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On the Heat Transfer of a lov ing 
Composite Strip Compressed by 
Two Rotating Cylinders 
Two influential parameters in rolling mill analysis are the heat loss to the rolls and 
the strip temperature distribution. In this paper, the heat transfer process occurring 
in rolling is modeled by a moving three-layer composite strip, compressed between 
two rotating cylinders. It is shown that, for the range of parameters representative 
of strip rolling, the problem can be reduced, to leading order, to one of heat transfer 
beween slabs with plane parallel boundary contact. The heating effects due to 
deformation energy generated in the strip, friction energy generated at the 
strip/cylinder interfaces, and the strip/cylinder bulk temperature difference are 
considered. Application of the results to rolling analysis is demonstrated. 

1 Introduction 

The mechanical properties of sheet steel are influenced by 
the temperature of the steel on exit from the hot strip mill. For 
products of prime quality, close tolerances are required on 
this final strip temperature, which depends on the slab (steel 
plate at the rolling mill entry) temperature as well as the 
thermal processes occurring during rolling. These include air 
cooling between the rolling stands, water cooling in the 
descaling boxes (which remove the oxide layer formed on the 
strip surface) and heat loss in the rolling stands. Whereas 
simple heat transfer theory, involving radiation and con
vection, serves to describe the first two processes, the latter 
involves frictional and deformation heating, together with 
heat loss by conduction to the work rolls. Another important 
factor which should be considered for hot rolling is the 
buildup of a scale layer (oxide layer) on the strip surface. This 
scale layer, though normally very thin, is a poor thermal 
conductor and has been found to cause a significant reduction 
in heat loss from the strip [1, 2, 3], Only recently have 
analytical studies been directed at quantifying this 
phenomenon. 

The strip is reduced in thickness as it passes between the 
work rolls of a rolling stand. Figure 1 shows a sectional view 
of the process with a scale layer which remains intact in the 
contact region. Heat energy is generated in the strip as it is 
deformed in the roll gap region, and also along the roll/scale 
layer interfaces due to friction resulting from the differential 
speeds of the strip and rolls. Hence the heat transfer process 
near the contact region in a rolling stand is equivalent to that 
of a moving three-layer composite strip compressed by two 
rotating cylinders, with energy generated within the strip and 
at the cylinder/strip interface, and with thermal energy 
transfer due to the cylinder/strip bulk temperature difference. 

Analytical solutions of this problem, disregarding the 
influence of the scale layer, have been obtained by Cerni [4] 
and Cerni et al. [5]. Finne et al. [6] derived a set of differential 
equations, which was solved numerically under the assump
tion of a constant scale layer thickness. Polukhin et al. [1, 2] 
obtained an analytical solution using similar model equations 
which treated the strip and the roll as two semi-infinite slabs. 
These solutions [1, 2, 6] take the heat capacity of the scale 
layer to be negligible (an assumption which requires 
validation). Recently, Pawelski et al. [3] have published 
results on the strip temperature distribution and heat transfer 
coefficient with the effects of a scale layer included. Un-
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fortunately this paper [3] is rather obscure and does not give 
any analytical detail. 

In this study, a detailed mathematical model is developed to 
describe the heat transfer near the contact region in a rolling 
stand, including the effect of the scale layer and its heat 
capacity. (The formulation for heating and cooling of the 
rolls may be found in [7, 8], and from the references quoted 
therein.) The set of differential equations describing the heat 
transfer is reduced to a simpler set by introducing the small 
nondimensional parameters related to the rolling conditions, 
thus allowing development of a perturbation solution. 

2 Problem Definition 

Because of the large strip width in relation to its thickness, 
this study is confined to a two-dimensional analysis of the 
three-component system: the rolls, the scale layer, and the 
strip. From symmetry, only the upper half of the system needs 
to be considered. It is justifiable to assume that the heat 
transfer in the roll gap is a quasi-steady-state process because 
variations which occur along the strip, or during processing of 
a coil, take place on a much longer time scale. 

For a coordinate system fixed in space, when the material 
properties are assumed to be constant in the temperature 
range under consideration, the heat conduction equation for 
the three-body system is 

v / - v r , = a / V
2 r / + Q//(p;c/) (1) 

composite 
strip 

Fig. 1 Roll gap geometry {strip, scale layer, and roll not to scale) 
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(XcYc) deformed arc 
centre 

Fig. 2 Roll gap geometry assuming a circular arc of contact (strip, 
scale layer, and roll not to scale) 

where the subscript / can be either r, s, or c, referring to the 
roll, strip and scale layer respectively. Here c; is the specific 
heat; p, the density; a, the thermal diffusivity; 7} the tem
perature; v,- the material velocity; and Q, the heat sources. It is 
not the purpose of this paper to develop theoretical ex
pressions for Qj. Suffice it to say that these may be obtained 
from any suitable roll gap model (see, for example, [6, 9]). 

Since perfect contact is assumed at the interfaces, the 
boundary conditions to be satisfied at the strip/scale layer and 
roll/scale layer interfaces are based on the continuity of 
temperatures and heat fluxes across them, except that the 
total heat flow into the roll and the scale layer at the roll/scale 
layer interface equals the frictional energy generated therein 
due to slipping. 

Equation (1) may be written in a two-dimensional Cartesian 

(x-y) form for the strip region and in a polar coordinate (r-d) 
system for the roll and scale layer. For convenience, the origin 
of the x-y coordinates is located at the roll gap entry along the 
strip axis (centerline). The center of the (assumed) circular arc 
of the deformed roll is taken as the origin of the r-d coor
dinates as shown in Fig. 2. 

A nondimensionalization of the heat conduction equations 
is now carried out in order to identify their most significant 
terms. 

(a) For the strip: 

x = x/(2rsAh)Vl 

y = yihx 

Vsx = Vsx/V\ 

sy vx(2Ah/rs)
Vl 

t = Ts/Tsl 

where rs is the distance from the deformed roll center to the 
strip/scale layer interface at the roll gap entry; Ah = h] -h2 

the half of the reduction in strip thickness; hx and h2 are half 
of the strip thicknesses at the roll gap entry and exit respec
tively; vx is the horizontal strip velocity prior to the roll gap 
entry; Tsl a certain reference temperature of the strip; and vsx 

and vsy are the strip velocity components in the x and y 
directions respectively. 

In the above, (2rsAh)'/! is approximately the horizontal 
contact length, / (since Ah/rs< <1); vx(2Ah/rs)

Vl is ap
proximately the vertical speed of the strip surface at the roll 
gap entry point. 

(b) For the scale layer: 

6 

s 

-
vcr 

Vel) 

T 
1 c 

= 

= 

= 

= 
= 

e/(2Ah/rsY
/2 

(r-rr)/si 

"cr 

v1As(2rsAh)-'A 

vce/vt 

Tc/Tcl 

N o m e n c l a t u r e 

c = specific heat r,d 
/ i = (7 r - l ) / ( 7 , + l) rr 

h = ( 7 , - l ) / ( 7 , + l) rs 

Fc = Fourier number for the scale Rr 

layer, equation (22) s 
Fc = Fourier number defined in t 

equation (39) t2 

Fr = Fourier number for the roll, T 
equation (23) T0 

Fs = Fourier number for the strip, T' 
equation (21) v 

Fs = Fourier number defined in v 
equation (34) x,y 

h = half of the strip thickness a 
k = thermal conductivity 0C 

I = contac t length j3r 

q = rate of heat transfer to a roll j3s 

qf = rate of frictional heat energy yr 

generated per unit area at the 7^ 
roll /scale layer interface Ah 

Q = rate of heat energy generated 
per unit volume As 

Qs = rate of deformation heat energy e, 
generated per unit volume in e2 

the strip e3 

coordinates defined in Fig. 2 
deformed roll radius, Fig. 2 
radius defined in Fig. 2 
roll radius 
scale layer thickness 
time 
contact time 
temperature 
^si _ Tr\ 
average temperature 
horizontal strip velocity 
velocity vector 
coordinates defined in Fig. 2 
thermal diffusivity 
term defined in equation (6) 
term defined in equation (7) 
term defined in equation (5) 
(prkrcr)

v>/(Pckcccy
A 

{pskscsy
A/(Pckccc)

v> 
half of the strip thickness 
reduction 
scale layer thickness reduction 
h\/rs 

Ah/ht 

X = 
£>»? = 

p = 
CO = 

term defined in equation (19) 
coordinates, Fig. 2 
density 
angular roll velocity 

Subscripts 
1 = 
2 = 
c — 
d = 
/ = 
r = 
r = 

s = 
t = 

X = 

y = 
e = 

roll gap entry 
roll gap exit 
scale layer 
deformation energy 
friction energy 
roll (as a first subscript) 
radial direction (as a second 
subscript) 
strip 
initial strip/roll temperature 
difference 
x-direction 
^-direction 
peripheral direction 

Symbols 
= nondimensionalized parameter 

(see text for detail of non-
= St/hi dimensionalization) 
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where rr is the deformed roll radius; TcX a certain reference 
temperature of the scale layer; As=sx-s2 the reduction in 
scale layer thickness in the radial direction; s} and s2 are the 
scale layer thicknesses at the roll gap entry and exit respec
tively (in the radial direction); and vcr and vcB are the radial 
and circumferential velocity components respectively for the 
scale layer. 

Here, (2Ah/rs)'
A is approximately the total angle sub

tended, 6X; ViAs(2rsAh)~'A is approximately the scale layer 
thickness reduction divided by the contact time. (A general 
case of nonzero As is assumed in the above but, if As is zero, 
Vcr = Vcr = 0 . ) 

(c) For the roll: 
e = e/(iAh/rsy

A 

r = (rr-r)/hx 

Vrr 

co(rr-Rr)(2Ah/rs)'
A 

vre = vre/(wRr) 

t = Tr/Tn 

where o> is the angular roll speed; Rr the original roll radius; 
TrX a certain reference temperature of the roll; and vrr and vr0 

are the radial and circumferential velocity components 
respectively for the roll. 

Here, r is nondimensionalized by the entry half strip 
thickness, hx; wRr is approximately the circumferential speed 
of the roll surface at the roll gap entry; w(rr—Rr)(2Ah/rs)'

A is 
approximately the radial speed of the roll surface just prior to 
the roll gap entry. 

Substitution of the nondimensional variables in the con
duction equation (1) gives: 

vsx-^+2(Ah/hl)vsy-j^-

1 / hJr, 
''P'L2\M/hJ 2 \Ah/h, J dx2 

d2T, d2Ts 

(1 +s'sx/rr)(As/sx)(rr/rs)vCi 
dTc 

~aF + vr 

df 

dfc 

Id 

+ Qs (2) 

d2Tc 

lis2" 
( sx/rr \ 

Vl + ssx/rr) 

dTc 

IF 

+ 
1 m rs/Ah d2fc-

-2(1 

2\rrJ (1 +ssx/rr)
2 

• rA, / r , ) [ ( r , / / ? f ) - l ]x 

. dfr , dfr 
(Ah/hx)(rr/rs)vrr-^r +vre-^ 

PrV dr2 \\-fhx/rr) 

rJAh d2f, 

+ Qc (3) 

dTr 

1 m de2 \+Qr 2 \ r r ) {\-?hx/rr)
2 

where 
Ps = [{2rsAhyA/vx)/(h

2
x/as) 

Pc = [rr(2Ah/rsy
/'(l+ssx/rr)/vx]/(s2

x/ac) 

Pr = [rr{2Ah/rs)'
A(.\ -rhx/rr)/(wRr))/(h2

x/ar) 

Qs = [Qs{2rsAh)'/' /vx}/(PscsTsX) 

Qc = lQcrr(2Ah/rs)
y' (1 + &, /rr)/vx ]/(Pccc TcX) 

and 

Qr = [Qrrr(2Ah/rs)»(l-rhx/rr)/(uRr)]/(prcrTrt) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

parent since, in physical terms, ISS, (3C, and (3r are ap
proximately the ratio of contact time to diffusion time for the 
media, and Qs, Qc, and Qr are approximately the ratio of 
heat energy generated in the roll gap to the "stored" energy at 
the roll gap entry for the media. 

In rolling, the entry strip thickness, while normally much 
larger than the strip thickness reduction, is very much smaller 
than the deformed roll radius. Moreover, the scale layer, if 
present, is very thin compared to the strip thickness, and its 
reduction in thickness will also be very small. 

Therefore, 

e, =hx/rs< <e2=Ah/hx < <1 

e3 =sx/hx < <1 

and 

e4 = As/sx < <1 

From geometry, rr/rs = l—sx/rs = l-exe2. It follows 
that 

(s, /rr)
2{rslAh) = (e1/€2)[€§/(l - e,e3)] < < 1 

(/z1//-r)
2(/-i/A/!) = ( e , / e 2 ) ( l - e 1 e 3 ) - 2 < < l 

Thus the dominant terms in equations (2-4) may be identified 
by writing them in terms of these small parameters. In ad
dition, it is often desirable to express the roll gap variables in 
terms of the time variable / so that the contact time will then 
appear explicitly. For the nondimensional variables em
ployed, the relationships are: 

(2rsAh)'A/vx dx 

dt 

-•(rr/rs)(l+ssx/rr) 
{2rsAh)'A/vx 36 

{2rsAh)Yl/vx 

h\/a 

dd 
rr+0(ext3) 

vre-(rr/rs)(l-rhx/rr) 
(2rsAhY/l/(uRr) dd 

m/a. dt 

(2rsAh)Yl /(o>Rr) bd 
dj+0(ex,exe3) 

where t=t/(hx
2/as) is the time parameter, non

dimensionalized by the diffusion time across half the strip 
thickness. Since the effects of temperature gradient and heat 
transfer are confined mainly to the interface regions, it is 
more appropriate to transform the (i , y) axes to the (£, r)) axes 
with the origin set on the strip surface at the roll gap entry 
(Fig. 2), using the transformations | = i and fi=y-l. The 
relations between (/, 8) [or (§,§)] and (£,rj) are 

~xc-[rr/(2rsAh)'A](\+ssx/rr) sin [(2Ah/rs)'
Ad] 

§+ 0[(ex e2)
V2,ex e3] for the scale layer 

« = 

i)~ 

The relevance of the nondimensionalization is now ap-

= xr 

xc-[rr/(2rsAh)'A](\-rhx/rr) sin [(2Ah/rs)'
Ad] 

_=xc — d + 0(ex,exe2,exei) for the roll 

Jc-1-(rrlhi)(1 + ssx/rr) cos [{2Ah/rs)
Vl6] 

= e20
2 — 1) + e3(l - i ) + 0(eie2 ,e|£3) for the scale layer 

yc - 1 -{rr/hx){\ -rhx/rr) cos [(2Ah/rs)'
A6] 

= r + 0(e2,e3,e,e2,e1e3) for the roll 
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It follows that equations (2-4), after the transformation 
and simplification, become 

— = -T^T +Qs(h]/as)/(PscsTsl) + 0(e2,e1/e2) (11) 
dt dri2 

— Y ={ac/as)-~~f +Qc(h\/as)/(pcccTcX) 
at or} 

+ 0(e4,ei/e2,e,e2,e1e3,€3) 

dfr d2fr 

(12) 

dr 
Wr/ot,)—- +Qr(h

2/as)/(prcrTrl) 

+ 0(el,e2,e]/e2,ele2,e,ei) (13) 

The boundary conditions in the new coordinate system (?,ij) 
are 
(a) on the strip axis, r; = - 1, from symmetry: 

BfsO,-\) 
drj 

= 0 (14) 

(b) on the strip/scale layer interface, fi = 0 + O(e2, e{ e2), I o r 

continuity of temperatures and heat fluxes: 

tsO,0) = (Tcl/Tsl)tcO,0) (15) 
dTAi',0) dTc(t,0) 

(16) 

(c) on the roll/scale layer interface, ?) = e3 + O (e2, e i e2, e (e3): 

fr(le3) = (Tci/Trl)fc(t,e,) (17) 

af,(F,e3) 
~{kc/k,)(Tel/Tri) 

dTc(le3) 
dfi "- " dfi 

+ h]qf/(krTrl) (18) 

where q} is the rate of friction energy (per unit area) generated 
at the roll/scale layer interface due to slipping; 
(d) on a circular layer in the roll at a sufficient distance from 
the interfaces such that heat flow across the layer during 
contact time may be neglected (this assumption is valid since 
the heating and cooling of the roll confines to a very small 
region near the roll surface [7, 8]), say, at r=\ where 
1 > >X> >e2e3 , i.e., r/ = A + 0 ( e 2 , «3> ei e2> «i «3): 

af,(?,X) 
df) 

= 0 (19) 

It can be seen that the leading order problem for the heat 
transfer in the roll gap reduces to equations (11-13) which, 
with the above set of boundary conditions, describes one-
dimensional heat flow between two thick flat slabs separated 
by a slab of finite thickness. The perturbation formulation, 
developed here, clarifies the conditions under which this 
model may be employed and justifies the use of the simplified 
system introduced as the starting point of the previous 
analyses [1-6]. 

3 Solution 

In order to obtain an analytic solution, a certain tem
perature distribution at the roll gap entry must be assumed. 
Since the strip and roll speeds (or, more precisely, the Peclet 
numbers, which are defined as vsxhi/as and uRj/ar for the 
strip and roll respectively) are high, the conduction com
ponent is small compared to the advective component, and it 
is justified to assume a uniform temperature distribution for 
all three bodies at the roll gap entry, i.e., the strip and scale 
layer have the same initial temperature^ set to equal their 
reference temperatures, 7^, = Tci, hence fs(0,rj) = TC(0, ij) = 
1; and the initial roll temperature is equal to its reference 
temperature Tn giving fr(0,rj) = 1. The initial time, ?=0, is 
assumed to be at the roll gap entry. 

Since the deformation heat energy generated in the roll and 
scale layer regions is usually negligible in comparison with 
that generated in the strip, it is reasonable to set Qr — Qc = 0. 

A first-order solution of equations (11-13) subject to 
boundary conditions (14-19) can be obtained, using Laplace 
transforms, with further assumptions that the deformation 
heat energy Qs and frictional energy qf, which may be 
calculated using a roll gap model (see, for example, [6]), are 
distributed uniformly throughout the roll gap; and that the 
transport time is small compared to the diffusion time (i.e., 
t< <1) such that the approximation of semi-infinite slabs is 

valid. 
For convenience, and since the problem is linear, the 

solution is written in component form: 

Tl(t,rj)=l + TH{t,ri)+Tid(t,ri)+Tif(t,r,) (20) 

where tit, fid, and fif are the temperature changes due to the 
roll/strip bulk temperature difference, deformation energy, 
and frictional energy respectively. Although the temperature 
distribution in the scale layer may also be derived, it is not 
included here since it has no practical significance. 

The solution may best be expressed in terms of Fourier 
numbers, Fs, Fc, and Fr, which are defined as follows: 

FAifi) = ast/v
2=Vv2 (21) 

FcO) = act/s
z=(ac/as)l/e

2 (22) 

Fr(lv) = ctrt/(V-sl)
2 = (ar/as)y{n-e,)2 (23) 

where 

V = fiiv-

It should be noted that in the above, the Fourier numbers 
for the strip and roll, Fs and Fr, are functions of both ? and r/. 
They give an indication on the extent of heating or cooling of 
the strip/roll element of interest after the elapsed time. On the 
other hand, Fc, the Fourier number for the scale layer, is a 
function only of ? and is a measure of the elapsed time in 
comparison with the diffusion time across the scale layer. 

It can be shown, after some lengthy mathematical 
manipulations, that the solutions for the roll and strip 
temperature distributions are: 

t , (lv)=^- ~^- \ £ \(fj2)"erfc(l-Fr-'
A +nF-A] 

1 r\ Yr + 1 L „ = 0 L Xl / J 

+/2 £ [ifxfi)"erfc(^Fr-'
A +[« + l ] F f - w ) ] j (24) 

Trd0,f,) = 8l 
ksTrl (T r + i )(7 , + i) 

1 _ ., 1 
E [(fJ2)"i2erfc[-Fr-» + - (In + l)F~ * ] ] (25) 

KsJr\ Jr+ * „--0 ^ 

[ierfc^-Fr-'
A +nF~'/') -hieifc(-F;* +[/i + l ] F c - » ) ] j 

(26) 

TSI(%TJ)=-2 
Ttl (Y, + D(Y, + 1) 

1 ... .„ 1 
t [ifJ2)"erfc[-Fr'A + ^ (2* + DFt. * ] ] (27) 

fsd(1,fi) 
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+Ai2erfc[1-Fr'/' + {n+l)F-,/'Y)'jj (28) 

tegrating the heat conduction along the roll/scale layer in
terface: 

qr t2 f'2 ar r(?,e3) ; „ , (35) 

where 

7V(?,i& = 4?* 
M / 7. 
^ (7r+l) (7 , + l) 

1 „ 1 

« = 0 

where 

£ [{fj2)ttierfc[-Fr» + - ( 2 « + l ) / ^ " 2 ] ] (29) 

«- r(-) 4r(Sf^.^)l 
+/2 L [</,/2)"/,([« + 1]F-*)1] (36) 

7r=(prfcrcr)' /V(pc^ccc)
1 ' ' <?rd=4 *?a 

7s=(Pskscsy
/i/(Pckcccy

/' 
/ l = ( 7 r " l ) / ( 7 r + l) 

/ 2 = ( 7 s - l ) / ( 7 , + l) 

T o = T̂si ~ V̂i 
and ks is the strip thermal conductivity. 

Here, imerfc(w) is the complementary error function 
defined as 

krTn ( 7 , + i ) ( 7 , + i) 

! UJiY'h | ; 
n = 0 ' 

D [ t / l / 2 ) " / 3 [ - ( 2 / 7 + l ) F - ' / - ] ] (37) 

rer, 

where 

i oo 

i'"-lerfc(u)du m = 0,l,2, 

/°e//c(w) =erfc(w) = 1 - e / / ( w ) 

On integration of equations (27-29) with respect to i), the 
average strip temperature across its section, T's(t), may be 
obtained: 

where 

ft (0 = 4* 

t's (f) = i + t'sl (f) +t"sd (F) + t'sf (t) (30) 

-1/2 ^ o _ _ ^ i 7 

7^ A(0 (7 r+ l ) (7 , + l) „ = 0 

i ^ „ i „ . „ \ . . n 
[ierfc(-Fr» + ^ [2n + 1]F"W) - / « / c ( - [2/i+ l ]F c -» ) ]} 

ksTslt T s + 1 h(t) ~ 0 

1 -

„_n L 

(3D 

(i3 erfc[nF~ Vl ] - i1 erfc \ - Fs~
L/l + nF~ Vl 1 

+ / , / V / c [ ( « + 1 )F"»] -/ ,Perfc[^F~'A 

+ {« + l ) F - ^ ] ) ] ] (32) 

and 

J / ( t~k~f^W) (7 r + l)(7, + l ) X 

E f OV2)" f /2er/c(^ [2K + l]Ff" * ) 

- / W c ( ^ / V ' / ! + l- [2«+ 1]FC * ) ] ] (33) 

In the above, 

F,(i,h)=Fs[i,h(t)/hi] = a,t/h1(t) (34) 

Although the average roll temperature may be obtained by 
a similar approach, the details will not be included here. 

The heat flow rate to a roll qr may be obtained by in-

and 

qr/ — -7—= —r X 

£ (fifi)" lh(nF; ») -f2I2(ln + 1]F- »)] (38) 
n = 0 ^ J 

In the above, 

F c = F c ( l ) = K / a s ) / e 2 (39) 

Here, l=Ih1 and C2 = h(h\7/as) are the contact length and 
contact time respectively. If a detailed roll gap model is not 
available, these parameters may be approximated by 
I=(2rsAh)y' and t2 = vxl. The integrals 7,, I2, and I3, which 
may be integrated by parts, are defined, with the results of 
integration given, as follows: 

/ , (u) = f Q
2 t~ Vli-'erfc(ut~ 'A)dt 

= 2[t'{'i~'erfc(ut2
 ,/!) - 2« er/c(wf2- '

7l)] 

f '2 
7 2 ( « ) = erfc(ur'/l)dt 

Jo 

= (?2+2w2)er/c(«f2-'/!)-w?2/!'"l^/c(w?2~'/2) 

/ (M) = ( 2 f'/• /e/-/c(ut~ Vl)dt 
Jo 

2 C 1 
= - 1 P2

nierfc(u?-[/i)--u[t2 + 2u2erfc(ut2
 Yl) 

-«^ / - ' e r / c (Mf 2 - w ) ] ] 

where u is a function independent of t. 
When the scale layer is absent, the above solutions can be 

further simplified, and are found to agree with previous 
results under the same conditions ([1,2] with the "heat 
transfer coefficient from the strip to the roll" set to infinity). 

4 Numerical Results 

Unfortunately, a direct comparison with previous 
numerical results, and, in particular, with those of [3], has 
been made difficult by uncertainty of the data values em
ployed therein. (It should be pointed out that the formulation 
in [3] clearly differs from the present formulation in that the 
frictional energy is inexplicably taken to be generated at the 
strip/scale layer interface, and that the strip center-line 
temperature is assumed to remain unchanged even when 
deformation energy is generated in the roll gap.) Typical 
thermal values for hot rolling conditions (Table 1) have been 
used for all the calculations given in this paper. Terms in the 
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Table 1 Typical thermal data used in the numerical 
calculations 
Strip 

Conductivity, ks 

Diffusivity, as 

Scale Layer 
Conductivity, kc 

Diffusivity, ac 

Roll 
Conductivity, kr 

Diffusivity, ar 

(W/m°C) 
(m2/s) 

(W/m°C) 
(m2/s) 

(W/m°C) 
(m2/s) 

28 
5.9X10" 

2.5 
4 .6x10" 

31 
5 .4X10" 

itf = I i i Mill] 1 I I Mill] 1 i 11 mi] 1 i i m i i | 1 M i l l 
T s t ' T o (equat ion 31) % 

h 2 / a . 

Fig. 3 Variations of the average strip temperature with the scale layer 
thickness and time 

solution were rearranged to eliminate redundant variables so 
that the most compact form of information may be presented. 
The figures, which will be described below, are extremely 
useful for rapid calculation of strip temperature and heat 
transfer, without the necessity of having to calculate the roll 
gap parameters accurately. Rational approximation and 
recurrence relations of the error functions, given in [10], were 
used in the numerical calculations and it was found that 
reasonable accuracy could be achieved using only the first few 
terms of the infinite series solution. 

4.1 Average Strip Temperature. The average strip 
temperature in the roll gap at any instance is shown in Fig. 3, 
which is a plot of equations (31-33), with the temperature 
change components, T'sl, T'sd, Tsf normalized by T0, h2Qs/ks, 
and hqj/ks respectively, and time t by the diffusion time, 
h2/as. The second and third normalizing parameters for the 
temperature components represent, respectively, an insulated 
strip temperature change due to the deformation energy 
generated during the strip diffusion time, and the steady-state 
temperature difference between the strip center line and strip 
surface due to heat flux caused by all the frictional energy 
passing across the half strip. It can be seen from Fig. 3 that 
the scale layer has a pronounced influence on the bulk tem
perature difference (r0) and frictional heating (qf) effects but 
is insignificant for the deformation heating (Qs) effect. In the 
latter case the normalized average strip temperature is found 
to approximate a linear relation with the normalized time, 
signifying that the heat loss to the rolls is insignificant 

1.0 

::i 
07 

0.6| 

0 5 

0.4] 

0.3 

0-2 

0.1 

ILl i (equation 38) 
(kr/k.)h,q, f 

q,i ^ (equation 36) 
k,T0 T 

q ' J 1 (equation 
(k,/k,>h?Q,I^ M

 3 7 ) 

10 1 0 ' 10 

Fig. 4 Variations of heat transfer to the roll with the scale layer 
thickness and contact time 

compared to the energy generated. It should be further noted 
that the curves shown in Fig. 3 are independent of the actual 
strip thickness. However, for the theory to be valid, the 
normalized time should be sufficiently small (certainly less 
than unity) for the assumption of the "thick slabs" to be 
justified. 

4.2 Heat Transfer to the Rolls. Equations (36-38) may 
be plotted by rearranging terms such that the heat transfer to 
the rolls is described in a single diagram. The heat transfer 
components qrt, qrd, qrf have been normalized by krT0lt~

 Vl, 
{kr/k^h^Qjii*, and (kr/ks)h,qfl respectively, and plot
ted against sl(ast2)'

Vl> a parameter dependent on the scale 
layer thickness and contact time. The three curves shown in 
Fig. 4 give the normalized heat transfer components to a roll; 
each curve approaches an upper and a lower limit, and all are 
dependent on the thermal properties of the strip, scale layer, 
and the roll. These limits, approached w h e n ^ a ^ ) - ' 7 ' tends 
to zero and infinity, are equivalent physically to the case of 
thermal exchanges between two semi-infinite slabs, with the 
appropriate thermal data adopted. The heat transfer due to 
r0 andQj isreducedas 5|(ajr2)^'/J increases due to the in
sulating effect of the scale layer. Where the scale layer is 
sufficiently thick (or, more precisely, the diffusion time across 
the scale layer is large compared to the elapsed time), no 
deformation energy will reach the roll, whereas the heat 
transfer due to T0 will arise solely from the heat capacity 
stored in the scale layer. Consequently, qr, tends to a finite 
but nonzero limit while qrd tends to zero. The heat transfer 
due to qs is found to increase as Si(_ast2)~'A increases, again 
due to the insulating effect of the scale layer which, in this 
case, reduces the frictional energy being transferred to the 
strip. (The reader is reminded that friction energy is assumed 
to be generated at the roll/scale layer interface.) Conversion 
of Pawelski and Bruns' results [3] (only available for qrl), 
using the thermal data of Table 1, gives excellent agreement 
for the upper limit of the heat transfer component. However, 
the fact that their results for the lower limit are approximately 
40% lower than those herein may be simply due to the dif
ference in the thermal data values used for the scale layer. It is 
obvious from Fig. 4 that the heat transfer for all three 
components has reached its upper and lower limits in regions 
outside the range 0.003 <s, (<x,f2)"

 v' < 1. 

4.3 Effect of Heat Capacity of the Scale Layer. Most 
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Ms) 

Fig. 5 Comparison of heat transfer to the roll due to an initial strip/roll 
temperature difference with the Polukhin et al. solution [1,2] 

Us) 
Fig. 6 Comparison of heat transfer to the roll due to deformation 
energy with the Polukhin et al. solution [1,2] 

previous workers have neglected the heat capacity of the scale 
layer in their calculations because of its negligible thickness. 
The validity of this approximation can be studied with the 
current analysis. The present solution is compared, in par
ticular, with that of Polukhin et al. [1, 2], who obtained a 
solution analytically, on the assumption that the heat transfer 
coefficient equals (kc/s{), i.e., the scale layer has only 
thermal resistance and no inertia. From their formulae (with 
the minor typographical errors corrected), the heat transfer to 
the roll due to T0 and Qs, and the strip temperature com
ponents at the strip/scale layer interface due to T0 and Qs are 
compared in Figs. 5-8 respectively (expressions for friction 
energy are not available in [1, 2]). When the scale layer is 
absent, the two solutions are, of course, identical. However, 
the results diverge as the scale layer thickness increases, qrl 

tending to the zero limit in Polukhin's solution but a finite 
nonzero limit in the present solution due to the heat stored in 
the scale layer. Similar differences are observed in the other 
comparisons. These differences appear significant because of 
the short contact time involved in rolling; the heat capacity in 
even thin scale layers can thus be quite pronounced. Since 
under normal rolling conditions the contact time and scale 
layer are in the range 0.0003 to 0.1 s and 0.005 to 0.5 mm 
respectively, it is crucial to include the heat capacity of the 
scale layer in the formulation. 

Journal of Heat Transfer 
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Fig. 7 Comparison of temperature change at the strip/scale layer 
interface due to an initial strip/roll temperature difference with the 
Polukhin et al. solution [1,2] 

U s ) 

Fig. 8 Comparison of temperature change at the strip/scale layer 
interface due to deformation energy with the Polukhin et al. solution 
[1,2] 

5 Conclusion 

An analytical solution for the transfer of heat between the 
strip and roll, including the effect of an oxide layer on the 
strip surface, has been obtained. The results are consistent 
with those of the previous workers when the scale layer is 
absent. Simple graphs have been generated for the rapid 
evaluation of the heat transfer and strip average temperature 
when the heat energy terms, scale layer thickness, and contact 
time are given. The scale layer has a dominant effect on the 
heat transfer process. It acts as an insulating layer which can 
reduce the heat transfer significantly (by up to 50% for 
typical strip thicknesses and contact times, as evidenced in 
Fig. 4). It has also been shown that the heat capacity of the 
scale layer plays an important role in hot rolling thermal 
analysis and therefore should not be neglected. 

The solution presented here, which is applicable to both hot 
and cold rolling conditions, is valid when the contact time is 
reasonably small and the roll diameter is large compared to 
the strip thickness and reduction ratio such that the curvature 
effect may be neglected. (It has been found that the solution is 
applicable, for typical rolling conditions, to strip thicknesses 
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of greater than 1 mm for hot rolling and even less for cold 
rolling.) The assumed uniform distribution of the frictional 
and deformation energy is expected to be valid in hot rolling 
since the overall heat transfer is dominated by the strip/roll 
bulk temperature difference. 
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