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Abstract. We obtain the induced action F[h, b] for chiral W3 gravity in the c ~  ___ 
limit from the induced action of a gauged Sl(3, R) Wess-Zumino-Witten model by 
imposing constraints on the currents of the latter. In the process we find a closed 
gauge algebra for the gauge sector of W3 gravity in which the currents T and W 
become auxiliary fields. An explicit realization of T and W in terms of the gauge 
fields is given. In terms of new fields r and s, which are a generalization of 
Polyakov's f variable for ordinary gravity, the complete induced action 
l-'[h, b; c ~  _ 0o] becomes local. 

1. Introduction 

Gravity in two dimensions has been extensively studied. Surprisingly, it was found 
that in the weakly coupled regime (c < 1), three equivalent descriptions exist for 
d = 2 gravity. There is the direct approach which starts from the induced action for 
d = 2 gravity: 

r= Idx  (1.1) 

This action has been studied both in the conformal gauge, where it reduces to the 
Liouville action, and in the light cone gauge where it becomes the Polyakov action 
[1]. In both cases Eq. (1.1) becomes local. 

An alternative approach relies on a discretization of the two-dimensional space 
and leads to the study of matrix models. A third formulation of d = 2 gravity theory 
is through a topological quantum field theory. 

* Work supported in part by NSF grant No. PHYS 89-08495 
** Address after September 1, 1991: Physics Department, U.C. Berkeley, Berkeley, CA 94720, 
USA 
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In two dimensions, there exist higher spin extensions of gravity. These theories 
are based upon an algebra which is of W type. Reviews of the recent activity in this 
field, which so far mainly focussed on the classical theory, can be found in [2]. In 
this paper, we focus on quantum W3 gravity in the chiral light cone gauge, with 
gauge fields h_ _ and b . . . .  Our main result, which we present in Sect. 4, will be an 
all order result for the induced action of W 3 gravity, which is exact in the limit of 
large c. We will derive this action by using the hidden Sl(3, R) symmetry in the 
theory. 

Before we come to this, we will first, in this introductory section, review some 
algebraic aspects of classical and quantum gravity theories and indicate how they 
generalize to the case of d = 2 I413 gravity. In Sect. 2, we will then review the 
treatment of d = 2 induced gravity as a reduced Sl(2, R) Wess-Zumino-Witten 
(WZW) model. In Sect. 3, we discuss induced W3 gravity, both for infinite and for 
finite central charge c. After the presentation of our main results in Sect. 4, we will, 
in Sect. 5, discuss some ideas about the geometry of W3 gravity, which we base on a 
"W3 superspace." We will also comment on the construction of the covariant 
induced action and on the description of 1413 gravity coupled to minimal W3 matter 
systems through matrix models and topological quantum field theories. 

The results of this paper for the induced action of quantum W3 gravity extend 
the results of [3], where the lowest terms (through 3-loop, but without restricting c 
to be large) of the induced action were computed explicitly. We will argue that the 
full effective action, which includes the effects of fluctuations in the quantum fields 
h__ and b . . . .  is obtained from the action constructed in this paper, by 
renormalizing some constants, which are the level k=  c/24+.. ,  of the Sl(3, R) 
algebra and z-factors for the fields h__ and b___ (see [4], for a detailed 
discussion). 

Let us now briefly elucidate the algebraic structure underlying classical and 
quantum (induced) gravity. The general starting point is the construction of a 
gauge theory for some algebra, which is then supplied with constraints on the 
curvatures. One uses here the observation that a general coordinate transforma- 
tion on a gauge field can be written as a field dependent gauge transformation 
modulo terms proportional to the Yang-Milts curvature. Indeed, consider an 
infinitesimal general coordinate transformation with parameter 4, on a gauge 
field A: 

6getA~t = ~V~A~ + ~u~Av 
= 0,(~. A) + [4" A, Au] + ~VRvu. (1.2) 

By putting certain curvature tensors to zero, general coordinate transformations 
become equal to gauge transformations [5]. In gravity one puts the curvature 
tensors corresponding to the translations (which are among the gauge trans- 
formations) to zero. This has two implications: 

i) The spin connection (the gauge field associated with local Lorentz trans- 
formations) can be solved in terms of the vielbeins (the gauge fields associated 
with translations). 
ii) Local translations are identified with general coordinate transformations. 

In the two-dimensional case one starts with the group Sl(2, R) with its Lie 
algebra generated by T+ and T o, 

[T o, T+] = ___2T+, (1.3) 

[T+, T_] =2To, 
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where 2 is a real constant. For  2--*0, this algebra reduces the Poincar6 algebra in 
two dimensions, ISO(2). The gauge fields A -+ and A ~ transform as usual 

6A + =drl + ___2~~ + T- 2r/+A ~ , 
(1.4) 

3A~176 + 2q+A - - 2 q - A  + , 

and one has the curvature tensors 

R + =dA +- _T_2A o ̂  A + , 
(I .5) 

R ~ 1 7 6  + A A - .  

According to the previous discussion, one now puts R + = 0  and solves this 
constraint for A ~ The resulting theory describes an anti-De Sitter gravity theory 
with zweibeins A +. One could wonder whether an additional constraint R ~  0 
(constant Riemann curvature) makes sense. This condition is dynamical and can 
be viewed as the equation of motion for the effective gravity theory. Indeed, 
parametrizing the zweibeins as 

A + =e~~ A -  =e~~ (1.6) 

one finds that in the chiral gauge, h+ + = 0 and q~+ = q~_ = 0, the constraint is 
02h . . . .  22 and in the conformal gauge, q~ + = ~0 _ and h_ _ = h + + = 0, one gets 
0ffq~ = 2 exp(2~o). One sees that in the conformal gauge, one obtains the Liouville 
equation, which is indeed the equation of motion for the induced action of d = 2 
gravity. The interpretation in the chiral gauge is not completely clear. Upon  taking 
an extra derivative one obtains 33h_ _ = 0, which is indeed the equation of motion 
of  the induced gravity theory in the chiral gauge. (Use Eq. (2.24) and the on- 
shell condition u =  0.) 

In [-6, 7], it was shown that gauge fixing the symmetries generated by T+ and T o 
by putting A ~ = 0 and A7 = constant, results in the fact that A~- can be viewed as 
the light-cone component  h_ _ of the metric. Surprisingly, Az + transforms then as 
the effective energy-momentum tensor under the remaining T_ transformation. 
Two of the curvature constraints turn out to be algebraic again, while the third one 
reproduces the Ward identity of induced gravity. Starting from the observation 
that the curvature constraints can be seen as the Ward identities for a gauged 
Wess-Zumino-Witten theory in the light-cone gauge, one can solve the gravita- 
tional Ward identity (i.e. construct the induced action) using the known induced 
action of the gauged Wess-Zumino-Witten model. This will be shown in the next 
section. Though at first this looks rather arbitrary, a more systematic derivation 
can be given, along the lines of [6], by starting from an Sl(2, R) Chern-Simons 
theory in 2 + 1 dimensions. 

Finally, let us give some comments on the situation for W 3 gravity [-2]. The 
quantum W 3 algebra [8] is generated by {L", W.; m, n~Z}  with commutat ion 
relations: 

C 2 [L,. ,  L . ]  = ]~  m(m - -  1)6,. +,, ,  o + ( m  - n ) L "  + , , ,  

[L,,, W,] = (2m-- n)W,+,,  
(1 .7) 

[Wm, IV.] = ~ 0  re(m2 -- 1)(m2 -- 4)6,. +., o 

n + 3  1 + ( m - - n ) { ~ ( m +  ) (m+n+2) - -~ (m+2) (n+2)}L , .+ .  

+ ~(rn-n)A,.+. , 
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where 

and 

16 
fl = 22 + 5----7' (1.8) 

A,,,= Z :L,,,_,,L,,: -- ~-~, (m+ 3)(m+ 2)L,,,, (1.9) 
t l E Z  I U  

and the normal ordering prescription is given by 

:L,,,L,,: = L,,L n if m < -- 2 

=L,L, ,  if m > - 2 .  (1.10) 

As can be seen from Eq. (1.7), the novel feature of W type algebras is the 
appearance of composite terms at the right-hand side of the commutators. The W 3 
transformations globally defined on the sphere are w = {L• i, Lo, W_+ 2, W_+ 1, Wo}. 
From Eq. (1.7) it follows that, due to the presence of the non-linear terms, these 
generators do not form a subalgebra. One might expect that in the c--. ~ (classical) 
limit, the W a algebra linearizes. However, the relation 

[L,., flA,] = (3m - n)flA,. +, + 8 (m 3 _ m)L,,, +,, (1.11) 

shows that simply dropping the nonlinear terms in the limit c ~  is not a 
consistent procedure. Nevertheless, the previous equation (take m = + 1 and m = 0) 
does imply that only in the subalgebra w, the non-linear terms can consistently be 
put to zero. The resulting algebra, which can be seen as the on-shell version of the 
projective subalgebra, is isomorphic to su(2,1). Indeed identifying 

T l - l V V ~  1 - 1 ~ Lo , T2 = - ~ Wo + ~ Lo , 

1 ~ 1 ~ 
T •  + ~ ( W z _ l  +L~ l ) ,  T + 2 = - T - ~ ( W _ v i - L . v O ,  (1.12) 

1 
T+ 3 = ~ 17Vz- 2 , 

where 

�9 = (1.13) 

one finds that {T1, T:, T• T• T_+3} satisfy the S/(3,R) commutation rules. 
Taking into account the factors i in Eq. (1.13), one has that over R, the algebra 
{L_+l, Lo, W• W_+I, Wo} is isomorphic to SU(2, 1). 

The previous analysis suggests a natural generalization of the Poincar~ algebra 
to the W3 case. For  pure gravity, {L_ a, L_ a, L o - L o }  (the unbarred generators are 
left movers while the barred generators are right movers, left and right movers 
mutually commute) generate the Poincar6 algebra, which, as we mentioned above, 
is a contraction of Sl(2, R). For  W 3, it is natural to define as a Poincar6-1ike algebra, 
the algebra generated by {L o - L o, W o - Wo, L _ l, L _ i, W_ l, if'- 1, W_ 2, 17V_ 2}. This 
algebra is precisely the contraction of the Sl(3, R) algebra used by Li in [9]. 
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As such, it is to be expected that S/(3, R) will play a role in W3-gravity, similar to 
the role played by Sl(2, R) in d = 2 gravity. This connection will be made precise in 
Sect. 4, where we will show how the W3 gravity Ward identities (in the chiral gauge) 
arise from the Sl(3, R) structure. The covariant formulation of induced W3 gravity 
will be treated elsewhere [10]. 

2. Gauged Wess-Zumino-Witten Models 

In this section we review some basic results on WZW models [11, 12]. As an 
application we shall rederive the effective action for induced gravity from an 
S/(2,R) theory (see also [13, 14]). 

An affine Lie algebra is determined by the following O P E  1, 

k 2 1 c J.(x)Jb(y) = - ~ gab(X -- Y)- + (X -- y)- f~bJc(y) + . . . .  (2.1) 

The generating functional for current correlation functions F[A] is defined by 

e-rtal= ( e x p -  ~ x ,  d2xtr {J(x)A(x)}) (2.2) 

and transforms as 

under 

k 
a r i A ] -  2nxSdZxtr{qOA} (2.3) 

6A = Oq + [q, A].  (2.4) 

The relation (2.3) states that the anomaly comes only from the lowest order 
(2-point) diagram. 

From (2.3) and (2.4) we derive the following Ward identity 

•u-  [A, u] = ~A, (2.5) 

where 

2re ~r[A] 
ua(x) = k 6Aa(x) " (2.6) 

This Ward identity can be solved for F[A] yielding 

1 We normalize such that if ETa, Tb] =f~bT~ then a c f~ff~a = --~'gab, where ~ is the dual Coxeter 
number. In a representation R we have tr(T~T~) = -- xgab, where x is the index of the representation 
(x = ~" for the adjoint representation). For Sl(n, R) one has ~'= n and x = �89 for the vector (defining) 
representation. Finally, we always work in a two-dimensional Euclidean space. We will use 
complex coordinates and denote them by x and 2 (or z and ~) instead of x- and x + 
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=4~xSdZxtr{A~A+2A[~A,~A]+ ...} 

=2~x,dZxtr{An~o n~(E~A,.])"~A}. (2.7, 

Polyakov and Wiegemann [12] found a very elegant alternative formulation 
for F[A]. Parametrizing A as A = 0gg- ~, one finds that u = Ogg- ~ because Eq. (2.5) 
states that the curvature for the Yang-Mills fields {A,u) vanishes. In this 
parametrization one has 

k 6F= 2nx~d2xtr{c3(~gg-1)~gg-1}, (2.8) 

where (exp t/)g = g + fig, which is recognized as the equation of motion for the Wess- 
Zumino-Witten action 

k k 
F i g ] =  - 4~xl  d2x tr {0g- lgg} - ~ d3x~ ~ tr {g,,g-1 g. r g, ~g- ~ }, (2.9) 

with d3x=dxadx+dx - and e 3 + - =  - 1  and where 0=0~ and ~-=0~. 
It is also easy to find the covariant action. Indeed 

r(A, 4) = r(A) + r G ) -  2~x ~ dZx tr {A(x)A(x)} (2.10) 

is invariant under Eq. (2.4) and 

~ = 0 ~ +  [~,_~3. (2.11) 

The covariant action (2.10) can be viewed as the induced action of a gauged 
Wess-Zumino-Witten model. Indeed, let us consider a W Z W  action F[h], which is 
invariant under 

h(x, ~)-* ~(X)h(x, ~)7(x). (2.12) 

The currents associated with these symmetries are (use Eq. (2.8)) 

J(x)=-~h-lOh, J(~) = k ~ / / - t  , (2.13) 

and J(x) satisfies the O P E  Eq. (2.1) with the same O P E  for 3-(~). We now consider 
the action F(h, A, 4]: 

F[h,a,~]=F[h]--l ,d2xtrIJA+ J-A-k AA+k AhAh-1 t . (2.14) 

Parametrizing A and A as A = 0gg- ~ and A = 0g'g' - ~ one finds using the identity 

F[hg] = F[h] + F[g]  + 2~x ~ d2X tr [ Jgg-  x h-  'Oh], (2.15) 

which is obtained through direct computation, that 

F[h, A, .~] = F [g ' -  ~hg] -Fig'- tg].  (2.16) 
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From this we immediately read off that the action has a vectorial gauge invariance 

h~Thy -1 , g' ~ g ' ,  g ~ g  (2.17) 

while the axial transformations 

h ~ - l h T - 1 ,  g, ~ - l g , ,  g ~ y g  (2.18) 

are not symmetries. In 1-151 it was shown that after integrating out matter i.e., the 
fields h(x), the induced action of the gauge WZW model is indeed given by Eq. 
(2.10). Upon choosing a chiral gauge 4=0 ,  we retrieve our point of departure 
Eq. (2.2). 

We now restrict our discussion to SI(2, R). We choose as basis 

To= [10 _011, T+= [00 101, T_= [01 001 (2.19) 

with metric ( - i  0 ! }  
gab = 0 -- . (2.20) 

--2 

We impose the following constraints on the currents u 

where a is a real constant. The reason for these constraints will become clear. Using 
(2.21) and (2.5) we can eliminate A + and A ~ as independent variables, giving 

A uA/1 ,222, 

and the Ward identities reduce to a single equation: 

-- a 2a ~- 03A -" (2.23) 

Compare this now with the Ward identity for induced gravity [1]: 

(J-- 2Oh-  hO)u = 03h, (2.24) 
where 

12~r 6F[h] 
u(x) = (2.25) 

c 6h(x) 
and 

e - r t h J = ( e x p - l , d 2 x T ( x ) h ( x ) ) .  (2.26) 

We note that upon identifying 

h - l _ A  - ' 
a 

(2.27) 
u -  --2au + , 
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Eqs. (2.23) and (2.24) coincide. This observation implies that one can obtain F[h] 
from 1-'[A] as follows. 

On the one hand, u § is defined by 

u +  n 6F[A] 
- k  6A- at A~176 A+=A+(A-). (2.28) 

On the other hand, the object u(x) in pure gravity is obtained by varying an 
effective action F[h]. This suggests that F[h] is related to F[A] in which the 
constraints have already been imposed on A. Therefore, we reverse the order in 
which we differentiate with respect to A-  and impose constraints, and find from 
the chain rule 

=-k 6A- F[A-'A+(A-) A~ d2xu+A- (2.29) 

where we used 

[ 6A + 6A~ _ 2 _ ~ _ S d Z x u + A  - 
_ . _ -  . 

(2.30) 

From (2.27) and (2.25) we have 

u+ 1 6~ 6F[h] (2.31) 
= - 2aa u = ac 6h 

Combining Eqs. (2.29) and (2.31) yields 

k d2xu+A_}. (2.32) - + ; S  

The leading or classical term in the KPZ-formula [16, 17, 14], is k=c/6. 
Before deriving a more manageable form for F[A] we first reduce the 

transformation rules. From 6u = Or/+ Jr/, u] and the constraints, one obtains 

From 6A = Jr/+ [r/, A] one finds then that 

6h = Je + e~h- Oeh, (2.34) 

where e = r/-/a. The stress tensor transforms according to 

6u = 03e + eOu + 2Oeu. (2.35) 

A local expression for F[h] is obtained by using a Gaussian parametrization for 
Sl(2, R) 

g =  (10 ~ ) ( ~ - '  ~)(1+ ~) .  (2.36) 
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The constraints in (2.21) can now be solved explicitly, giving 

l 02(]) 
~o= 2a c~q~' 

a 

and 

(2.37) 

C 2 ~ )  2 (lna4,) (2.39) 

with k = c/6, which is indeed the action for induced gravity in the light-cone gauge. 
It is amusing to note that the correction term in Eq. (2.32) precisely cancels the 
kinetic term of the WZW-action. As such the action for induced gravity arises from 
the WZW-term. 

Note that the previous construction provides us with a Lax pair [20, 19] for the 
Virasoro Ward identity. Indeed consider (6-u)v~ = 0 and (~-A)v~ = 0, these have 
the WZW Ward identity as integrability condition. Upon imposing the con- 
straints, these equations reduce to 

(d2+ 21-u)~p=0, (~--hO+ ~Oh) ~o =0 ,  (2.40, 

which indeed have the Virasoro Ward identity as integrability condition. Consider 
the two independent solutions to the Lax pair, ~ol and ~02. From the second 
equation in Eq. (2.40) it follows that we can identify ~b=~oa/~p2 since it yields 
h = ~-~b/O~b and from the first equation in (2.40) one immediately gets the explicit 
form for ~o 1 and ~02 in terms of ~ while it also gives u as the Schwarzian derivative, 
Eq. (2.38). 

If we compare this analysis to the work of Bershadsky and Ooguri [14] we see 
that the main difference lies in the constraint imposed on u. While in the present 
work we impose the constraints u-  = constant and u~ 0, in [14], one imposed 
u-  = constant and r = 0. It is interesting to note that while our constraints identify 
q~ with the coordinate transformation f, the choice of [14] (see also [13]) resulted 
in the identification of ~b with the inverse transformation F defined through 

F(f (x ,  ~), ~) = x .  (2.41) 

2 ( a3 4 a4 - 3 a2 4 a2 , 

h = ~q~ (2.38) 

where we used that A = ~gg-1 and u = ggg-1 and Eq. (2.27). 
Substituting the Gaussian decomposition into the action in (2.32) one obtains 
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In the work of [14], the induced action for gravity in terms of the F variable arose 
completely from the kinetic term of the Wess-Zumino-Witten action, while here it 
arises from the Wess-Zumino term. 

Finally, the previous construction explains the residual SI(2,R) symmetry of 
effective gravity theories [I]. The A fields are the Noether currents associated 
with this symmetry. As can be seen by combining Eq. (2.33) with 6F[h] 
=c/12nSd2xdaeh and e=~l-/a, the induced action has indeed a residual affine 
Sl(2, R) symmetry. 

3. Induced W3 Gravity 

Before we study the relation between S/(3,R) WZW models and induced 1413 
gravity, we first review some properties of the latter. We restrict ourselves 
throughout this article to "pure W3 gravity" as given by its abstract algebra. For an 
alternative approach based on a realization of the currents in terms of n scalar 
matter fields ~pi, see [3]. 

The W3-algebra is generated by currents T(x) and W(x) satisfying the operator 
product expansions 

C -4  T(x)T(y)= ~ (x -y )  + 2(x-y)-2T(y)+(x-y)- ldT(y) ,  

T(x) W(y) = 3(x - y)- 2 W(y) + (x - y)- I 0 W(y) , (3.1) 

where 

C 
W(x)  W(y) = -~ ( x  - -  y )  - 6 _]_ 2(x - y)- 4 T(y) -~- (x -- y )  - 3 ~ T(y) 

+(x-y)-212f lA(y)+3a2T(y)  1 

+(x -y ) - ' [ f lOA(y)+ld3T(y )  1 , 

A(x) = ( TT)(x)-- 3 c32 T(x ) (3.2) 

and fl was defined in Eq. (1.8). These OPE's are equivalent to the commutation 
relations Eq. (1.7). 

We again consider the generating functional for current correlation functions 

e-rth.bt= (exp-- l ~ d2x[h(x)T(x)+b(x)W(x)]). (3.3) 

Under the variations 

6h = ~e + e3h- t3eh, 
(3.4) 

6b = et3b - 2c3eb , 

the induced action F[h, b] transforms as 

6~FEh, b] = c Sd2xe~ah, (3.5) 
12rr 
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while under 

6 h = 1 2 0 a b - l O 2 O 2 b + l a 2 2 0 b - l o 3 2 b ,  

6b = 0-2 + 220h-  ~2h, 
(3.6) 

one has that 

gaY[h, b] = - - -  360zc s dex285b-  zc S d2x2(x)( 2~3b + bO)A~fr(x) . (3.7) 

Here 

Aeff(x)=(A(x)exp-~Sd2y[h(y)T(y)--l-b(y)W(y)])/e -r[h'b] 

c 2 c ~ .  ~,~u(x) a~ 
- - - l ~  ~ (x -y )  1-44 u(x)u(x) - 12 r x (6h(y) J:, 

Ox l _y)Ou(x))_ c 
- 2 ~ 6 ( x -  y )u ( x ) -  ~ 6(x f ~ 82u(x) 

12~r 6F[h, b] 12 

(3.8) 

Toll. We have used the identity Jx -  1 = rcf2(x). The where u(x)= - -  
c 6h(x) c 

explicit form for 6xh in (3.6) follows by requiring that all fl-independent T ere terms 
cancel in the right-hand side of the Ward identity. In a different context we found 
this same 6ah rule in [3]. Part of these results were also found in [18], though there 
the incorrect assumption was made that the non-linear terms decouple in the large 
c limit. 

- 2  l 2 In the limit c ~ + ~  one obtains c Aeff=-~-~u, and Eq.(3.7) becomes 
c 

6 F [ h , b ] = -  360------~Id2x2OSb - Id2x2(28b+bO)uu. In this limit we can also 

reduce the 2-anomaly to the minimal one by adding an extra term to the h 
transformation rule Eq. (3.6): 

= ~ (28b-  bd2)u. (3.9) 6h 1,3 
However, it turns out to be more advantageous to make a different choice for 
~extra h: 

6e,arah = 8 ( 2 0 b -  bO2)u. (3.10) 
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Indeed, for this choice we have that u and v transform according to the operator 
product expansion in the limit c--+ _ 0% 

fiu = 03~ + ~0~ + 20~u + ,4  20v + ~ 02v, 
(3.11) 

fir = eOv + 3&v + 0s2 + (2203 + 90205 q" 150220 -'[- 10032)U 

+ 16(02uu + 2uOu), 

where 
360zc fiFEh, b] v = - -  _ 360 Well(X). (3.12) 

c fib(x) c 

The algebra becomes then 

[fi(e 1), fi(~=)] = fi(~3 = ~ =& 1 - ~, & a ) ,  

[fi(e,), fi(22)] = fi(2a = 222&, - 01022), (3.13) 

[fi(2,), fi(22)] = fi (03 = 1 (2032122- 30221022 + 30210222 - 22,0322) 

+ 8(2:21-2:2=)u). 

As we will see later on, it is precisely this choice for fih which will emerge from a 
constrained S/(3, R) theory. The drawback of this choice is that the 2-anomaly is 
not the minimal one: 

3~-Orc I d2x205b c 2 6~F[h,b]= ~ d  x2(20b+bO)uu. (3.14) 

A useful check of this result is the analysis of the Wess-Zumino conditions for 
consistent anomalies, which are indeed satisfied (compare with our analysis in [31). 
Using the chain rule for fiF and Eqs. (3.4)-(3.6), (3.10), and (3.14) we find the final 
form of the Ward identities in the c o  + oo limit: 

( g -  30h - hO)v - (100ab + 150260 + 90b02 + 2603)u-  8(20b + bO)uu = 05b it.3. 
1 5) 

In fact, Eq. (3.15) and the consistency of the anomalies hold whether or not we 
impose Eq. (3.10). 

Finally, let us briefly comment upon the situation for finite c. For  this purpose, 
we first define a reference functional, denoted by FL[h, b], which is defined by the 
property that 

fir,. fir,. 
u--- + = -~- ,  v =  +30=  fib (3.16) 

satisfy Eqs. (3.15). Similarly, we define WL[u, v] by the property that 

f iwL h -  -rt~-U-- u , b -  -30zfi~Vv L (3.17) 

satisfy the same Eqs. (3.15). Obviously, FL and WL are related by a simple Legendre 
transformation. We now consider the generating functional Wit, w] of connected 
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Green's functions of quantum h and b fields, defined by 

e "Wtt" w~ = S DhDbe - rth, bl + 2s (ht + b,~) (3.18) 

The above results for the c ~  limit of the induced action Fib,  b] can now be 
stated as follows 

r[h ,  b] ~=oo ~2 FL[h' b],  

(3.19) 

W [ t , w ]  = W L [ c t ,  w . 

If we now look at finite c, we should consider 1/c corrections to the formulas (3.19). 
Such corrections were first obtained in [3]. Recently, we found strong evidence 
that the full result for W[t ,  w] can be written as 

Wit ,  w] = 2kcWL[ Z~Ot, z~W)w] , (3.20) 

where it) (~,) kc, z~, and z~ are c-dependent factors. The leading 1/c corrections are given 
by 

kr 1 - - -  + 0  , 
C 

z~ ~  1 + __50 + O , (3.21) 
c  600+386 

c -~-c  + ~  " 

The result for kc, which has the interpretation of the renormalized level of a Sl(3, R) 
current algebra, is consistent with the all order formula first proposed in [14, 18], 

-- 48(k + 3) = 50 - c + V(c - 2 ) ( c -  98), (3.22) 

which is the conjectured outcome of a KPZ-type analysis of constraints in a 
covariant formulation of W3 gravity. We finally remark that the validity of 
Eq. (3.20) crucially depends on the cancellation of certain non-local terms in the 
Ward identity, coming from i) the induced action itself, ii) the determinant factors 
for taking into account fluctuations around the saddle point of the path integral 
Eq. (3.18). This clearly shows that it is W[t ,  w] or, equivalently, the full effective 
action and not the induced action Eq. (3.3) which can be directly related to the 
constrained Sl(3, R) W Z W  model. Details of these new results for finite c will be 
published elsewhere [4]. 

4. From Sl(3, R) to W3 

We now extend the analysis of S/(2, R), which reproduced pure gravity, to the case 
of Sl(3, R). Some earlier work in this direction was presented in [7, 19, 20]. Our 
purpose is to reproduce the Ward identities, transformation laws and action of Wa 
gravity, and then to express all objects (h, b as well as u, v) as local expressions in 
terms of new variables r and s. 
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We choose the following basis for  S1(3, R): 

T l ~ - e x l - - e 2 2  , T 2 = e 2 2 - - e 3 3  , 

T+ 1 -~e12, We2 =-e23 , Tea --- el3 , (4.1) 

T-l=-e21, T-2 =e32 ,  T_a-e3x , 
where e 0 are 3 x 3 matrices, (eq)kl = 61k6~t. The  metr ic  gob is given by g + i, _ i = - 2 for  
i = 1 , 2  or 3 while g 1 1 = g 2 2 = - 4  and g 1 2 = + 2 .  We impose the following 
constraints  2: 

u = 0 . (4.2) 

1 

Again the W a r d  identities f lu -EA,  u] = aA can be reduced to two independent  
equations.  First  the fields A x, A 2, A • A § x, and A +3 are expressed in terms of 
A -x,  A -a  and their conjugates  u +l, u +a 

A - 2 =  _ a A - 3 + A - I ,  

A 1 = _ l ( a 2 A - 3 _  3~A-  x _ u +  1A-3) ,  

A + I =  3(~aA-3_3d2A-I_~(u+IA-3))+u+XA-I +u+aA-3 

2 [  3 a 3 2  1A-3))  A +2= ~ t ~  A -  -- ~c~ A - 1 - ~ ( u  + +u+3A -3, 

2 / ' 4  3 3 3  A + a =  -~c~ A- --~t3 A-l-82(u+1A-3)) +a(u+aA-a)+u+3A -x, 

and then these results are used to obta in  the two Ward  identities 

where 

_2c~s~-  1 = (~'_ 2 c ~ -  1 _ .~-  1 c~)u + 1 _ (2A-  Sc~ + 3c~A- s)fi + 3, 

~-BSA- 3 = l ( 2 A -  303 + 90A-  3c02 + 15c~2A- 30 + lO03A-3)u +1 

1 3 2 + l d ( u + l u +  )A-  - ~ u  lu+l t~Z-3  
3 

+ ( ~ -  .~ - 1~ _ 3~.4 - 1)~ + 3, 

1 _ + 1  . ~ - 1 = A - 1 _  c~A-a; ~ + 3 = u + 3 - ~ O u  . 

(4.3) 

(4.4) 

(4.5) 

2 Instead of u- 1 = u- 2 = 1, one can choose arbitrary real constants without changing any of the 
final results 
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Comparing Eq. (4.4) with the W 3 Ward identities in Eq. (3.15), one finds that they 
are the same if one identifies 

U ~ - - ~ N  +1 , 

v = - 15y~ + 3, (4.6) 

b = ? - l A  -a ,  

h=.~ -1 ' 
where ?2 = _ 2/5. 

From 6u = &l + [9, u], we can express 91, 92, 9 -+ 2, 9 § 1, and I/+ 3 in terms of 9 - 1, 
9 -  3, u § 1, and u § 3. The result can, of course, immediately be read off from the fact 
that J u - [ A ,  u] = t3A and 6 u - [ 9 ,  u] = 09 have a similar structure, 

q - 2 = _ 0 9 - 3 + 9 - 1 ,  

91 = _ ~ ( 0 2 9 - 3 - 3 ~ 9  -1 

2 /  2 3 3 1 19-a~,  
9 z = - ~  9 -  - ~ 0 9 -  - u  + / 

(4.7) 
1 3 3 9 + 1 = 3 (  0 9 -  -3029  - 1 - d ( u + 1 9 - a ) ) - t - u + l q - l W u + 3 9 - 3 ,  

9 +2= ~02{ 3 9 - 3 _  ~c3429-1_~(u+19-3)) +u+39-3  

2/ '  4 -3 3_3 1 3 ) ) + d ( u + 3 9 - 3 ) + u + 3 9 - 1  9+3=~09 -~9-  -02(u+19- 

For the transformation rules of u and v we find 

6 u = ~ % + e ~ u + 2 ~ e u + 1 2 0 v + l o 2 v ,  

(4.8) 
6v = ec~v + 30ev + c~S2 + (2203 + 902c~2 + 15c~220 + 10022)u 

+ 8(202 + 20)uu, 

where 
1 3 

~=9 - 1 - ~ 0 9 -  , 

2 = ? - 19- s, (4.9) 

which again agrees with W3 gravity, Eqs.(3.11). Combining this with 
6A = if9 + [9, A] and Eqs. (4.6) we obtain 

3 2 2 6h = ~e + et3h- Oeh + ~-0 (220 - 3028 + 3 0 2 0  - 2032)b 

8 
+ ~ ( 2 ~ b -  bO2)u, 

fib = cob - 20eb + if2 + 220h - ~2h, (4.10) 

in agreement with (3.6) and (3.10). 
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The action F[h, b] for induced Wa gravity can now be obtained from the S/(3, R) 
action in exactly the same way as we obtained the action F[h] for induced pure 
gravity from Sl(2, R). We find 

F[h ,b]=-Fwzw[A-1 ,A-a]+k  Sd2x(u+lA-l +2u+aA-S ), (4.11) 

where we should put 

C 
k =  ~-4. (4.12) 

The latter identification is made such as to agree with the leading term of a Wa 
K P Z  formula (this indeed agrees with conjectured formulae in 1-14, 18] and can 
also directly be checked using the results of the preceding section). 

Let us now choose a Gaussian parametrization for Sl(3, R): 

g =  1 2 '~2 1 42 1 . (4.13) 

0 0 2122 43 41 

The constraints express all variables in terms of two independent variables. The 
mere fact that in general only two nonlocal expressions occur, guarantees that one 
can introduce two new coordinates, in terms of which all results become local. It 
turns out that r-- 4 :  and s-= 4a are such a set of coordinates. The solution of the 
constraints, Eq. (4.2), reads 

0s 
42 ~ ~ ,  

1 1 2 32( 0(~))-102r ~t0r) ' ~01 = -  ~ ( & ) -  o r -  0 

I 03sOr--OsOar 
q92 = 3 02sOr-- OsO2r ' 

q)3 = &P2 + ~~ , (4.14) 

t tot J) 

('0 a~=o N (Or)-1. 

From A = ggg- ~ and Eq. (4.6) we obtain 

h -  tOrj Ob, 
3 

OasOr-OsOar. v 

o(os  O  Or-O O r ~  
tar)  

b =7-1 (gsOr --~FOS) (4.15) 
(02SOt-- 02r~s) " 
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The effective currents u and v are 

u=-2k \ ,h +~-~J+\-Ul-~] + \ & }  + \22}1' 
(4.16) 

7;-i + ,hl \,hl 

\21 
Combining the solution of the constraints with the fact that (~gg-1)= ~/yields 

+ ~ e 2 , _  ~ o~0,-  _ ~ ~r~ In [(~sOr- e2~Os)], 6r=eOr 
(4.17) 

+ ~ 2 s -  ~ ~ s -  3 ~e~a ln[(O~sOr--~'O~t] " 6s=~Os 

A different parametrization, which stays closer to the Polyakov parametri- 
zation, is given by 

r =  f , (4.18) 
1 2 

s=  ~ f  +g .  

In linearized form, this parametrization was already found in [3]. In these 
variables one has that 

3 a(ln [(a/?(1 + #~g)])b - ~Ob, 

~f 
b=  

(~fy(1 +#2g) ' 
where 

r = (0f)- 10. (4.20) 

The ~ and 2 transformations of these variables read 

1702~f_ 2 ~3g 6f =eOf -g2c~2f - 
(4.21) 

4 

6g = cog + 72(0f) 2 + 7202g -- 2 70263g 

2 ( o2I ee2g ) 
- $~2ag_3-~- + 1 +#2g ] �9 

In these variables, the reduction from W 3 gravity to W2 gravity becomes 
transparent; it is simply given by putting g=O. 
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We can now substitute the Gaussian decomposition into the action in (4.11). 
There is now no cancellation between the kinetic term of the WZW model and the 
uA correction term and one finds the following surprisingly simple expression for 
the induced action: 

_ (3z,_ o(oz Q 
+O s-?T2r- sL,h ,h k,hJ 

- ( ~ )  (02~)  \-~-~ ~-2/JJ  " (4.22) 

By using the expressions in Eq. (4.14), this can be further reduced to an expression 
in terms of r and s only. An expression of F in terms of h and b seems hard to 
obtain, as it is not clear to us how the relations (4.15) or (4.19) can be inverted 
explicitly. 

We finally draw the reader's attention to the following variables 

0)1 = ln(0f),  0)= =ln(1 q_ ~2g), (4.23) 

which play the role of "connections" in the theory. They obey the following 
differential equations, 

j0)l=c')h- 2 (32b+ &o.,h- 3~.; c~co10b 

- 7(020)1. + ((30)02) b -- ~ ( 02~ + (30)x (30)2)b - ~f  00)20b, 

J0)2 = ~ (32 b + 3700)10b + 27((~0)1) 2 + (320) 1)b 

1 2 +h00)2 + 3~-;~0)2(3b+ 7 (~(00)2) + 2(30)200)1 + (320)2)b 

(4.24) 

Using 

~)~1 __00) 1 -- 2 022 1 00)2 (4.25) /~-= ~(3(D 2 and ,~2 = ~  

and Eq. (4.16), one expresses the effective currents u and v in terms of the 
0)-variables. The relations (4.24) then reduce to the fundamental Ward identities 
(3.15). Under  ~ and 2 transformations 0)1 and 0)2, like u and v, transform (non- 
linearly) into themselves, but with inhomogeneous terms proportional to ~e and 
C322 rather than to Oae and 052 as in (3.11). These observations suggest that (0)1, co2), 
rather than (u, v) should be considered as the fundamental W3 multiplet at the 
quantum level. 
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Finally, the previous construction provides us with a Lax pair for the W3 Ward 
identities. Indeed a similar reasoning as in the Sl(2, R) case yields the following Lax 
pair: 

(03--U+ 10--U+3)I~ =0, 

2 +1 3 "~ (4.26) (j-A-IO+OA-1-A-302+OA-a~3-~O2A-a+~u A- )*p=O, 

and one can easily check that 
condition. 

Eqs. (4.4) are reproduced as its integrability 

5. Concluding Remarks 

It is clear that one of the major open problems in the study of W3 gravity is the 
understanding of its geometry. We expect that it will be possible to understand this 
geometry in a "W3 superspace," which will be similar to the chiral superspace used 
for d = 2 supergravity. For this reason, we first take a closer look at induced N = 1 
supergravity (in the chiral gauge). In [21] and [19], the Ward identities for induced 
N = 1 supergravity in x-space were derived from a reduction of an OSp(112) WZW 
model. However, in this formulation the geometry of supergravity is obscure. A 
natural framework to study supergravity is in superspace. Indeed the Neveu- 
Schwarz algebra has a natural realization as analytic reparametrizations of the 
superplane. In the following we will show that the reduction of OSp(112) in x-space 
already suggests the structure of chiral N = 1 superspace. 

The derivation of the supergravity Ward identities in x-space goes very similar 
as before. Consider the superalgebra OSp(112). It is defined by the following vector 
representation 

Ii ~ [il!l Z~ 1 To= - 1  , T , =  0 , T = =  0 , 

0 0 0 

(5.1) 

7"+= o , T _ =  0 . 

- 1  0 

(5.2) 

From this we immediately deduce the abstract commutation rules: 

[To, 7",] = + 2 r , ,  [To, r = ]  = - 2 T = ,  

[To, T+] = + T+, [To, T_] = -- T_, 

[ L , ~ ] + = - 2 % ,  [ ~ , ~ ] + = + 2 % ,  (5.3) 

[ ~ , % ] = - ~ ,  [ ~ , ~ ] = - ~ ,  

[ ~ , % ] = ~ ,  [ ~ , ~ ] + = ~ .  
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We consider again Lie algebra valued gauge fields A and effective currents u which 
satisfy the Ward identity Eq. (2.5) and we impose the constraints 

u =  0 . 

- - U  + 

(5.4) 

We can proceed in exactly the same way as before and use the Ward identity, 
Eq. (2.5), to express A*, A ~ and A § in terms of A =, A- ,  u*, and u § We are then 
left with two independent Ward identities: 

O 3 h = ( f f - 2 t ? h - h ( ? ) u - ( ~ d ~ p + l ~ p t 3 ) v ,  

32tp= ~ -  ~3h-h3 v - ~ p u ,  

(5.5t 

where 

h -  A = , ~p-  2 i A -  , 
(5.6) 

u = - 2 u * ,  v - 2 i u  + , 

and these are precisely the Ward identities for induced supergravity 1-21-1. We can 
view the constraints as a gauge fixing of the subalgebra of 0Sp(1[2) generated by 
{T,, T 0, T+}. From 6u= at/+ [r/, u] and Eq. (5.4) one finds that t/*, r/~ and r/+ are 
given as functions of q=, r/-, u*, and u +. The fields h, ~p, u, and v transform as 

where 

1 
~h = J~ + e O h -  Oeh + ~ tc~p , 

1 1 
,5~p = gx + ~ ~:dh - O~h + ~t3W - ~ & ~  , 

3 1 
6u = 33~ + sou + 2azu + ~ Oxv + ~ xOv , 

(5.7) 

3 1 
6v = 80v + -~ O~v + ~ xu , 

z- r /=  , x--- 2it/- (5.8) 

The induced supergravity action can now be obtained starting from an OSp(211) 
WZW-model and using the same techniques as in Sects. 2 and 3. 

This reduction procedure suggests a natural coset in which to formulate the 
supergravity theory. Indeed consider (~ = 0Sp(112) and its subgroup ~ generated 
by {T., To, T+}. The reduction procedure looks somewhat like a modding out 
of ~,~F. We parametrize the elements of the non-reductive coset ff/~f~ by 

k = e x p ( z T =  + OT_). (5.9) 
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Using standard methods (for a review, see [22]), we can construct the isometrics of 
this coset space [i.e. the action of OSp(ll2) on the coset]: 

7", = -- z2O-- OzD, T= = O, 

T+ = z D ,  T_ = D ,  (5.10) 

T O = 2zO + OD, 

where 0 = O/Oz and D = t3/t30 + OO/Oz. Compare this now with the algebra of regular 
Neveu-Schwarz transformations: 

[Lm, Ln] =- (m -- n)L m +,, 

1 
[Lm, G ~ ] = ( ~ m - r )  Gm+,, (5.11) 

[G~, GJ  = 2Lr+s, 

where m, n ~ Z, m, n < + 1, r, s ~ Z + 1/2, and r, s < + 1/2. One sees that upon 
identifying L+ 1 - T=, L o ~ 1/2To, L_  1 =- - T , ,  G+ 1/2 - T_, and G_ 1/z - T+, one 
obtains a realization of the projective subalgebra on the cosetspace. In order to 
recover the whole of Eq. (5.11), one takes the group ff of Neveu-Schwarz 
transformations regular at the origin, generated by {Lm, Grim< + 1, r <  + 1/2} and 
its subgroup 3r generated by {Lm, Grim < O, r < - 1/2}. We consider the coset space 
if/g(( with representant k: 

k = e zL+l +OO+ 1/2. (5.12) 

Again, using coset space techniques, we obtain the Killing vectors: 

Lm=z-m+ xO+ ~(1 - -m)z-mOD, 

(5.13) 
Gr_~ z - r +  l/ZD . 

From this, one sees that the super conformal transformations can be rewritten 
through the introduction of a superfield E(z, 0): 

E(z, O) = e(z) + 20to(z), 

where 

and we have that 

(5.14) 

~(z)= Z ~mzl-', •(z)= y zrz'2-', (5.15) 
m__< + 1 r =  < + 1 / 2  

6 0  = 1 D E ,  

~z = E -  1 ODE. 

The finite transformations are then given by 

z~z'(z, 0), O-,O'(z,O), 

where 
D z ' =  O'DO'. 

(5.16) 

(5.17) 

(5.18) 
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A further application of the theory of induced representations leads immediately 
to the definition of N = 1 primary fields ~(Z) which transform as 

6~(Z) = EO~(Z) + ~ OED~(Z) + hOE~(Z). (5.19) 

Now that we constructed the superplane, the question arises whether we can derive 
the Ward identities for induced supergravity in superspace. 

Consider a chiral superspace, i.e. the left-movers are parametrized by the 
coordinates z and 0 while the right-movers are parametrized with the coordinate ~. 
The corresponding gauge fields are HM = {As, uz, Uo}, the Yang-Mills curvatures 
R~,  Roe, Roz, and Roo are defined 

RMN = DMH N -  ( --)MNDNH M -- HMH N + ( - )MNHNH M -- T~NH P . (5.20) 

The torsions T~N are defined by 

DMD N -- ( -- )M~DND M = TeNDp, (5.21) 

where only the torsion component  T0~=2 is non-vanishing. We impose the 
following constraints on the two lowest dimensional curvatures 

Roo = Ro~ = 0. (5.22) 

The Bianchi identities imply then that also Ro~ = R~ = 0. The constraint Roo = 0 is 
easily solved and yields 

Hz = DoHo- Hollo. (5.23) 

We now take the gauge group to be the supergroup OSp(112) and we partially fix 
the gauge by 

u o = 0 . (5.24) 

0 

In much the same way as before we can solve the constraint Ro~ = 0 such that A~*, 
0 + A~, Ae,  and A~- are expressed in terms of A [  and u*. One of the components of 

Ro~ = 0 remains and expresses u* as a function of A [  : 

3 1 
~2DH = ( ~ -  ~3H--  ~ DHD-- H~)  U , (5.25) 

where H = - - A ;  and U = 2u0*. Equation (5.25) is recognized as the Ward identity 
for induced N = 1 supergravity 1-23, 24]. Indeed consider the generating functional: 

with x-space expansions H = h + 0~p, where h is the graviton and ~p the gravitino in 
the lightcone gauge, and Q = G + 0 T, where T is the energy-momentum tensor and 
G the dimension 3/2 supercurrent. Under the transformation 

~H = JE + EOH + 1 DEDH-- ~EH (5.27) 
Z 
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one has that 

Defining U through 

6F[H]- c id2xdOEOZDH. (5.28) 
12n 

aF[H] = .~ -  I d2xdO UfH, (5.29) 
1ZTg 

one finds Eq. (5.25) back by combining Eqs. (5.27) and (5.28). In components, 
Eq. (5.25) reduces to Eqs. (5.5). 

From previous remarks, one expects that starting from an N =  10Sp(ll2) 
WZW model in a chiral superspace [-25], one can construct the action for in- 
duced supergravity. 

From the reduction procedure in Sect. 4 and the remarks above, one again 
expects a cosetspace structure for a "W3 plane." The groups involved are 
(~ = Sl(3, R) and ~ generated by { T 1, T2, T+ 1, T+ 2, T+ 3}- The local structure of the 
Wa plane should be given by the coset N / ~ .  We choose to represent an element k of 
N / ~  by 

k = e xr- l e : -  ~. (5.30) 

It is not hard to find the Killing vectors: 

T-1 =Ox, T_2= -xOy, T_3 =Or, 

T 1 = 2 x ~ + y O r ,  Tz =y~r--x~x,  (5.31) 

T+I= --xZ~x--XYOy, T+2= --Y~x, T+3= --YZay-XyOx �9 

"Superfields" in this space will in general be S/(2) multiplets as ~ consists of an 
S/(2) algebra and a vector representation of it. However, if we want to recover the 
whole conformal structure, it looks more natural to consider a 3-dimensional 
space. 

Indeed, consider the group ~ of regular W 3 transformations in the c ~  oe limit. 
This group is generated by {L,,, W, Irn < + 1, n < + 2} with commutation relations 

[L,,, L,] = (m-- n)L,, +,, 

[Lm, WJ = (2m - n) W,, +,, 

[W,,, W , ] = ( m - n ) [ l ( m + n + 3 ) ( m + n + 2 ) - ~ ( m + 2 ) ( n + 2 ) l  (5.32) 

16 
x L,,+,+ ~c(m-n)(LL)m+n. 

As was explained in the first section, one cannot drop the non-linear terms. This 
can easily be seen from the [ L W W ]  Jacobi identity. Working in the limit c ~  oe has 
the advantage that the non-linear terms do not need to be regularized. Precisely 
because of the presence of the non-linear terms, the algebra given above is not a 
subalgebra of the W3 algebra as the Jacobi identities require that the sum in 
Am = Z L, ,_,L,  runs over the whole of Z. However, the algebra realized on fields, 

n ~ Z  

given by Eq. (3.13) with the restriction that e(z) and 2(z) are analytic, is closed 
provided we introduce field dependent structure functions, which depend on 
auxiliary fields u(z) and v(z) (which themselves are also analytic), defined by their 
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transformation rules Eq. (3.11)3. Explicit realizations of these auxiliary fields as 
W3 Schwarzian derivatives can be found in Eqs. (4.16). Starting from the algebra 
Eq. (3.13), it is not hard to see that its maximal subalgebra is generated by analytic 
parameters e(z) and 2(z) with e(0)= 2(0)= 02(0)= 0. Given these observations, it is 
natural to anticipate that the full W3 conformal structure can be most easily 
formulated in the 3-dimensional coset ff/ovf, where ff is the algebra Eq. (3.13) and 
o~(f is its maximal subalgebra. A further analysis of this requires a generalization of 
the theory of induced representations to algebras with field dependent structure 
functions. Work in this direction is in progress. 

In [6], Verlinde gave a beautiful account of induced gravity in an SI(2,R) 
Chern-Simons formulation. Starting from an Sl(2, R) Chern-Simons theory in 2 + 1 
dimensions in the temporal gauge, an Sl(2, R) breaking polarization was chosen. 
The coordinates are AT, A~-, and A ~ while the conjugate momenta are the 
remaining gauge fields. Parametrizing the gauge fields as A -  - e~( dz + hd~), A ~ = ~o 
and imposing the Gauss law on a state ~[co, ~0, hi: R + 7 ~ = R ~  = 0 results in 

~g[~o, ~0, h] 

) 
(5.33) 

where F[hI is the induced action for gravity in the light-cone gauge. The norm of 
this state, 

II ~[~o, q~, hIII 2 = I [ d ~ ]  [dh] [doa]e- ~ia2(2,o~, + e~ + ~(1 -h~, I ~eEco, q~, h] 12 
= ~ [dq~] [dh]e sth' h,~o,,] (5.34) 

is such that S[h, h, ~0, ~] precisely gives the covariant induced action. Presently, we 
are investigating whether this approach can be generalized to the case of 1413 
gravity [10] such as to give both the covariant action for induced W3 gravity as 
well as the full set of W3 gauge transformations. 

Finally, one wonders whether in the weakly coupled regime, c < 2, there exist 
equivalent formulations of W3 gravity in terms of topological quantum field 
theories or matrix models. The former question seems to be readily accessible 
through the study of twisted N = 2 supersymmetric 1413 conformal field theories. 
Recently, the N = 2  W3 algebra has been constructed [27I (it consists of a 
dimension 2 and a dimension 1 N =  2 superfield) and in view of the previous 
motivation, it would be very interesting to work out its representation theory. At 
present it is not clear how to construct a matrix model formulation of W3 gravity. It 
might happen that the final answer to this question will only come after the 
construction of "W3 Riemann surfaces." However, one might speculate that, as the 
matrix chains presently studied have incidence relations determined by the weight 
lattice of affine SI(2), the 1473 matrix models could be based on incidence relations 
determined by the weight lattice of affine SI(3). 

Acknowledgements. We thank Michael Bershadsky, Jim McCarthy, and especially Herman 
Verlinde for interesting discussions. 

3 This situation is very similar to the one encountered in [26], where a gauge theory of the regular 
W3 transformations was constructed 
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