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Abstract. This paper introduces a novel master-multi-SIMD on-chip multi-core
architecture for embedded signal processing. The parallel architecture and its
memory subsystem are described in this paper. We evaluate the large size matrix
multiplication performance on this parallel architecture and compare it with a
SIMD-extended data parallel architecture. We also examine how well the new ar-
chitecture scales for di�erent numbers of SIMD co-processors. The experimental
results show that the ePUMA1 architecture’s memory subsystem can e�ectively
hide the data access overhead. With its 8-way SIMD data path and multi-SIMD
parallel execution, the ePUMA architecture improves the performance of matrix
multiplication with a speedup of 45x from the conventional SIMD extension.

Keywords: ePUMA, matrix multiplication, parallel DSP, SIMD, vector memory,
permutation.

1 Introduction

Parallel computing has been used in embedded signal processing for several decades
to meet the increasing demand of computing power. Particularly, massive parallelism is
of much importance for streaming DSP processors to achieve real-time processing on
large volume streaming data[1].

One kind of data parallel architecture is the SIMD extension which is used in ARM’s
Media Extensions[2] and PowerPC’s AltiVec[3]. It improves processing capability for
streaming media applications while still o�ering low power consumption. The SIMD
extensions also simplify software development by providing a single tool-chain and
processing core. Another parallel architecture known as VLIW[4] has also been proved
to be an industrial success by TI’s DaVinci and ADI’s TigerShark. The VLIW pro-
cessors take advantages of Instruction Level Parallelism (ILP) and eÆciently use the
hardware resources to improve the application performance. However, both the SIMD
based and the VLIW based architectures have shown their bottlenecks in today’s em-
bedded systems. These systems are characterized by high performance and real-time
requirements as well as power and cost constraints. The SIMD extensions’ drawback is
due to its data access overhead for instructions such as vector load, shu�e, pack, and
unpack, which becomes an obstacle to the performance enhancement [5]. The VLIW
architecture has disadvantages at providing power-eÆcient and cost-e�ective embed-
ded processing[6]. Moreover, both of these two parallel architectures fail to scale to

1 ePUMA: embedded Parallel DSP processor architecture with Unique Memory Access.
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even higher performance demanding applications such as high definition video codec,
baseband signal processing in communication base-stations, and radar signal process-
ing. Recently, a new trend of master-multi-SIMD on-chip multi-core architectures has
emerged in high performance parallel DSP design, for example the CELL processor
from STI. The Cell architecture provides high performance processing for a wide range
of applications. It has one master processor extended by eight SIMD co-processors
aimed at data-intensive processing. Each co-processor is assigned a local memory and
a DMA controller. The interconnection of these processors is through the Cell Element
Interconnect Bus (EIB), which consists of four ring buses to provide high throughput at
low cost[7].

The ePUMA project is carried out at the Computer Engineering Division of the
Department of Electrical Engineering at Linköping University. This project aims to
develop a novel master-multi-SIMD parallel embedded DSP processor for real-time
high performance computing with low power consumption and low silicon cost. The
goal will be achieved by maximally hiding the data access and control overhead of the
parallel architecture. This project has design challenges that include a power eÆcient
memory subsystem with the highest possible throughput, and a local multi-bank vector
memory and address permutation design for low latency parallel vector data access. A
parallel programming model and a program-friendly tool chain is another key design
challenge.

In this paper, we evaluate the performance of the ePUMA parallel architecture us-
ing an example of large-size matrix-matrix multiplication. Large matrix operations can
be found in many data intensive computing applications. It is also a good candidate
for parallel processing. The performance is evaluated on two di�erent parallel architec-
tures; a single 8-way SIMD extension, and ePUMA with di�erent numbers of SIMD
co-processors.

The rest of this paper is organized as follows. An overview of the ePUMA master-
multi-SIMD architecture is provided in Section II. The memory subsystem is described
in Section III. Section IV presents the implementations of matrix multiplication. The
evaluation results are in Section V and Section VI concludes the paper.

2 Overview of the ePUMA Architecture

The ePUMA parallel DSP architecture is a master-multi-SIMD on-chip multi-core ar-
chitecture. It consists of one master processing core, eight SIMD cores, and a memory
subsystem. Each SIMD core has a local data memory and program memory. The mem-
ory subsystem includes two main memories, two ring buses, and two DMA controllers.
The master core and all of the SIMD cores have access to both two buses for data and
command communications. The overall architecture is illustrated in Figure 1.

The master core performs scalar operations and program control, while the eight
SIMD cores are assigned by the master with parallel tasks of vector processing. This
parallel DSP architecture has two interfaces to two o�-chip main memories. One main
memory attached to Ring Bus 1 is used for streaming data storage. The second main
memory on Ring Bus 2 is used for software programs and coeÆcient data. The data
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Fig. 1. ePUMA master-multi-SIMD architecture

communications are handled by the DMA controller on each bus. Data exchange
between two main memories is performed by going through the bridge module.

3 Memory Subsystem

In the design of multi-core embedded processors, the memory subsystem keeps being
an important component to achieve high computing performance. The memory access
latency is one of the major factors that a�ect performance. Moreover, the memory sub-
system is the key component to reduce power consumption and silicon cost. The design
of the memory subsystem determines the implementation complexity. For example, Cell
EIB chooses the ring bus architecture instead of the crossbar interconnection for the
purpose of getting the highest possible throughput from the wire-eÆcient ring-bus im-
plementation with the limits on area, power and complexity costs[7].

The memory subsystem of ePUMA architecture consists of two main memories,
local store unit in each SIMD core, the interconnection buses, and the DMA controller,
as illustrated by the region in the dash line in Figure 1.

3.1 Interconnection Buses

All the processing cores and memory modules are connected through this interconnec-
tion bus architecture, which contains two ring buses. A bridge module connects these
two buses to enable data communication between them.

Ring bus 1. Ring bus 1 connects the master and all SIMD cores to main memory 1
which is for streaming data storage. A DMA controller is attached to this bus for direct
memory access. A DMA transaction task can be configured and triggered by either the
master processor or any of the SIMD cores. Ring bus 1 uses a cross-bar bus protocol
which supports multi-connections simultaneously.
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Fig. 2. Local store unit with three vector memories and two permutation tables

Ring bus 2. Ring bus 2 connects all the master and SIMD cores to main memory 2
which is prepared for software programs and coeÆcient data. Here the data communi-
cation load is not as high as in ring bus 1. To simplify implementation complexity, ring
bus 2 applies a shared bus protocol, meaning that at one time only one bus master is
granted the bus to perform its data transfer.

3.2 Vector Memory and Data Permutation

ePUMA’s local store unit in each SIMD core consists of three vector memories and
two permutation tables, as shown in Figure 2. The use of a multi-bank vector memory
and data permutation can provide parallel vector data access with various addressing
patterns at very short latency, usually within one cycle[8][9]. At execution time the local
store unit connects two of the three vector memories to the SIMD data path for vector
operands fetch. The remaining vector memory is connected to the DMA controller for
data communication to the global memory. The SIMD unit works under two modes; a
SIMD mode and a SIMT1 mode[1]. In SIMD mode, data are loaded to register file first
and then used by the data path. While in SIMT mode, the data path can access vector
memory directly. The purpose of using three vector memories is to provide a ”ping-
pong” bu�er for simultaneously loading data and executing SIMD tasks. A switch logic
is used to swap the ping-pong bu�ers.

Data permutation is used with the vector memories to provide conflict-free paral-
lel access[8]. The permutation process decides each vector element’s storage position
in the vector memory. This position information includes a bank number and a local
address of the selected memory bank. A simple way to use a vector memory without
permutation is to use a number of LSB bits from its address for bank selection, and use
the rest bits as the local address. This common solution performs well for consecutive
data access. For more complex SIMD or vector based high performance computing,
many di�erent access patterns are involved. Take matrix multiplication as an example.
One matrix is accessed in row-wise order, and the other one is accessed in column-wise
order. If permutation is available to provide such a column-wise vector access, the time
for matrix transpose can be eliminated. This will improve the performance for matrix
multiplication and other algorithms which access data that is not in row-major order.
Here we give an example of using permutation to achieve conflict-free column-wise

1 SIMT stands for Single Instruction-flow Multiple Tasks [1].
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(a) Input matrix and
its addresses

(b) Storage position
in vector memory
withoutpermutation

(c) Storage position
in vector memory
withpermutation

Fig. 3. Conflict-free vector memory access with permutation

data access, shown in Figure3. Figure 3(a) shows the source 4�4 matrix with its se-
quential addresses. Figure 3(b) and Figure 3(c) use a representation of �S�r� in each
block to present each matrix element’s storage position in the vector memory, where
S represents the bank assignment, r is the local address within the memory bank. Now
we consider the access of vector �0,4,8,12�, that is, access the first column of the input
matrix. Using the approach in Figure 3(b), it can be seen that all the elements are stored
in memory bank 0, and a bank conflict occurs in this case. This means that four cycles
are required to load this column data. When permutation is used as illustrated in Figure
3(c), the elements of the column vector reside in di�erent memory banks, and no bank-
conflict occurs and the access latency is reduced to one cycle. The calculation of storage
position �S�r� is discussed in [8] and formulated in [9]. The permutation function used
in this example is shown in Equations 1 and 2.

S (i) � �i � i�4� mod 4 (1)

r(i) � �i�4� (2)

In the ePUMA local store unit, data permutation is applied on both sides of the vector
memory in the form of lookup tables; the DMA controller uses one permutation table
during a DMA transaction, the SIMD unit uses the other permutation table to generate
data addresses for vector memory. A permutation table takes a single address either
from DMA input or from SIMD load�store unit as an entry to the table, and gets an
output of vector addresses for the vector memory. Each element in the address vector
contains two parts, the bank number and the sub-address within that bank. These ad-
dresses are calculated by the master and the table is configured by the master processor.

3.3 Multi-task DMA Controller

Each bus is allocated a DMA controller for direct memory access. A DMA transaction
task can be configured either by the master core or by any of the SIMD cores. The
DMA controller enables a task queue which supports multiple tasks in the queue. Thus
as soon as one DMA transfer is finished, the next task can start immediately. Another
useful feature of the DMA controller is the priority policy in the task queue. A task
with a higher priority will be issued earlier. Simple data manipulations such as endian
reordering and data width adjustment are also performed in the DMA transactions.
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4 Matrix Multiplication Implementations

The main application domain for ePUMA is streaming DSP. I.e., the important algo-
rithms that must be considered let us load a chunk of data to the vector memories,
compute using a regular data access pattern, write back the results, and repeat.

Algorithms that cannot be decomposed into smaller parts which have this property,
i.e. those who requires irregular data access patterns and�or frequent access to main
memory during the compute phases are not a priority. We do not expect the performance
achieved when running these algorithms on ePUMA to deviate from the performance
on other architectures in any significant way.

In this section, we compare the performance of matrix multiplication of matrices
with dimension 64 � 64. We chose this as our initial algorithm to be evaluated as it has
very regular data access patterns and is typical for the application domain.

The performance will be evaluated on two di�erent architectures using three di�erent
software implementations. Both architectures are assumed to have an identical 8-way
SIMD datapaths. The di�erence between them is the complexity in memory subsystem.
The first implementation is on a conventional SIMD extension data parallel architecture.
The second and third implementation is on our ePUMA multi-SIMD architecture.

First of all, a mathematical definition of matrix multiplication is provided in
Equation 3:

For A � �m�n� B � �n�p, then C � AB � �m�p, where

Ci� j �

n�

r�1

Ai�rBr� j (3)

4.1 Architecture 1 - 8-Way SIMD Extension

First we consider the case when an 8-way SIMD extension is used with a cache. For
simplicity we assume that the matrices A and B are already present in the cache. We
also ignore the time it takes for the output matrix C to be written back after when it is
moved from the cache. However, compared to the cycles necessary for this architecture
to complete the matrix multiplication it can be considered negligable.

Since matrix B is in row-major order and it needs to be accessed in column-major
order, we need to transpose B. Using a standard SIMDized version on 8*8 blocks this
take 4810 cycles. The kernel for the matrix multiplication after B is transposed can
be implementad as shown in Listing 1. While most of of the code code is quite self-
explanatory some details are worth mentioning. Using a NISO SIMD datapath[1] the
computation for conv8wdw is given in Equation 4:

rDest�slot �
7�

i�0

Src1�i � Src2�i� (4)
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Similiarly, sum4dwdw is given by Equation 5:

rDest�slot �
3�

i�0

Src1�i � Src2�i� (5)

To avoid lengthy code but not add overhead from jumps and managing a counter in the
would be innermost loops generate is run at compile time. Similarly we use macro to
avoid unneccessary repetition.

Listing 1. Matrix multiplication for the 8-way SIMD extension

macro CONV(REG)
gen erate f o r j in 0 . . 3

ld r0 , ( rA , r I . 0 )
ld r1 , ( rB , r I . 1 )
s t a l l 2
conv8wdw REG.% j , r0 , r1
addvs r I , 8 �� I n c r e m e n t a d d r e s s o f f s e t s
nop

en d gen erate
endmacro

s e t rA ,A �� rA � a d d r e s s f o r m a t r i x A
s e t rB , B �� rB � a d d r e s s f o r m a t r i x B
s e t rC , C �� rC � a d d r e s s f o r m a t r i x C
f o r i in 0 . . 63

mul r I . 0 , i , 6 4�WORDSIZE �� s e t o f f s e t f o r A
s e t r I . 1 , 0 �� r e s e t B o f f s e t
rep eat 64

CONV( r0 )
CONV( r1 )
mul r I . 0 , i , 6 4�WORDSIZE �� r e s e t A o f f s e t
s t a l l 2
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t m1( rC ) , r4 . 0
add rC , 2 �WORDSIZE

endrepeat
endfor

4.2 Architecture 2 - SIMD Co-processor with Vector Memory

Using a vector memory with permutation we can implement the multiplication as shown
in Figure 4. A naive implementation can be seen in Listing 2. However, since so much
of the addressing overhead is removed we get a significant number of nops in the inner
loop. A simple optimization by overlapping the iterations results in the code shown in
Listing 3.

The conv8wdw and some others instructions now use the notation � memory � (op)
for operands, where op is the operation to be performed to get the address for the next
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Fig. 4. Implementation on the system with a co-processor and vector memory

operand. When we are in SIMT mode the address generator calculates these in parallel
with the other instructions.

The total cost of the DMA transfer is 2057 cycles.

Listing 2. Matrix multiplication for ePUMA

macro CONV(REG)
gen erate f o r j in 0 . . 3

conv8wdw REG.% j , M1r (�8 ) ,
M2c(�64�WORDSIZE�8)

en d gen erate
endmacro

s e t rM1B , C
f o r i in 0 . . 63

s e t rM1 ,A �� s e t o f f s e t f o r A
mac rM1 , i , 6 4�WORDSIZE
s e t rM2 , B �� r e s e t B o f f s e t
add r3 , B , WORDSIZE
rep eat 64

CONV( r0 )
CONV( r1 )
s e t rM1 ,A �� r e s e t A o f f s e t
mac rM1 , i , 6 4�WORDSIZE
s e t rM2 , r3��
s t a l l 3
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t M1B(�2�WORDSIZE) , r2 . 0

endrepeat
endfor

Listing 3. Overlapping implementation for ePUMA

macro 8CONV(REG1, REG2)
gen erate f o r j in 0 . . 3

conv8wdw REG1.% j , M1r (�8�WORDSIZE) ,
M2c(�64�WORDSIZE�8)

en d gen erate
gen erate f o r j in 0 . . 2

conv8wdw REG2.% j , M1r (�8�WORDSIZE) ,
M2c(�64�WORDSIZE�8)

en d gen erate
conv8wdw REG2. 3 , M1r ( r6 ) ,

M2c ( r7��)
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endmacro

s e t rM2C , C
f o r i in 0 . . 63

s e t rM1 ,A
mac rM1 , i , 6 4�WORDSIZE
s e t r6 , rM1
s e t rM2 , B
add r7 , B , WORDSIZE
8CONV( r4 , r5 )
8CONV( r0 , r1 )
sum4dwdw r2 . 0 , r4 , r5
rep eat 62

8CONV( r0 , r1 )
s t M2C(�2�WORDSIZE) , r2 . 0
sum4dwdw r2 . 0 , r0 , r1

endrepeat
s t a l l 6
s t M2C(�2�WORDSIZE) , r2 . 0
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t M2C(�2�WORDSIZE) , r2 . 0

endfor

4.3 Architecture 2 - Overlapping DMA

We can improve the performance by overlapping some DMA transactions with compu-
tation. We do not want to split matrix B into sections because the overhead per iteration
for the inner loop will increase significantly. Instead we transfer matrix B in full, and
then transfer each row in matrix A and the destination matrix C by themselves. This
strategy lends itself well to a parallel solution by using a cyclic distribution of the rows
of A and C among the SIMD processors. This is demonstrated in Figure 5 and Figure 6.

In Figure 5 p � 3. We broadcast B and then send each processor one row in A. We
then transfer any finished rows in C to global memory.

Fig. 5. Overlapping DMA
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In Figure 6 we see the vector memory usage. We store B in vector memory 1. Since
we need to access B column-wise we use a permutation table for AGU1. Since we ac-
cess A and C row-wise we do not need any permutation table for these, and we can use
AGU2 and AGU3 for address generation for these memories. We do however swap vec-
tor memories 2 and 3 in the local store unit between each processed row, so that when
we use one memory for calculations while the other one is used for DMA transfers.

Fig. 6. Usage of vector memories

5 Experimental Results

We define the ratio R as in Equation 6:

R �
Total cycles

Arithmetic instructions
� (6)

The number of arithmetic instructions is defined as the number of conv8wdw and
sum4dwdw instructions. For the considered implementations this value is 36864. We
can then use R as a measurement for the amount of overhead for the di�erent imple-
mentations.

In Table 1 we find the results for when we use one core for processing for all the
implementations.

The ePUMA system is not that far from the ideal R value of one. We get an overhead
of 19.5% with the naive DMA transactions. Being a bit more clever we get down to
15.4% by overlapping DMA transactions with computation. Using only SIMD exten-
sions impose quite a significant overhead of 647%.

The speedup of the implementations on ePUMA are quite significant, almost 6.5
when using overlapping DMA. We should also remember that we did not account for
memory transfers for architecture 1, so the improvements by ePUMA should be slightly
larger.

Table 1. Results

Architecture Arch. 1 Arch. 2 Arch. 2 - Overlapping DMA

Total cycles 275342 44043 42531

R 7.469 1.195 1.154

Speedup 1.00 6.25 6.47
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5.1 ePUMA Scalability

In Table 2 we observe the relative speedup of the overlapping DMA implementation
when using more than one SIMD processor. It is not quite linear; however, considering
how much overhead that has already been removed it is not all that surprising that we
cannot entirely hide the DMA transfers.

Table 2. ePUMA scalability

Processors 1 2 4 8

Speedup 1.000 1.973 3.832 7.176

5.2 Permutation Tables vs Parallel Transpose

In Table 3 we compare the relative execution times of using permutation tables vs per-
forming a parallel transpose of matrix B for di�erent numbers of processors. We use the
values for ePUMA with permutation tables as the baseline. We can see that the added
cost when not using permutation tables is 11-12%. As the transpose is �(n2) and the
matrix multiplication is �(n3) we expect this value to be larger for algorithms with less
computation compared to the input size. Still, avoiding an added cost of 11-12% of the
total execution time is quite significant.

Table 3. Using permutation tables vs parallel transpose

Processors 1 2 4 8

Permutation tables 1.0000 1.0000 1.0000 1.0000

Parallel transpose 1.1147 1.1148 1.1152 1.1164

6 Conclusion

Reviewing the performance increase o�ered by ePUMA compared to SIMD extensions
we believe that ePUMA holds great promise. Using the same number of processors as
the SIMD extended architecture we increase the performance with a factor of 6.47, and
by using the full 8 SIMD processor version with a factor of 45.64.

While the problem at hand fits ePUMA very well it is quite reasonable to expect
similar results for other algorithms with regular addressing patterns. However, we re-
quire that the data access patterns are predictable and that we will be able to load data
from main memory in advance. As ePUMA is geared towards streaming DSP this is an
acceptable constraint.
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