
WebMate: A Tool for Testing Web 2.0 Applications

Valentin Dallmeier · Martin Burger · Tobias Orth · Andreas Zeller
Saarland University – Computer Science

Saarbrücken, Germany
{dallmeier, mburger, orth, zeller}@st.cs.uni-saarland.de

ABSTRACT
Quality assurance of Web applications is a challenge, due to the
large number and variance of involved components. In particu-
lar, rich Web 2.0 applications based on JavaScript pose new chal-
lenges for testing, as a simple crawling through links covers only
a small part of the functionality. The WEBMATE approach auto-
matically explores and navigates through arbitrary Web 2.0 appli-
cations. WEBMATE addresses challenges such as interactive ele-
ments, state abstraction, and non-determinism in large applications;
we demonstrate its usage for regular application testing as well as
for cross-browser testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids

General Terms
Algorithms

Keywords
JavaScript, web applications, test generation

1. INTRODUCTION
In the past years, major browser producers such as Google and

Mozilla have considerably improved the performance of their Java-
Script engines. As a consequence, it is now possible to build rich
interactive applications based on the interplay of HTML, CSS and
JavaScript. The appeal of these so-called web applications is their
ease of use: no installation is required and all data is stored cen-
trally on a server. As a result, web applications today are abundant
and JavaScript has become the core language for the dynamic web.
Being a highly dynamic language, JavaScript is notoriously hard to
debug and cross-browser inconsistencies make it difficult to ensure
the correctness of large web applications across different browsers.

Due to the large number and variety of involved components,
the only feasible approach for quality assurance of web applica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JSTools’12, June 13, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1274-5/12/06 ...$10.00.

tions is testing. In particular, for a project with more than one re-
lease cycle, we need automated tests that can be rerun after each
change. Existing tools such as Selenium [5] allow to write such
tests by remote-controlling a browser and injecting JavaScript code
that tests the outcome of user interactions. The main effort when
writing system-level tests is usually spent on navigating to the de-
sired state and establishing the test setup. Even for simple tests in
small applications, the setup part can consist of several steps: open
the start page, enter login data, open the menu, and then navigate
to a submenu. What is worse is that if only one of the elements on
this path is changed, the test is broken. Due to the lack of proper
refactoring tools, small changes in the user interface often break
large parts of the test suite which causes considerable maintenance
costs. As a result, most companies only use manual testing or do
not test at all.

In this paper, we address this problem with WEBMATE—an ap-
proach to automatically explore and navigate through arbitrary
Web 2.0 applications. WEBMATE analyzes the web application un-
der test, identifies all functionally different states, and is then able
to navigate to each of these states at the user’s request.

Figure 1 summarizes how WEBMATE works. The sole manda-
tory input to WEBMATE is the URL of the web application to test.
(If the application requires special inputs such as login data, then
the user has to provide this data to WEBMATE.) Using the URL as a
starting point, WEBMATE explores the web application and learns
a usage model that captures how a user can interact with the web
application. In this step, WEBMATE examines all buttons, links,
forms or any other element with a JavaScript event handler that
can be triggered by a user interaction. The resulting usage model
represents these interactions as a graph where nodes correspond to
different states of the application, and edges represent user inter-
actions. Users of WEBMATE can leverage the usage model to sys-
tematically generate executions of the application and to perform
analyses in all states recorded in the model.

Systematic exploration of a dynamic web applications is a chal-
lenging task. In Section 2, we discuss the most important chal-
lenges and the solutions as implemented in WEBMATE. In Sec-
tion 3, we present a small case study that investigates the effec-
tiveness of WEBMATE with two subjects. Section 4 shows how
WEBMATE helps to automate testing for cross-browser incompati-
bilities. We briefly discuss related work in Section 6 and conclude
with ideas on the future of WEBMATE in Section 7.

2. ANALYZING WEB 2.0 APPLICATIONS
In essence, WEBMATE is a crawler for Web 2.0 applications with

the additional feature of being able to replay interactions to reach
different states. At the heart of WEBMATE lies an engine that is able
to remote control a browser, trigger interactions and inspect the cur-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357317489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enter URL Test!

trywebmate.com

Web
Developer

Other
Browsers
Earlier
Revisions

Assertions

trywebmate.com
Open fails in IE6
Edit behaves differently

(a) Enter URL (b) Extract usage model (c) Test web application (d) Report errors

URL
Open Doc

Close

File Edit View

Find and Replace

…

…
…Web application

Usage model

Figure 1: How WEBMATE works. Given a URL as input (a), WEBMATE analyzes the web application and learns a usage model
of how a user can interact with the web application (b). Users of WEBMATE can then use this model to systematically explore the
functionality of the web application and run different analyses such as cross-browser compatibility checks, regression tests or code
analyses (c). Results of the analysis can then be reported back to the user (d).

rent state of the document object model (DOM). When analyzing a
web application, WEBMATE repeatedly triggers actions on the web
page and extracts the state of the DOM after each action. From this
data, WEBMATE generates the application’s usage model, a graph
where nodes correspond to states of the application, and a transition
represents a single interaction with the application. Each state com-
prises information about all user interface elements and WEBMATE
systematically triggers interactions until all elements are explored
and the analysis stops. The resulting usage model contains all dis-
tinct states identified by WEBMATE and all the possible ways to
navigate between them.

Web crawlers have been around for many years. However, they
only work well for traditional URL based web applications. Ef-
fectively crawling Web 2.0 applications poses a number of chal-
lenges, both conceptually and from a technical point of view. In
this section, we briefly summarize the most important challenges
and sketch the solutions implemented in WEBMATE.

Interactive elements. To interact with the application, WEBMATE
needs to recognize all elements on a web page the user can
interact with. This includes all links, buttons and input ele-
ments. In addition, the tool also has to consider all elements
that have a JavaScript event handler configured. Such event
handlers can either be added statically in the HTML docu-
ment, or attached dynamically using JavaScript. Unfortu-
nately, there is no way to detect if an element has a dynami-
cally attached event handler. However, there is a number of
JavaScript libraries such as JQUERY and PROTOTYPE which
keep track of which event handlers were added to an element.
WEBMATE leverages this feature and supports event handlers
attached with JQUERY and PROTOTYPE.

State abstraction. WEBMATE distinguishes different states of the
application using an abstraction function over the state of the
DOM. Abstraction is necessary since otherwise WEBMATE
would consider two pages with slightly different content (e.g.
a different heading) as distinct states. For a web application
that is backed by a database, using the verbatim DOM would
cause WEBMATE to explore the whole database. However, as
a testing tool we would like WEBMATE to maximize cover-
age of the application while visiting as few states as possible.
Our current implementation therefore employs an abstraction
over all the user interface elements on the web page. The
idea behind this is that the current state of the user interface
reflects the state of the application. For some cases, this ab-
straction does not work well and therefore WEBMATE is un-
able to cover all functionality. However, in first experiments
this approach has proven to produce concise usage models
that yield good coverage (see Section 3).

Application size. When learning the usage model, WEBMATE tries
to explore all interaction elements for every state of the ap-
plication. For more complex applications, a single state may
easily contain hundreds of interaction elements. Typically,
many of these elements exercise the same functionality. For
example, the result of a search on Amazon contains a link
to the product page of every matching article. WEBMATE is
perfectly able to visit all these links, this has a serious impact
on the runtime of the analysis and at the same time mostly ex-
ecutes the same functionality. To solve this problem, WEB-
MATE currently employs a set of filtering techniques based
on analyzing links and JavaScript code in order to identify
elements that are likely to trigger the same functionality.

Non-determinism. As stated above, WEBMATE uses an abstrac-
tion over the DOM to estimate the state of the application.
Since the majority of web applications also stores state in-
formation on the server, there is a (usually large) portion of
the state that is invisible to WEBMATE but may influence the
behavior of the application. As a consequence, the usage
model contains a certain degree of non-determinism: Trig-
gering an action several times may lead to different states and
therefore some states in the model may become inaccessible.
Unfortunately, there is no easy solution to this problem. To
completely avoid non-determinism, we would need to reset
the server-side state after every action. For real-world ap-
plications, this is not feasible. Therefore, WEBMATE uses
heuristics to identify states that are not reachable and disre-
gards them for further exploration.

As a black-box technique, WEBMATE cannot guarantee coverage
of all functionality that may be reachable by the user interface. We
are working on integrating search-based techniques [6] into WEB-
MATE that leverage server-side code coverage to direct test case
generation.

3. CASE STUDY: COVERAGE
In this section we present a small case study to investigate the ef-

fectiveness of an early prototype version of WEBMATE. To measure
effectiveness, we collect code coverage while WEBMATE explores
the application’s usage model. To put the resulting coverage val-
ues into context, we compare them to coverage values achieved by
humans.

Our technical setup is as follows: Table 2 lists the two subjects
in our study: JTRAC is a small issue tracker and HIPPO is a content
management system. Both projects are web applications written in
Java and are based on the APACHE WICKET web framework. We
specifically chose these projects as WICKET, in contrast to other

URL
Open Doc

Close

File Edit View

Find and Replace

…

…
…Web application

Usage model

Figure 2: Simplified example of a usage model. States in the model correspond to different states of the application, whereas
transitions in the model occur due to user interactions.

web frameworks, does not allow to encode logic into the HTML
templates. Instead, all logic must be encoded in Java, and therefore
the coverage results are more precise.

Both HIPPO and JTRAC require user authentication to access most
functions. To access this functionality, we generate user accounts
and provide the account data to both WEBMATE and the human
user. To measure code coverage, we instrument each subject using
Cobertura [10]. For our case study, we ran WEBMATE for 30 min-
utes on HIPPO and 10 minutes for JTRAC recording the coverage
for both subjects. One of the authors of this paper then used the
same amount of time to manually explore each application trying
to cover as much functionality as possible.

The results of our case study are summarized in Table 1. For
HIPPO, WEBMATE achieves significantly less coverage than man-
ual exploration. This is mostly due to form inputs that HIPPO ex-
pects when creating new documents, which cannot be synthesized
by WEBMATE at the moment. On the other hand, for JTRAC WEB-
MATE is able to cover almost the same amount of lines than manual
exploration. In contrast to HIPPO, JTRAC expects much lass struc-
tured input which is why WEBMATE achieves much better results.
Judging from our experiences with WEBMATE so far, we expect
that input generation is one of the biggest challenges to achieve ac-
ceptable coverage. Section 5 briefly discusses our ideas for work-
ing on this and other issues.

Overall, the results of our case study are encouraging but we by
no means claim that they are representative. Our choice of sub-
jects is biased since we were specifically looking for Java subjects
to be able to use Cobertura for coverage. Another issue is that
our results do not include coverage of JavaScript code executed in
the browser. Since modern web applications contain a consider-
able amount of JavaScript, server-side code coverage alone may be
misleading. However, in this case study we focus on comparing
manually and automatically achieved coverage. Since we use the
same measurement in both cases, we consider the impact of miss-
ing JavaScript coverage to be negligible for the overall tendency
of our results. Nevertheless, future evaluations of WEBMATE will
have to include JavaScript coverage.

4. CROSS-BROWSER TESTING
When you develop a web application, you have to check for

cross-browser compatibility: you have to ensure that your appli-
cation functions correctly across all, or at least the majority of web

Table 1: Coverage results for JTRAC and HIPPO.

Coverage (percent)

Name WEBMATE Manual

JTrac 30.53 31.49
Hippo 42.85 62.34

Table 2: Subjects included in the coverage study. Project size
is determined with David A. Wheeler’s SLOCCount.

Name Homepage Size (LOC)

JTrac http://www.jtrac.info 13,476
Hippo http://www.onehippo.com 46,371

browsers.1 This includes aspects like correct rendering of all page
elements as well as correct behavior of dynamic content, no matter
what web browser, what browser version, or what operating system
the user would use.

4.1 Classic Cross-Browser Testing
If you want to ensure cross-browser compatibility for your sim-

ple web site with ten static pages for 95 % of all your potential
visitors, you would have to open and check those pages in 22 dif-
ferent browsers [9]. Thus, you would have to check 220 rendered
pages one by one, and you would have to repeat that process after
each change to your site to check for possible regressions. While
this already would be a very tedious and time-consuming task, you
would require access both to browsers on different platforms, and
to ancient versions, which are not simply available on modern com-
puters, such as IE 6. Furthermore, if your web site would contain
forms that require user input, just to open those pages would not be
sufficient. You rather would have to interact with the site, which
would make the process even more complex and laborious—not to
mention modern web applications, which practically are made of
dynamic content that requires complex user interaction.

There are many tools available that help check for cross-browser
compatibility issues. These are either based on screenshots, requir-

1An intranet application where all users would use the same
browser software could be an exception.

http://www.jtrac.info
http://www.onehippo.com

ing you to manually inspect all the screenshots one by one (220 in
our example); or VNC-based, allowing you to interactively test dy-
namic content, such as AJAX-powered interfaces, in different re-
mote browsers (22 in our case).

All these tools are a long way from providing an automatic diag-
nosis. Currently, there are two services available that provide web
consistency testing 2 [3, 8]. In contrast to many of the services that
provide classic cross-browser testing, both services allow to crawl
a web site. That way, they are able to compute a diagnosis not only
for a single page, but for an entire web site. However, the underly-
ing crawlers are restricted to hyperlinks as they occur in static web
sites; thus, they are not able to cover a typical Web 2.0 application.

In the following, we will see how WEBMATE combines the tech-
niques described in Section 2 with web consistency testing, and
thus is able to automatically compute different comprehensive di-
agnoses for Web 2.0 applications. While WEBMATE’s diagnoses
include cross-browser compatibility issues among others, we will
concentrate on the former.

4.2 Cross-Browser Testing with WebMate
Whenever you want to run a software test, you need an oracle

that determines whether a given test has passed or failed. In the
case of classic cross-browser compatibility testing, that oracle is
a human being who manually examines, for instance, screenshots.
However, if you want to run tests automatically, you will need an
oracle that firstly is able to unassistedly decide whether a given
behavior is correct, and that secondly can be executed at will—
typically, a proper software program.

Tools that implement web consistency testing obviously require
an oracle of the latter type. For this purpose, web consistency test-
ing takes advantage of the way many developers approach web de-
velopment: they write code and keep checking the effects in their
favorite browser. Thus, in that reference browser, it is guaranteed
that a page looks and behaves as expected; that behavior serves as
reference. Having this baseline data at hand, we are able to check
against all respective browsers for which a cross-browser diagnosis
is to be computed; the latter we call x-browsers. Taking advan-
tage of both this automatable oracle and its feasibility to explore
Web 2.0 applications, WEBMATE is able to automatically derive
cross-browser issues for these in three steps:

Collecting reference data. First of all, WEBMATE has to collect
both the reference data in the reference browser and the cor-
responding data in all x-browsers. For this purpose, WEB-
MATE uses the techniques described in Section 2 to explore
all states in each browser. Furthermore, for each state the tool
serializes the DOM, and for all elements of interest, it anno-
tates the DOM with rendering information, like the element’s
position and other properties that could affect its visual rep-
resentation.

Comparing against reference. In a second step, WEBMATE com-
pares the previously collected data between the reference and
each x-browser; basically, the tool checks for each element
of interest whether it is rendered similary in the respective
x-browser. We cannot check for identical rendering, as this
would render the approach useless: Firstly, for most appli-
cations a small difference in a previously specified tolerance
range is acceptable. Secondly, to provide a diagnosis of high

2Web consistency testing subsumes cross-browser and functional
testing as well as regression testing. Most importantly, it aims to
automate diagnosing; for instance, web consistency testing auto-
matically checks for rendering issues across different browsers in-
stead of leaving that task to developers.

Figure 3: Calendar widget properly rendered in the reference
browser. WEBMATE highlights the correct boundaries of the
widget to make comparison easier for the developer.

Figure 4: In one of the x-browsers, the calendar widget is ren-
dered in principle, but with a height of 0. Here, WEBMATE
draws a line to indicate the invisible widget’s position.

quality we avoid to report consequential errors. For instance,
if a container element is misplaced, all the contained child
elements would be misplaced as well. Therefore, before we
check those child elements, we normalize their position rel-
atively to the parent container; only then, we compare the
relative positions of each child.

Producing a diagnosis. The diagnosis provided by WEBMATE in-
cludes both a textual description of the issue, as well as two
screenshots that show how the state is rendered in the refer-
ence and the respective x-browser. In the textual represen-
tation, the tool uses an unique XPATH expression that iden-
tifies the affected element. In the screenshots, WEBMATE
highlights the affected element as rendered in the respective
browser. Figure 3 shows an extract of how a calendar widget
is rendered in the reference browser; in Figure 4, you can see
that the calendar is missing in one of the x-browsers.

In addition to rendering issues as exemplarily shown above, WEB-
MATE is able to report missing functionality; for instance, a state
could be not reachable at all, because a web shop’s checkout button
may accidentally be inactive in one of the x-browsers. As WEB-
MATE knows all the interactions available in the reference browser,
it is able to report such issues—which no other approach is capable
of.

Lastly, WEBMATE runs checks like HTML and CSS validation for
each state to detect further browser-specific issues. That way, WEB-
MATE is able to automatically compute a comprehensive cross-
browser compatibility analysis for state-of-the-art Web 2.0 appli-
cations.

5. FUTURE WORK
In an area where manual testing still is the norm, automatic test

generation can tremendously assist developers in achieving and
maintaining the quality and reliability of their systems. By sys-
tematically covering JavaScript functionality as well as Web pages,
WEBMATE is applicable out of the box to a wide range of Web
applications; by checking against other browsers, WEBMATE can
easily detect a wide class of errors that take developers hours to
check.

The easy availability of automatic test generation for Web appli-
cations allows for other novel ways of testing. Rather than checking
against other browsers, WEBMATE may also check against earlier
versions of the application and thus detect regression errors. A
small set of well-placed assertions may suffice to easily detect ar-
bitrary run-time errors for all applications with a Web interface.

That being said, WEBMATE still faces a number of challenges,
all related to test generation. First and foremost, WEBMATE so
far is a pure black-box testing tool without any feedback from the
server side whether functionality in the code has been covered or
not. In future work, we will extend WEBMATE to include search-
based testing techniques in order to achieve even better coverage,
in a way similar to search-based system testing [6]. To that end, we
need to integrate coverage information for JavaScript as well as for
the server-side parts of the application. The second major goal is to
devise smart methods for string generation, e.g. generating sensible
inputs for fields such as names, addresses, ZIP codes, or likewise.
Both challenges are feasible in principle as in practice; and their
solution will help turning WEBMATE into a general-purpose testing
framework for web applications.

6. RELATED WORK
Research on analyzing and testing has gained momentum in the

last decade. The body of related work can be grouped into client-
side and server-side techniques.

6.1 Client-Side Techniques
One of the first approaches to analyzing dynamic web applica-

tions was by Benedikt et al. [2]. They introduced a framework
called Veriweb which is able to automatically test simple web ap-
plications. In contrast to WEBMATE, Veriweb does not aim for ex-
haustively testing all actions but rather limits analysis time in or-
der for the analysis to stop. Similar to WEBMATE, Veriweb also
features a semi-automatic form filling algorithm that lets the user
define mandatory inputs.

The work that is most similar to WEBMATE is a tool called Crawl-
jax by Mesbah et al. [7]. Crawljax is able to crawl AJAX based
web applications and extracts a state machine describing the ap-
plication. In contrast to WEBMATE, Crawljax uses a much more
low-level representation of the DOM to distinguish states. Also,
Crawljax has no notion of dynamically attached event handlers and
therefore has to resort to testing all elements on a web page if they
are clickable. Due to these limitations we expect that WEBMATE
would yield better results on modern web applications.

The work of Choudhary et al. [4] introduces a tool called Webdiff
for analyzing cross-browser inconsistencies (see Section 4). Webd-
iff analyses the DOM and compares the output of screen shots cap-
tured in different browsers. In contrast to this, the cross-browser
test application built on WEBMATE compares the rendering of in-
dividual elements in each browser and can thus be expected to pro-
vide much better results, in particular in the presence of browser-
specific contents such as adds.

6.2 Server-Side Techniques
In contrast to the previous approaches, the APOLLO tool also

analyses those parts of the application that reside on the server [1].
The main idea behind APOLLO is to use feedback-directed test gen-
eration to generate tests for the application. To improve the quality
of the tests, APOLLO uses symbolic execution of the code at the
server to direct the test generator towards unexplored areas of the
code. Currently, APOLLO is able to analyze PHP code, which limits
the applicability of the approach compared to WEBMATE. Never-
theless, the work of Artz et al. shows that including server side
code into the analysis has a strong impact on the amount of code
that can be covered by generated tests. In the future, we plan to
extend WEBMATE into this direction.

7. CONCLUSIONS AND CONSEQUENCES
Web applications have become an essential part of our daily lives

to shop, interact with other people, or perform financial transac-
tions. All of these services are delivered through a combination of
HTML, CSS and JavaScript. Programmers that maintain web appli-
cations have to deal with the increased testing effort this technology
mixture incurs. Systematic and automated testing of web applica-
tions is by no means the standard in industry.

Our WEBMATE project alleviates this problem by providing a
fully automatic means to analyze and navigate through a web ap-
plication. Users of WEBMATE no longer have to manually navigate
through a web page, but rather point WEBMATE to a certain state
they wish to establish and the tool takes care of it. A preliminary
case study shows that our early prototype already is able to achieve
coverage comparable to that of a human being.

A large number of approaches from security, performance and
regression testing can benefit from WEBMATE simply because they
can be applied in states that previously could only be reached man-
ually. As a proof-of-concept we show how WEBMATE can be used
to automatically test an application for cross-browser inconsisten-
cies, a task that used to be major pain for application developers.

Acknowledgments. This work was supported by the ERC Ad-
vanced Grant “SPECMATE—Specification Mining and Testing”.

8. REFERENCES
[1] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A

framework for automated testing of javascript web
applications. In ICSE, pages 571–580, 2011.

[2] M. Benedikt, J. Freire, and P. Godefroid. Veriweb:
Automatically testing dynamic web sites. In In Proceedings
of 11th International World Wide Web Conference (WWW
2002), 2002.

[3] Browsera, LLC. Browsera. http://www.browsera.com/.
[4] S. R. Choudhary, H. Versee, and A. Orso. Webdiff:

Automated identification of cross-browser issues in web
applications. In ICSM, pages 1–10, 2010.

[5] G. Code. Selenium. http://code.google.com/p/selenium/.
[6] F. Gross, G. Fraser, and A. Zeller. EXSYST: Search-based

GUI testing. In ICSE, 2012. To appear.
[7] A. Mesbah and A. van Deursen. Invariant-based automatic

testing of AJAX user interfaces. In Proceedings of the 31st
Int. Conference on Software Engineering, ICSE ’09, pages
210–220, Washington, DC, USA, 2009. IEEE.

[8] Mogoterra, Inc. Mogotest. http://mogotest.com/.
[9] NetMarketShare. Desktop browser version market share.

http://www.netmarketshare.com/.
[10] Sourceforge. Cobertura. http://http://sourceforge.net.

	1 Introduction
	2 Analyzing Web 2.0 applications
	3 Case Study: Coverage
	4 Cross-Browser Testing
	4.1 Classic Cross-Browser Testing
	4.2 Cross-Browser Testing with WebMate

	5 Future Work
	6 Related Work
	6.1 Client-Side Techniques
	6.2 Server-Side Techniques

	7 Conclusions and Consequences
	8 References

