented source code.

 We presented our approach to synthesizing executable SDL models from
scenarios formalized in MSC. As demonstrated in this paper, it turns out that this
technique provides adequate support for both forward and reverse engineering.

 We have given a broad overview of our accelerated development
methodology, based on MSC and SDL, which can be used to significantly improve
time-to-market in an industrial software development context. In our experience, the
use of this accelerated development methodology combined with the use of SDL tools
allows between 20 and 30% speedup in time-to-market for a typical
telecommunication system. The use of tools in a related project was found to yield a
20-25% improvement in time-to-market; therefore the estimate above is likely quite
conservative.

7. References

[1] Probert R., Mansurov N. Improving time-to-market using SDL tools and
techniques (tutorial), Proc. 9th SDL Forum, Montreal, Canada, June 21-26, 1999.
[2] Holzmann G. Formal Methods for Early Fault Detection. Invited paper in 4th
Int. School and Symposium on Formal Techniques in Real Time and Fault Tolerant
Systems. September 1996. Uppsala, Sweden.
[3] Mansurov N., Zhukov D. Automatic synthesis of SDL models in Use Case
Methodology. In Proc. 9th SDL Forum, Montreal, Canada, June 21-26, 1999, Elsevier
Science Publishers B.V. (North-Holland).
[4] Holzmann G., Smith M.H. A practical method for the verification of event-
driven software. In Proc. ICSE’99, pp.597-607, Los Angeles CA USA, May 1999.
[5] Mansurov N., Probert R. Dynamic scenario-based approach to re-engineering
of legacy telecommunication software. In Proc. 9th SDL Forum, Montreal, Canada,
June 21-26, 1999, Elsevier Science Publishers B.V. (North-Holland).
[6] Jacobson I., Christerson M., Jonsson P., Overgaard G. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley, Reading,
MA, 1992.
[7] Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.
[8] Z.120 (1996) CCITT Message Sequence Charts (MSC), ITU-T, June 1992.
 [9] Mansurov N., Laskavaya E., Ragozin A., Chernov A. On one approach to
using SDL-92 and MSC for reverse engineering. In Voprosy kibernetiki: System
Programming Applications, 3, Moscow, 1997 (in Russian).
[10] ITU-T (1993) CCITT Specification and Description Language (SDL), ITU-T,
June 1994.
[11] Engels A.G., Feijs L.M.G, Mauw, S., MSC and data: dynamic variables, In
Proc. 9th SDL Forum, Montreal, Canada, June 21-26, 1999, Elsevier Science
Publishers,B.V.(North-Holland).
[12] Mansurov N., Vasura D., Approximation of (H)MSC semantics by Event
Automata, in Proc. SAM’2000 workshop, Grenoble, France, 2000

 17

[13] Leue S., Mehrmann L., Rezai M. Synthesizing ROOM Models from Message
Sequence Chart Specifications. University of Waterloo, Technical Report 98-06,
1998.
[14] Robert G., Khendek F., Grogono P. Deriving an SDL specification with a
given architecture from a set of MSCs. In Proc. of the 8-th SDL Forum, Evry, France,
23-26 September, 1997, Elsevier Science Publishers B.V. (North-Holland), pp. 197-
212.
[15] Probert R., Saleh K. Synthesis of communication protocols: survey and
assessment. IEEE Transactions on Computers, 40(4), pp. 468-475, April 1991.
[16] Tuok R., Logrippo L. Formal specification and use case generation for a
mobile telephony system. Computer Networks and ISDN Systems, 30 (1998), pp.
1045-1063.
[17] Some S., Dssouli R., and Vaucher J. From scenarios to timed automata:
Building specifications from user requirements. In Proc. 2nd Asia Pacific Software
Engineering Conference, IEEE, December 1995.
[18] Rajala N., Campara D., Mansurov N. inSight Reverse Engineering CASE
Tool. In Proc. of the ICSE’99, Los Angeles, USA, 1998.

a

b

c

msc abc

x

loop

local
instance axis

instance head
message to
environment

global condition

local condition

instance end

stop

message

text

action

y act

z

instance
creation

T
timer

Figure 1. Elements of a basic Message Sequence Chart diagram

 18

msc habc

loop

abc cba

start

global condition

msc reference

flow line

s
msc wait

x
s

msc reply

y

w

r r

T

msc composition

start
UC_1 UC_2

Assumed
composition rule:

system actor (receiver)

external actor (sender)

Input use cases:

Figure 2. Elements of a High-level Message Sequence Chart

Figure 3. Example

 19

s
msc reply

y

w

rs
msc wait

x
r

T

msc composition

start
UC_1 UC_2

NEA S

out(x,r) out(x,r)

out(y,r) in(w,r)q0 q0
q0

3. 5.

out(x,r) out(y,r) in(w,r)1. 2. 4.

D E A S

O ut(y,r)

In(w ,r)

O ut(x ,s)

st_0

x to s

w

process S

any

y to r

1(1)
out(x ,r)

ou t(y,r) in (w ,r)
q0

N E A S

Figure 5. Steps of the synthesis algorithm

Figure 4. Generating SDL process from Event Automaton

 20

S R

[w] sr [x,y]

block sr

signal w;
signal x,y;

1(1)

system ExampleMode 1(1)

requirements

actors
use cases

running model

synthesized requirements model

validation

construction of
high-yield scenarios

formalization

requi r e me nt s

act ors

ar chit ect ur e

use cases

r unni ng model

refi ne ment

vali dati on

defi niti on &
mo di fi cati on

synt hesi zed archit ect ur al model

synt hesi s/i nt egr ati on

syst e m scenari os

Figure 7. High-yield requirements validation

Figure 6. Generated SDL structure

Figure 8. Refinement of original scenarios

 21

S
msc reply

y

w

R
decomposed

r1
submsc R

a
r2 r3

y

c
d ew

r1
msc R

r2

r3
f gw

alternative via
condition

S r1

[w] sr [x,y]

block sr

signal w;
signal x,y;

block R

r2

r3(0,)

[e,g]
[a]

[c]

[d,f]

r1r2

r2r3

signal a,e,g;
signal c,d,f;

base requirements

base code

base SDL model

validation & verification

re-engineering

TTCN test cases

Test suite generation

Figure 9. Refined scenario

Figure 11. SDL model generated from the refined scenario

Figure 10. Re-engineering

 22

base requirements

MSC model

SDL model

base code
feature code

interface

base SDL model

feature
validation & verification

re-engineering

Probe traces

Actors
Use Cases

Running system

SDL model

construction of
primary scenarios

Analysis &
InstrumentationAnalysis

Figure 12. Using synthesized SDL models with re-engineered models

Figure 13. Dynamic scenario-based re-engineering process

 23

Legacy software Perform Static Analysis of code

Select viewpoint;
 Set coverage
 goals;
 Select probes;

Call GraphArchitecture

Legacy with probes

SDL model

Translate into MSC

Synthesize SDL

Run legacy

Event-oriented MSC

MSC model

Probe traces

Regression tests

Other impor-
tant known pri-
mary scenarios

Compare

Instrument legacy

Add conditions
non-determinism

 metrics

Probe coverage

and complexity

b a s e c o d e

S D L m o d e l

M S C m o d e l

le g a c y te s t c a s e s

in s t r u m e n te d c o d e p r o b e t r a c e s

d ir e c t

d y n a m ic s c e n a r io - b a s e d

p a r t ia l

s ta te m e n ts m a p

Figure 14. Overview of the dynamic scenario-based re-engineering

Figure 15. Comparison of re-engineering approaches

