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Abstract

In this paper we show how to obtain wax diffusivity and solubility values in crude oils from deposition measurements in
the cold finger device with stirring. Providing a rather accurate knowledge of such quantities is of great importance in pre-
dicting the wax deposition rate in pipelines. We present a mathematical model in which the physical quantities are assumed
to be space-independent in the bulk region of the device, because of agitation, so that mass transport occur in relatively
thin boundary layers. As a consequence the deposition phenomenon is accelerated with respect to the static device (see
[S. Correra, A. Fasano, L. Fusi, M. Primicerio, F. Rosso. Wax diffusivity under given thermal gradient: a mathematical
model, to appear on ZAMM]), shortening the duration of experiments. Comparison with some available laboratory mea-
surements shows a satisfactory agreement and the values obtained are in the range of those usually adopted by
practitioners.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

Waxy crude oils (WCOs) are mineral oils with high molecular weight paraffinic components (from C17 on)
which below the so-called Cloud Point temperature (denoted by Tcloud) may separate as a wax phase, causing a
series of severe problems during transportation along pipelines. One of the most important is certainly the for-
mation of a solid deposit on pipeline walls, (wax deposition). This phenomenon is of crucial importance in the
oil industry because it can cause the partial or total blockage of a line, causing production to decrease or halt.

Since pipeline blockage removal can be very expensive (for instance in submarine ducts) many industries are
interested in having a good understanding of wax precipitation and deposition processes.

Laboratory devices like test loops or the cold finger (a thermally controllable device used to simulate depo-
sition in static and dynamic conditions, see [1–4] are set up in order to simulate wax deposition in pipelines.
They can be used both for predicting the amount of deposit under specific physical conditions and for deter-
mining the main physical parameters like wax solubility and diffusivity.
0307-904X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Wax deposition is the result of different mechanical and thermal processes that occur under specific physical
conditions (for a general overview we refer the reader to [5,6]). Here we will investigate deposition in the cold
finger device (with stirring) when deposition is due only to molecular diffusion, a deposition mechanism
induced by the presence of a thermal gradient in the oil (see [5]).

Of course, the phenomenon differs from the one observed in the static case (see [1,2]). This is basically due
to the fact that agitation homogenizes all the relevant physical quantities, so that temperature and concentra-
tions can be considered uniform except for some boundary layers near the walls.

The experimental apparatus consists of a cylindrical thermostatic bath in which the oil is kept at a desired
fixed temperature until a metallic probe (maintained below the cloud point) is introduced and placed at the
axis of the cylinder. More precisely, the oil is initially charged in the bath and warmed over the cloud point.
Then its temperature is gradually lowered to a temperature Te which will be kept fixed throughout the exper-
iment. At this point the cold probe (which is at temperature Ti < Te with Ti < Tcloud) is co-axially inserted in
the bath. Simultaneously a mixer placed at the bottom begins to stir the oil. When the vicinity of the cold fin-
ger is saturated by wax the presence of a thermal gradient near the cold wall (in the bulk, temperature is homo-
geneized because of the stirring) induces a concentration gradient. The latter, by Fick’s law, produces mass
transfer of dissolved wax towards the cold finger, and thus deposition.

In [2] we have studied the case when the oil is static (no stirring). In that case we have observed that, in case
of initial complete saturation, the system evolves through three stages: (i) complete saturation, (ii) partial
desaturation, (iii) complete desaturation, the second stage being characterized by the presence of a desatura-
tion front moving from the warm wall towards the cold finger.

In the stirred case, because of homogenization, stage two does not exist and the system evolves from com-
plete saturation to complete desaturation. This is because in the bulk the parameters describing the wax con-
tent are independent of the radial coordinate.

In this paper we will present and analyze a mathematical model that allows the prediction of wax diffusivity
and solubility starting from deposition measurements. Conversely, the model allows us to predict the amount
of deposit once such parameters are known.

On the basis of available experimental data we will see that the wax diffusivity values that will be obtained
are in the range of the ones usually found in the literature (derived from classical correlations).

In this conceptual model we will suppose that the following simplifying assumptions are satisfied:

(i) deposition is due only to molecular diffusion,
(ii) the saturation concentration Cs (solubility) is a linear function of temperature T,

(iii) oil and wax have the same constant density q (typically 800 kg/m3, see [6]).

We denote by ctot, c�tot, c, G, Tcloud total wax concentration, initial total wax concentration, dissolved wax con-
centration, segregated wax concentration and cloud point respectively. Under the assumption that thermody-
namical equilibrium between dissolved and segregated phase is instantaneously reached we write
ctot ¼ cþ G; ð1:1Þ
G ¼ ½c� CsðT Þ�þ: ð1:2Þ
Moreover, since Cs(T) represents the amount of wax that can be dissolved at temperature T, we have
c�tot ¼ CsðT cloudÞ: ð1:3Þ
2. The mathematical model

We present here the mathematical model for wax deposition for the cold finger with stirring. Due to the
large thermal diffusivity, we assume that an equilibrium temperature profile is reached instantaneously. The
latter is characterized by a bulk zone at constant temperature Tb and two boundary layers near the walls.

The system evolves through two stages. In the first stage the deposition rate is constant and mass grows
linearly with time, while in the second stage the deposition rate tends asymptotically to zero (exponential
decay).
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Mass diffusion takes place in the boundary layer near the cold wall, where a thermal gradient is present. As
long as the bulk remains saturated the loss of wax due to deposition is balanced by dissolution of segregated
wax. When desaturation is achieved the deposition rate starts to decrease and the wax concentration in the
bulk tends to the saturation concentration corresponding to the cold finger temperature.

The deposit is formed by oil and wax and the wax fraction / is assumed to be independent of time. The
value of / is expected to be larger than in the static device and closer to the ones found in pipeline deposits
[7]. It will be shown that / has no influence on the final determination of wax diffusivity.

2.1. Thermal profile

Let us denote by r = Ri and r = Re the cold and warm wall radii. As stated above temperature is constant
except in two boundary layers near the walls. The thickness of the boundary layers is constant and denoted by
ri � Ri (cold wall) and Re � re (warm wall). The bulk temperature Tb is uniform, while in the boundary layers
T has a steady profile
T ðrÞ ¼ T i þ
T b � T i

ln ri

Ri

� � ln
r
Ri

� �
; Ri 6 r 6 ri; ð2:1Þ

T ðrÞ ¼ T e þ
T b � T e

ln re

Re

� � ln
r

Re

� �
; re 6 r 6 Re; ð2:2Þ
where Ti < Te are the temperatures at the inner and outer wall respectively (see Fig. 1).
To evaluate the thickness of the boundary layers we consider the heat flux per unit height through the

boundary layer Ri 6 r 6 ri
qi ¼ 2pRihiðT b � T iÞ; ð2:3Þ

where hi is the heat transfer coefficient at the cold wall. The flux qi has to be equal to
2kpRi

dT
dr
ðRiÞ; ð2:4Þ
where k is the thermal conductivity and
dT
dr
ðRiÞ ¼

T b � T i

ln ri

Ri

� � 1

Ri

ð2:5Þ
Fig. 1. Geometry of the system and thermal profile.
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is the thermal gradient at r = Ri. Imposing equality of (2.3) and (2.4) we get
ri ¼ Ri exp
k

hiRi

� �
; ð2:6Þ
which relates the boundary layer thickness to the heat transfer coefficient hi. In an analogous way we can show
that
re ¼ Re exp � k
heRe

� �
; ð2:7Þ
where he is the heat transfer coefficient at the warm wall. We may assume h = hi = he where h can be computed
(see [3]) using
h ¼ k

R1�m
i

qxðRe � RiÞ
2l

� �m

; ð2:8Þ
x being the rotational speed, l the viscosity and m = 0.628. Assuming typical values (see [8])
l ¼ 30 cP; x ¼ 500 rpm; q ¼ 800
kg

m3
; ð2:9Þ

k ¼ 0:1
W

m K
; Ri ¼ 0:017 m; Re ¼ 0:043 m; ð2:10Þ
we get
h ¼ 215:14
W

m2 K
; ð2:11Þ

ri � Ri ¼ 4:7� 10�4 m; ð2:12Þ
Re � re ¼ 4:6� 10�4 m: ð2:13Þ
The bulk temperature Tb can be obtained by imposing that the incoming heat flux entering r = Re is equal to
the outgoing heat flux in r = Ri, that is
RiðT b � T iÞ ¼ ReðT e � T bÞ:
We obtain
T b ¼
ReT e þ RiT i

Re þ Ri

: ð2:14Þ
In expressions (2.1) and (2.2) Tb has to be replaced by (2.14), and ri, re by (2.6) and (2.7). The complete
temperature profile becomes
T ¼ T i þ
hRiRe

k
ðT e � T iÞ
ðRe þ RiÞ

ln
r
Ri

� �
; Ri 6 r 6 ri; ð2:15Þ

T b ¼
ReT e þ RiT i

Re þ Ri

; ri 6 r 6 re; ð2:16Þ

T ¼ T e þ
hRiRe

k
ðT e � T iÞ
ðRe þ RiÞ

ln
r

Re

� �
; re 6 r 6 Re: ð2:17Þ
2.2. Evolution of the segregated phase and estimate of the desaturation time

From the assumption that Cs depends linearly on T (see [2] for a justification), we write
CsðT Þ ¼ CsðT iÞ þ bwðT � T iÞ; ð2:18Þ
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where the parameter bw can be obtained using asymptotic mass measures. After a sufficiently long time
(asymptotic stage) the dissolved wax concentration gradient becomes negligible and the dissolved wax concen-
tration tends to Cs(Ti). Thus we can write the following relation
1 Fro
system
smalle

2 We
Thus t
mw1 ¼ m1/ ¼ ðc�tot � CsðT iÞÞ
ðR2

e � R2
i Þ

2Ri

; ð2:19Þ
where m1 is the asymptotic deposit (per unit surface) and mw1 is the asymptotic mass of wax in the deposit.
From the knowledge of / and of the two measures m1

1, m2
1 (or alternatively from m1

w1, m2
w1) relative to two

different cold finger temperatures T1, T2, from (2.18) and (2.19) we get
½m1
w1 � m2

w1�2Ri

ðR2
e � R2

i ÞðT 2 � T 1Þ
¼ /

½m1
1 � m2

1�2Ri

ðR2
e � R2

i ÞðT 2 � T 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼b

¼ CsðT 2Þ � CsðT 1Þ
T 2 � T 1

¼ /b ¼ bw: ð2:20Þ
Notice that this formula does not contain the initial concentration c�tot.
Because of stirring, the segregated wax concentration G can be considered to be spatially uniform and we

shall write G = G(t). Let us suppose that the solution is initially saturated, that is c�tot > CsðT eÞ.
The thermal gradient in the region Ri < r < ri will induce the migration of dissolved wax towards the cold

finger. When dissolved wax reaches the cold surface it segregates and adheres to the surface forming a solid
deposit.1 At the same time G is depleted because the segregated phase is dissolved to replace the wax that has
been deposited.

Mass growth rate (per unit surface) at the cold wall is given by
_mw ¼ Dwbw

dT
dr

				
r¼Ri

¼ / _m ¼ Dw/b
dT
dr

				
r¼Ri

; ð2:21Þ
where Dw is the wax diffusivity2 and
dT
dr

				
Ri

¼ hRe

k
ðT e � T iÞ
ðRe þ RiÞ

ð2:22Þ
is obtained from (2.15). Mass balance is given by
p _GðR2
e � R2

i Þ ¼ �2pRiDwbw

hRe

k
ðT e � T iÞ
ðRe þ RiÞ

: ð2:23Þ
The left hand side of (2.23) represents the rate at which segregated phase is dissolved, while the right hand side
describes the deposition rate (both per unit height of the cylinder). Integrating (2.23) with the initial datum
Gð0Þ ¼ G0 ¼ c�tot � CsðT bÞ < q we get
GðtÞ ¼ G0 � Bt;
where
B ¼ 2DwbwhRiRe

k
ðT e � T iÞ

ðRe þ RiÞðR2
e � R2

i Þ
:

The desaturation time t0 is obtained imposing G(t0) = 0, that is
t0 ¼
G0

B
: ð2:24Þ
m experimental measures (see [1,8]) we know that the thickness of the deposit does not appreciably modify the geometry of the
. When dealing with G we may reasonably identify ri and re with Ri and Re, since the thickness of the boundary layers are much
r than the gap Re � Ri.
remark that the ratio _mw=bw (and hence Dw) is the same as the ratio _m=b evaluated using the mass of the deposit with oil inclusion.

he coefficient / has no influence in the computation of Dw.
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2.3. Evolution of solute concentration c

Recall that ctot = G + c. Due to agitation the solute will be uniformly distributed in the bulk and we write
c = c(t), in the global balance neglecting the slight (and opposite) corrections in boundary layers. During the
‘‘saturation’’ interval [0, t0] c = Cs(Tb), with Tb given by (2.14). For t > t0 the solution is unsaturated (G = 0,
c = ctot in the bulk) and the mass transport law (2.21) has to be changed to account for the effects of depletion
(see [7] p. 99). Depletion, i.e. wax transfer from the oil to the deposit, will be considered as the only mechanism
driving to the asymptotic limit, neglecting the influence of the deposit on the geometry and on the the thermal
field.

We denote the asymptotic value of the solute concentration by c1 =: Cs(Ti). Mass growth rate (per unit
surface) at the cold wall is
_mw ¼ kðc� c1Þ; ð2:25Þ

where k is a positive parameter (with the dimension of a velocity) to be determined. Mass balance is expressed
by
_cpðR2
e � R2

i Þ ¼ �2pRikðc� c1Þ: ð2:26Þ
Since at time t = t0 we have c(t0) = Cs(Tb), integrating equation (2.26) we obtain
cðtÞ ¼ c1 þ ðCsðT bÞ � c1Þ exp � 2kRi

ðR2
e � R2

i Þ
ðt � t0Þ

� �
; ð2:27Þ
that provides the solute concentration for t P t0. Obviously (2.27) requires the knowledge of c1, Cs(Tb) and k.
Total wax concentration can be written in the following way:
ctotðtÞ ¼
GðtÞ þ CsðT bÞ; 0 6 t 6 t0

cðtÞ; t P t0

�
ð2:28Þ
The function ctot is continuous in t = t0. In the next section we will see how to determine k.

2.4. The parameter k

Extending the validity of (2.25) to the saturation stage amounts to requiring that ctot(t), given by (2.28), is
continuously differentiable in t = t0. Accordingly, we impose
_Gðt0Þ ¼ _cðt0Þ;
that is (see (2.23) and (2.26))
2DwbwhRiReðT e � T iÞ
kðRe þ RiÞðR2

e � R2
i Þ
¼ 2RikðCsðT bÞ � c1Þ

ðR2
e � R2

i Þ
: ð2:29Þ
Recalling (2.14) and (2.18) we get
CsðT bÞ � c1 ¼
bwReðT e � T iÞ
ðRe þ RiÞ

; ð2:30Þ
which substituted into (2.29) provides
k ¼ Dwh
k
: ð2:31Þ
The plot of ctot(t) will be like the one shown in Fig. 2, with a linear behaviour up to the desaturation time t0

and with an exponential decay for subsequent times.
Obviously the plot in Fig. 2 shows the evolution of the solute concentration as well. We notice that the

latter is Cs(Tb) up to time t = t0 and then decreases exponentially to c1.
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Fig. 2. Total wax concentration as a function of time.
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2.5. The deposit and its evolution

Let us now consider the formation of the solid deposit layer on the cold wall. Denoting, as usual, by
mw(t) = /m(t) the deposited wax mass per unit surface (m(t) is the total deposited mass), we have
_mw ¼ Dwbw

oT
or

				
Ri

¼ DwbwhRe

k
ðT e � T iÞ
ðRe þ RiÞ

¼ kðCsðT bÞ � c1Þ; 0 6 t 6 t0; ð2:32Þ

_mw ¼ kðCsðT bÞ � c1Þ exp � 2kRi

ðR2
e � R2

i Þ
ðt � t0Þ

� �
; t > t0; ð2:33Þ
where the right hand sides of (2.32), (2.33) are the mass fluxes for the saturated and unsaturated stages respec-
tively. Integrating (2.32) with the initial datum mw(0) = 0 we find
mwðtÞ ¼ kðCsðT bÞ � c1Þt; 0 6 t 6 t0; ð2:34Þ

that indicates that the deposit grows linearly with time during the interval [0, t0]. At the desaturation time t0,
we have (see (2.24) and (2.30))
mwðt0Þ ¼
½c�tot � CsðT bÞ�ðR2

e � R2
i Þ

2Ri

: ð2:35Þ
Integrating (2.33) with the initial datum mw(t0) we obtain
mwðtÞ ¼ mwðt0Þ þ
ðR2

e � R2
i ÞðCsðT bÞ � c1Þ

2Ri

1� exp � 2kRi

R2
e � R2

i

ðt � t0Þ
� �
 �

: ð2:36Þ
From (2.35) and from (2.36) we see that the asymptotic value mw1 of deposited mass per unit surface is
mw1 ¼
½c�tot � c1�ðR2

e � R2
i Þ

2Ri

¼ ½c
�
tot � CsðT iÞ�ðR2

e � R2
i Þ

2Ri

¼ bwðT cloud � T iÞðR2
e � R2

i Þ
2Ri

; ð2:37Þ
as stated in (2.19). The plot of deposited mass of wax as a function of time is sketched in Fig. 3. The curve
shows a linear growth up to time t0 and then it tends asymptotically to mw1. The total mass of deposit m

is obtained dividing mw by /.



0

Fig. 3. Deposit as a function of time.
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3. Comparison with experimental data

Here we determine bw and Dw from some laboratory measurements and we compare our model with avail-
able data. In Fig. 4 some deposition measurements and wax fraction of the deposit obtained with a cold finger
with stirring are reported. The experimental data are taken from [3] and represent the total deposited mass m

and the wax fraction / at 16 h, for some temperature difference DT = Tb � Ti.
In all experiments bulk temperature is kept constant
T b ¼ 313:5 K;
varying the thermal gradient in the boundary layers. Fig. 4 refers to four different values of the difference
DT = Tb � Ti
DT ¼ 4:4 K; DT ¼ 8:3 K; DT ¼ 13:8 K; DT ¼ 25 K: ð3:1Þ
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Fig. 4. Deposited mass m and wax fraction / as a function of DT = Tb � Ti. Measurements are taken after 16 h.
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The cloud point is
T cloud ¼ 320:2 K;
the inner and outer radius of the cold finger are
Ri ¼ 0:017 m; Re ¼ 0:043 m:
3.1. Evaluation of bw through asymptotic mass measures

In Fig. 4 the wax fraction in the deposit is also plotted, so that we know the actual mass of wax deposit mw.
The parameter bw can be evaluated by means of (2.20) in the following way. We consider
DT 0 ¼ T b � T 0;

DT 1 ¼ T b � T 1;
where T0 and T1 are two different temperatures of the cold finger. We have
DT 1 � DT 0 ¼ T 0 � T 1:
From (2.20)
bw ¼
½m1

w1 � m0
w1�2Ri

ðR2
e � R2

i ÞðDT 1 � DT 0Þ
: ð3:2Þ
The question of how to exploit the available experimental data of Fig. 4 in formula (3.2) is rather delicate,
since it is never specified if the duration of the experiment is long enough to achieve the asymptotic values
of the deposited mass or, on the contrary, is short enough to fall in the linear regime. We stress that from
our arguments the correct experimental procedure, which should lead to an easy determination of both bw

and Dw, becomes clear: for each fixed DT various measures should be taken at different times in such a
way that the duration of the linear deposition regime and the asymptotic value of the deposited mass can
be deduced with sufficient accuracy.

The best we can do with the data at our disposal for deducing bw is to select the data corresponding to
DT0 = 13.8 K and DT1 = 25 K, for which the measured deposited mass m0

w, m1
w after 16 h are likely to be close

to the asymptotic values m0
w1, m1

w1. Thus it is reasonable to expect that using in (3.2) the difference m1
w � m0

w in

place of m1
w1 � m0

w1 does not produce a significant error. From the data of Fig. 4 relatively to DT1 = 25 K,

DT0 = 13.8 K,
DT 1 ¼ 25 K ! m1
w ¼ 0:016

kg

m2
;

DT 0 ¼ 13:8 K ! m0
w ¼ 0:0096

kg

m2
:

Thus, from (3.2)
bw ¼ 0:014
kg

m3 K
: ð3:3Þ
Although the starting point of this procedure is affected by the possible error in the estimation of the difference
m1

w1 � m0
w1, we can eventually evaluate the correctness of the procedure by using formula (3.10) below with

the estimated value of bw to obtain the theoretical values of m0
w1, m1

w1. If we perform this calculation with
references to Figs. 7 and 8 we find that the discrepancy is of about 3% (m1

w1 � m0
w1 ¼ 0:0061 kg=m2 instead

of m1
w � m0

w ¼ 0:0064 kg=m2), well within the order of accuracy here considered.
Once we have estimated bw, we can deduce the expected deposited mass at the end of the linear regime

mw(t0), to be used for the determination of Dw. Indeed
c�tot ¼ CsðT cloudÞ
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and
c�tot � CsðT bÞ ¼ bwðT cloud � T bÞ;

so that (2.35) yields
mwðt0Þ ¼
bwðT cloud � T bÞðR2

e � R2
i Þ

2Ri

: ð3:4Þ
Exploiting (3.3) in (3.4) we get
mwðt0Þ ¼ 0:0038
kg

m2
; ð3:5Þ
which is the value of deposited mass at desaturation time.

3.2. Evaluating Dw

In the linear growth phase, the deposition rate is constant and is given by
_mw ¼ Dwbw
oT
or

				
Ri

:

Thus
Dw ¼
m�w
t�

1

bw
oT
or

		
Ri

;

where m�w is a measure of deposited wax taken at time t* < t0, that is before desaturation (linear growth
regime). From (2.22)
Dw ¼
m�w
t�

kðRe þ RiÞ
bwhReðT e � T iÞ

: ð3:6Þ
Of course (3.6) still holds at time t = t0
Dw ¼
mwðt0Þ

t0

kðRe þ RiÞ
bwhReðT e � T iÞ

: ð3:7Þ
The desaturation time t0 depends on Dw. The greater is Dw the smaller is t0. From (2.14)
T bðRe þ RiÞ � RiT i ¼ ReT e;

T e ¼
1

Re

T bRe þ T bRi � RiT i½ �;

T e � T i ¼
1

Re

ðRe þ RiÞðT b � T iÞ½ �;
so that
T e � T i ¼
1

Re

ðRe þ RiÞDT½ �:
Formula (3.6) becomes
Dw ¼
m�w
t�

k
bwhDT

: ð3:8Þ
To determine Dw we need to know DT, k, h, bw and a deposition measure m�w at some time t* less or equal
than the desaturation time t0. Surely m�w < mwðt0Þ if t* < t0. Looking at Fig. 4 we see that the measure
mw
cDT relative to cDT ¼ 4:4�K is smaller than mw(t0). Indeed
mw
d4:4�K ¼ 0:0034

kg
m2 < mwðt0Þ ¼ 0:0038

kg

m2
:
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This means that such measure is taken during the linear growth regime. Thus we evaluate wax diffusivity by means
of (3.8) with m�w ¼ mw

d4:4�K, t* = 16h, DT = 4.4 K, h, k given by (2.10), (2.11) and bw given by (3.3). We get
Dw � 4:4� 10�10m2=s: ð3:9Þ
At this point we may use the values of bw e Dw to plot the mass growth vs time for different DT. We make use
of (2.36) with k given by (2.31), that is
mwðtÞ ¼ mwðt0Þ þ
bwðR2

e � R2
i ÞðT b � T iÞ

2Ri

1� exp � 2DwhRi

kðR2
e � R2

i Þ
ðt � t0Þ

� �
 �
: ð3:10Þ
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Fig. 5. DT = 4.4 K, t0 � 18 h.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6

7

8

9
x 10

3

Time, sec

D
ep

os
ite

d 
m

as
s,

 K
g/

m
2

(t
0
,m

w
(t

0
))

Fig. 6. DT = 8.3 K, t0 � 7 h.
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We notice that the wax diffusivity Dw depends on the heat-transfer model used to determine h (see (3.8))
whereas the relevant quantity for predicting mass deposit (besides bw) is the product Dwh. A different heat-
transfer model would produce different h and Dw, the product Dwh remaining the same. Of course this is a
delicate point of the model since there is no general agreement on the way of determining the heat transfer
coefficient h.

Formula (3.10) allows to validate our original guess for bw. Growth curves are shown in Figs. 5–8. Con-
tinuous lines are plotted using (3.10), while stars represent experimental mass measures at 16 h. The point
(t0, mw(t0)) is also plotted. We notice that only the measure with DT = 4.4 K is in the linear stage and that
the desaturation time decreases as DT increases. We remark however that formula (3.10) with the values of
bw, Dw deduced using the three sets of data D T = 4.4 K, DT = 13.8 K, DT = 25 K actually fits the fourth
datum DT = 8.3 K very nicely (see Fig. 7). This is an additional validation of the model.
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Fig. 7. DT = 13.8 K, t0 � 4 h.
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Fig. 8. DT = 25 K, t0 � 2 h.
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Other experimental data, unfortunately limited to the unique measure for a temperature difference between
the warm and the cold wall of 17 K can be found in [9]. Of course bw cannot be evaluated since we need at least
two different asymptotic mass measures. However, if we use a typical value bw � 0.015 kg/( m3 K) we find D w �
3.5 · 10�10 m2/s.

4. Conclusions

We have presented a model for wax deposition in a cold finger device with oil stirring. The model allows to
determine wax solubility and diffusivity from experimental measurements. Such parameters are of crucial
importance for determining deposition rates in pipelines. The transfer of dissolved wax towards the cold finger
wall (driven by molecular diffusion) takes place in a boundary layer where the temperature profile is calculated
in terms of the geometry of the device and of the heat transfer coefficient (expressed as a function of the stir-
ring speed and of the physical properties of the oil).

The formation of the deposit is discussed as a two-stage process. In the first stage the oil is saturated by wax
and in the second stage is not. The model predicts that the deposition rate is constant during the first stage and
allows to compute the time of transition to the second stage. The evolution of wax concentration during the
unsaturated regime is calculated, showing that the mass of solid wax deposited tends exponentially to its
asymptotic limit. Using the experimental data of [3] we deduce reliable values for wax solubility and diffusiv-
ity, on the basis of which the growth of the deposit can be predicted in given experimental conditions.

Although the number of data we have used is small, we could exploit the fortunate circumstance that two of
them fall close to the asymptotic regime and one in the linear growth regime. This was enough to start the
procedure of evaluation of the desired quantities and eventually to validate the model on the basis of further
verifications.
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