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Abstract   In this paper, the effects of two different Particle Size Distributions (PSD) on packing 
behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel 
algorithms have been reported. A mersenne twister algorithm was used to generate pseudorandom 
numbers for the particles initial coordinates. Also, for this purpose a nanosized tetragonal confined 
container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Log-
normal PSDs were chosen to investigate the packing behavior in a 3D bounded region. The effects of 
particle numbers on packing behavior of these two PSDs have been investigated. Also the 
reproducibility and the distribution of packing factor of these PSDs were compared. 
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آل توسـط     هدر اين مقاله تاثير دو توزيع اندازه ذرات بر روی رفتار تراکمی نانوذرات کروی صلب ايـد                چكيده          

الگوريتم مرسن تويستر به منظور توليد اعداد شبه تصادفی         . يک مدل تراکم با الگوريتم موازی گزارش شده است        
بدين منظور از يک محفظه مکعب مـستطيلی شـکل بـا قاعـده              . شده است   برای مختصات اوليه ذرات بکار گرفته     

نرمـال بـه منظـور بررسـی رفتـار           - زن و لگاريتم  توزيع اندازه ذرات آندريا   . استفاده شد ) nm ۳۰۰×۳۰۰(مربعی  
تاثير تعداد ذرات بـر رفتـار تراکمـی ايـن دو            . شده است   بعدی ذرات در يک ناحيه محدود بکارگرفته        تراکمی سه 

 و نيز تکرارپذيری و توزيع ضـريب تـراکم در ايـن توزيـع ذرات                 توزيع اندازه ذرات بطور گسترده بررسی شده      
  .شده است  مقايسه

 
 

1. INTRODUCTION 
 
Random packing of particles has been studied for 
many years because of their interesting geometrical 
properties and technological applications in porous 
media [1]. The term of particle ‘Packing’ means 
‘putting together’ and ‘arranging’ particles in a 
confined space. Random packing means that all 
particles of the same size and shape have the same 
probability to occupy each unit volume of a 

mixture [2]. Particle packing in ceramic processing 
has a significant effect on shrinkage and density of 
bodies during sintering as well as the properties of 
the final products. It also affects the efficiency of 
powders during compaction and the final surface 
properties and corrosion behavior of powder 
metallurgy products [3-9]. 
     Research on particle packing can be classified 
into three approaches: experimental, theoretical, 
and numerical (computer simulation). Due to 
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difficulties associated with experimental methods 
of investigating packing behavior theoretical and 
computational approaches are usually preferred 
[10]. 
     Many parameters affect the packing characteristics 
of particles, such as particle size distribution (PSD), 
particle shape, interparticle friction, elasticity, surface 
chemistry (interparticle forces), agglomeration and 
vibration (rearrangement of particles upon 
shaking) [11-20]. Among these parameters, due to 
its ease of adjustment in technical applications 
particle size distribution is probably the most 
significant. 
     Random sphere packing has been used as 
porous media models to simulate pore-scale 
phenomena such as drainage and imbibition, 
dispersion, sorption and diffusion, flow through 
porous media and transport properties [21,22]. 
Most of the algorithms for random packing of 
spheres fall into two major types of models: 
sequential addition and collective rearrangement 
models. In the sequential addition models, new 
particles are added to the existing system. 
Subsequently, the newly added particles are moved 
to a stable place that all momenta made by the 
gravity and the supports satisfy each other [23]. In 
the collective rearrangement models, the particles 
coordination are randomly generated and they are 
allowed to overlap. After this stage, the relaxation 
process is done to separate overlapped spheres to 
reach the stable position [24]. 
     The former may result in lower packing factors 
in comparison with experimental values while the 
latter method gives a non-realistic network of 
contacts [25]. 
     A random variable x is said to be Log-normally 
distributed if log (x) is normally distributed. Only 
positive values are possible for the variables, and 
the distribution is skewed to the left. Two 
parameters are needed to specify a Log-normal 
distribution. Traditionally, the mean µ and the 
standard deviation σ (or the variance σ2) of log (x) 
are used. However, there are clear advantages in 
using “back-transformed” values (the values are in 
terms of x, the measured data): 
 
μ*: = eμ (1) 
 

σ*: = eσ (2) 
 
X ~ Λ (μ*,σ*) is then used as a mathematical 

expression meaning that X is distributed according 
to the Log-normal law with median µ* and 
multiplicative standard deviation σ*. The median 
of this Log-normal distribution is med (X) = μ* = 
e∝, since µ is the median of log (X). The 
dispersions produced by milling, grinding or 
crushing provide examples of powders with Log-
normal distribution [26]. 
     In the late 1920s Andreasen and Andersen 
developed a continuous particle size distribution for 
the particles packing [27]. Although Andreasen’s 
work had not received much attention when it was 
published, it has gained increasing recognition 
recently [28]. 
     Packed particles can be unconfined where there 
are no containing walls or when particles can be 
packed in a wide variety of structural containers. 
The bounding region affects the packing properties 
of particles that are important in the investigation of 
nano-sized systems. In the case of random packs, a 
so-called wall effect exists because the proximity of 
a solid surface will introducing some local order 
into a random packing. Thus, the particles next to 
the solid surface tend to form a layer of the same 
shape as the surface. This so-called base layer is a 
mixture of a cluster of square and triangular units. 
Randomness increases with increasing distance 
from the base layer, with resultant disappearance of 
the distinct layer. Another important aspect of wall 
effects is the existence of a region of relatively high 
void age next to the wall due to the discrepancy 
between the radii of curvature of the wall and the 
particles [29]. Also no rearrangement was done to 
the particles in their stable state. 
 
 
 

2. MODELING 
 
We assumed particles to be ideal rigid hard sphere 
with two different particles size distribution i.e. 
Andreasen [30] Equation 3 and a typical Log-
normal [31] Equation 4 with equivalent parameters. 
Thus the particles are designated by the coordinates 
of their centers and radii. 
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Where D is particle diameter, Dmax is the largest 
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particle size and n is the distribution modulus. 
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In this work, it is assumed that the friction is 
infinite. This assumption affects the obtained 
values for the packing factors but doesn’t affect 
the behavior of the system from a standpoint of 
reproducibility, also the assumption affects both 
PSD’s packing factor values so their reproducibility 
can be compared [32,33]. 
     A simple Cartesian coordinate system is 
applied to all of the computations inside the 
simulation environment. Coordinates in the system 
are referred to as either X, Y and Z. The 
environment is oriented so that the Z-axis is in 
the direction of the gravitation field and the 
origin set in the corner of the container in the 
simulation process. 
     A boundary region was a tetragonal confined 
container with a square floor. The bottom of the 
container is flat and located on the X-Y plane, as 
shown in Figure 1. All the locations, movements 
and forces are described and stored in the 
coordinate system through the simulation. As 
particles exhibit spherical symmetry, it’s 
sometimes useful to do computations on a particle 
using spherical coordinates, (where the origin is 
the center of the mass). For these cases all vectors 
have been described in the spherical coordinates: 
α, θ and r, where α describes angle on the X-Y 

plane (between 0 and 2 π), θ describes angle on 
the vector and the Z axis (between 0 and π) and r 
is the length of the vector. This coordinate system 
was used to estimate the stability of particles in 
the presence of three or more contact points. 
     Walls of the packing space (container) are 
described in a similar way to the particles. The most 
significant difference is in considering walls to be 
unmovable. 
 
 
 

3. PACKING ALGORITHM 
 
A novel time-independent model for the packing of 
particles based on the Event Dynamics (ED) model 
has been created. The collisions were considered to 
be soft. This naturally requires the simulation to 
compute the effects several times during the 
collision. This causes the model to require more 
computational power than conventional ED model 
but in the case of no collision occurrence, the 
present model works much faster. 
     The particles’ X-Y coordinates were randomly 
generated. The particle then drops until it reaches 
the floor (Z = 0) or another particle. The falling of 
particles into the container was in random sequence. 
The particle’s height (Z) found from the statical 
stability of the particles on each other. The resulting 
state may be described as random loose packing 
[34]. 
     The stability of particles calculated based on 
the location of the particles existing in the 
container and the next movement of the particles 
in each calculation step determined from particle’s 
coordinate and its contact points with boundary 
walls or other particles. 
     If the falling particle contacts with the 
existing particles in the container, the dropping 
particle will roll around the standing particle 
towards the ground. If a second particle is 
encountered in the process, the dropping particle 
will roll around the first and second standing 
particles until a third or more contacts (the floor, 
another particle, or a wall) when the momenta 
about each contact point is computed and if they 
satisfy each other, the particle is reached to its 
stable position. This deposition process is deterministic, 
after starting the location and particle size are 
randomly generated. 

 
 
 

 
 
 

Figure 1. 3D image of a typical Andreasen packing. 
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4. PARALLEL ALGORITHM AND 
IMPLEMENTATION 

 
The present parallel algorithm for computing 
packing factors uses an implicit parallelism 
paradigm. In every stage of parallelism each task is 
the result of the partitioning algorithm invoked at 
the first iteration of the program that uses functional 
decomposition. This partitioning and using implicit 
parallelism leads this researcher to the point where it 
can send these tasks to each node in the cluster. 
Also, load balancing is achieved by the sending of 
the next tasks who send their result surely if the 
checking algorithm finds that the data sent by the 
node is incomprehensive it sends again the task to 
another node and if the node gives the standard 
result the data will be accepted and the node which 
has given the wrong result will be given a negative 
point. If the node reaches a threshold it will be 
disbanded by the server and its tasks will be given 
to other nodes. The tasks which will be executed on 
the node have the same order of computation and 
will be finished simultaneously. If the other that has 
been given the task sends the wrong result again that 
will mean that the task has a problem so it will be 
registered on a file with initiation and will be 
checked by hand on another system to find the 
problem. After discarding and registering the tasks 
the server will resume its work on other tasks. 
     The parallel algorithm has been implemented 
using the MPI library and MPICH2 implementation. 
This implementation enabled the researcher to use 
Visual Studio. NET 2003 to produce more high 
quality codes that are optimized for systems with 
Microsoft Windows XP service pack 2 operating 
system. This MPI implementation has an advantage 
over other system PVM which does not completely 
support object orientation. Complete object 
orientation was tried in the use of the present code 
so as to utilizes the said code for future simulations. 
The result was a higher order of compatibility with 
different softwares and so the researcher was able to 
feed the wanted results to other simulation tools 
with adding a suitable formatting package to the 
said code and produce suitable result. 
     The hardware used in the simulation consisted of 
six dual processor PCs with 512 MB RAM which 
one of them was used for replication of data. These 
PCs were connected together in a star topology. 
Each simulation took almost 72 hours and the data 

was gathered in the server. 
 
 
 

5. PACKING FACTOR 
 
After finalizing the packing of particles in the 
container, to calculate the amount of packing 
factor, the normal height of box that has the 
average planar density of particles at the top height 
plane was found. The average particles planar 
density starting from bottom to half of the 
maximum particle’s height was then calculated. 
     The packing factor of the particles obtained 
from the division of total volume of particles 
involved in the normal box with its volume. 
 
 
 

6. RANDOM NUMBERS 
 
The present method for generating random 
numbers in the Mersenne twister complies with 
MT19937 standard which is 32-bit length number 
generator. This algorithm produces pseudorandom 
numbers which has a very long period length. Its 
main advantage is that it will be produced very 
rapidly due to use of bitwise operators and the 
algorithm. Although the production is fast, the 
produced numbers are of very high qualitative and 
due to this long period it can be used in highly 
repeated algorithms which need a lot of random 
numbers in each repetition. The other advantage of 
this algorithm is the higher order of dimensional 
equi-distribution comparing to the other algorithms 
and passing diehard tests [35,36]. In each case, 
four random seeds for Mersenne twister algorithm 
were used. 
 
 
 

7. CALCULATION PARAMETERS 
 
The accuracy of all calculation was 0.0001 nm. 
The areas under the PSD diagrams were assumed 
to be 500 (i.e. equal to 500 particles) for 800 
samples and various numbers of particles (i.e. 
100,200,300,400 and 500) was used to simulate 50 
samples. Distribution modulus of Andreasen PSD 
was assumed to be 0.5. The integration of the PSD 
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diagrams were done by 1 nm steps in lower-
Riemann method. The area of the bottom plane of 
box was 300×300 nm. Minimum and maximum 
diameters of particles were 1 nm and 60 nm, 
respectively. The median of Log-normal PSD was 
assumed to be 30 nm. 
 
 
 

8. RESULTS AND DISCUSSION 
 

Riemann Integration of Particle size distribution 
and its truncation cause inaccuracy in the calculation 
of particle numbers. Table 1 lists the total particle 
numbers resulted from integration of PSDs. Also, 
the particle size distribution of Log- normal and 
Andreasen are shown in Figures 2 and 3, 
respectively. 
     In general, increase in friction coefficients of 
particle-particle and particle-wall contact points 
results in decreasing of packing factor. This is the 

main reason why the present simulations generated 
relatively low packing density. Furthermore, small 
size of boundary region in relation to particles size 
imposed spatial blockage for further densification 
due to introducing some local order into random 
packing. 
 
8.1. Log-Normal   Figure 4 illustrates the 
histograms of obtained packing factor values for the 
100, 200, 300, 400 and 500 particles, respectively in 
50 packing simulation processes. The behavior of 
the packing factor by increasing of particle numbers 
is represented in Figure 5. 
     Increasing the particles number will result in 
decreasing the walls area to particles number 
ratio. As it can be seen in Figure 4, by increasing 
the particle numbers, the packing factor 
increased. This phenomenon can be the result of 
the decreasing wall effect. Also, by increasing 
particle numbers the numbers of smaller 
particles increase and because of their ability to 

TABLE 1. Particles Number Resulted from Integration of PSDs. 
 

Particle Size Distribution Initial Numbers of Particles Truncated Number of Particles 

Log-Normal 100 62 

Log-Normal 200 157 

Log-Normal 300 247 

Log-Normal 400 341 

Log-Normal 500 432 

Andreasen 100 59 

Andreasen 200 149 

Andreasen 300 241 

Andreasen 400 332 

Andreasen 500 426 
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fill the voids, the packing factor was increased as 
indicated in Figure 5. 
     The decreasing of packing factor ranges is 

obvious in Figure 5. The explanation of this 
phenomenon is that there is an increasing of 
particle numbers resulting in decreasing voids 

                                      
 

Figure 2. Particle size distributions of (a) 100, (b) 200, (c) 300 and 
(d) 400 particles in Log-normal distribution. 

 
 
 

                                      
 
 

Figure 3. size distributions of (a) 100, (b) 200, (c) 300 and 
(d) 400 particles in Andreasen distribution. 
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fraction. Thus, the range of packing factor 
distribution gets narrower. 

8.2. Andreasen   Figure 6 illustrates the histograms 
of obtained packing factor values for the 100, 200, 

                 
 
 

Figure 4. Histograms of obtained packing factor values for the (a) 100, (b) 200, (c) 300 and 
(d) 400 samples in Log-normal Particle Size Distribution. 

 
 
 

 
 
 

Figure 5. The effect of particles number on the packing factor distribution of Log-normal Particle Size Distribution. 
The packing factor ranges are indicated as vertical bars in the figure. The curve maps to the median values of 

packing factor distributions. 
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300, 400 and 500 particles, respectively in 50 
packing simulation processes. The behavior of the 
packing factor by increasing particle numbers is 
represented in Figure 7. 

     As cited in former sections, increasing the 
particles number will result in a decrease of wall 
area to particles number ratio. Hence, by increasing 
the particle numbers, the Andreasen PSD packing 

 
Figure 6. Histograms of obtained packing factor values for the (a) 100, (b) 200, (c) 300 and 

(d) 400 samples in Andreasen Particle Size Distribution. 
 
 

 
 

Figure 7. The effect of particles number on the packing factor distribution of Andreasen Particle Size Distribution. The packing 
factor ranges are indicated as vertical bars in the figure. The curve maps to the median values of packing factor distributions. 
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factor also increased (Figure 6). 
     The decreasing of packing factor ranges is obvious 
in Figure 7. The explanation of this phenomenon is 
the same as log-normal PSD with this difference 
that the more small size particles in Andreasen 
PSD exist. 
 
8.3. Reproducibility   Figure 8 illustrates the 
histograms of obtained packing factor values for 
500 particles, respectively for Log-normal and 
Andreasen Particle Size Distributions in 800 
packing simulation processes. This procedure 

was to investigate the effect of particles size 
distribution on 3D packing of particles’ 
reproducibility. 
     As can be seen in Figure 8, the packing factor 
of Andreasen PSD shows wider distribution range 
in comparison with Log-normal PSD. There are 
two possible sites for small particles. They can fill 
the voids larger than their radii or behave as a 
support for the subsequent bigger particles. This 
procedure can produce samples with various 
packing factors. This mechanism leads to lower 
reproducibility in Andreasen PSD in comparison 

 
Figure 8. Histograms of obtained packing factor values for the (a) Log-normal, (b) Andreasen particle Size 

Distribution for 500 particles in 800 packing simulation processes. 
 
 
 

 
 

Figure 9. Comparison between Log-normal and Andreasen particle Size 
Distribution with increasing particles numbers. 
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with Log-normal. 
 
8.4. Comparison   As can be seen in Figures 2 
and 3, by increasing particle numbers, the 
proportion of smaller particles increases, but this 
increase in Andreasen is more than Log-normal 
PSD. According to the explained mechanism of 
smaller particles behavior, filling of voids in 
Andreasen PSD is occurred more than Log-normal. 
This phenomenon causes a tangent slope of the 
particle numbers vs. packing factor curve to 
increase (Figure 9). 
 
 
 

9. CONCLUSION 
 
A novel model for simulating random packing of 
particles has been developed. The model was used 
to generate packing systems based on Andreasen 
and Log-normal PSDs. The results implicate an 
increase of packing factor by increasing particle 
numbers in both PSDs. With increasing particle 
numbers, next to the decreasing in packing factor 
ranges, in both Andreasen and Log-normal PSDs; 
the packing factor of Andreasen PSD grows more 
rapidly than Log-normal. Also the packing factor 
of Andreasen PSD shows wider distribution range 
in comparison with Log-normal PSD. 
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