
Embrace the Challenges:
Software Engineering in a Big Data World

Kenneth M. Anderson
Department of Computer Science

University of Colorado,

Boulder, CO 80309–0430

Email: ken.anderson@colorado.edu

Abstract—The design and development of data-intensive soft-
ware systems—systems that generate, collect, store, process,
analyze, query, and visualize large sets of data—is fraught
with significant challenges both technical and social. Project
EPIC has been designing and developing data-intensive systems
in support of crisis informatics research since Fall 2009. Our
experience working on Project EPIC has provided insight into
these challenges. In this paper, we share our experience working
in this design space and describe the choices we made in tackling
these challenges and their attendant trade-offs. We highlight the
lack of developer support tools for data-intensive systems, the
importance of multidisciplinary teams, the use of highly-iterative
life cycles, the need for deep understanding of the frameworks
and technologies used in data intensive systems, how simple
operations transform into significant challenges at scale, and the
paramount significance of data modeling in producing systems
that are scalable, robust, and efficient.

I. INTRODUCTION

The field of software engineering (SE) faces new challenges

in a time when it has never been easier to generate and/or

collect large volumes of data. These challenges span a wide

range of issues both technical and social, each with its own

set of complicated trade-offs. Combined, these challenges

represent a difficult landscape for software engineers—and SE

researchers—to navigate. What problems represent research

challenges and which are merely the result of complex choices

with unclear or difficult to predict consequences?

Project EPIC [1] is a research project that investigates

how people make use of social media during times of crisis

[2]; it is an area that, as a result, requires the collection

of large amounts of social media data (consisting mainly of

Twitter data), and the design, development, and deployment of

scalable and robust software infrastructure. Since Fall 2009,

we have been tackling design challenges related to big data and

data-intensive software systems. In that time, we have created

two production data-intensive systems—EPIC Collect and

EPIC Analyze—that are used on a daily basis by our research

collaborators to collect and analyze data sets consisting of tens

of millions to hundreds of millions of tweets.

As a result, we have firsthand experience with the SE

challenges that exist when working on big data [3] and data-

intensive software systems. In this paper, we briefly describe

our work in this area and then identify the challenges that we

consider most significant in this space and provide insights

into the problems that are encountered and the trade-offs that

can be made when tackling them. We also indicate the choices

we made and why we made them to aid SE researchers and

practitioners dealing with similar issues. Our lessons learned

touch on the lack of developer support tools for data-intensive

systems, the importance of multidisciplinary teams, the use

of highly-iterative life cycles, the need for understanding

the frameworks used in data intensive systems, the way in

which simple operations transform into significant challenges

at scale, and the need to get data modeling right to produce

systems that are scalable, robust, and efficient.

II. PROJECT EPIC

The SE researchers working on Project EPIC had to solve

two issues intrinsic to work in big data: how to effectively

collect and store ever-growing data sets and how to analyze

that data efficiently. A key theme emerged quickly in our work

on these two issues—embrace failure—each time we applied

a technique and found that it did not scale or it failed to work

reliably, we would learn something valuable that would then

guide our subsequent design efforts.

Our attempts to store significant amounts of Twitter data

moved from simple systems managing flat files to n-tier web

applications using relational technologies [4] to our eventual

solution of making use of NoSQL technology [5] on a cluster

of machines [6]. Along the way we had to wrestle with data

modeling approaches that a) first attempted to filter the data we

stored to b) then migrating to storing the data in normalized

form to c) abandoning normalization and storing unmodified

copies (and, in the case of user objects, duplicate copies) of

the data Twitter provides for use later in analysis.

With each switch in persistence technology we would gain

an appreciation for the importance of data modeling which,

if done poorly, limits the ability to use the data for analysis

downstream. Indeed, getting data modeling wrong in data-

intensive systems is painful since it is easy to generate

hundreds of gigabytes of data in the “wrong” format (in that

the selected structure does not allow answers to important

questions to be computed efficiently) and then face the un-

enviable task of reformatting that data into new forms and/or

migrating the data into a new persistence technology.

With respect to analysis, Project EPIC had several goals

to achieve: 1) the partial automation of the manual analysis

process that our analysts already use to study smaller data

2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering

978-1-4673-7025-7/15 $31.00 © 2015 IEEE

DOI 10.1109/BIGDSE.2015.12

19

EPIC Event Editor EPIC Analyze Splunk Application
Layer

Service
Layer

Storage
Layer

Twitter Redis

PostgreSQL Cassandra

SolrPig Hadoop
EPIC

Collect

DataStax Enterprise

Fig. 1. The Software Architecture of EPIC Collect and EPIC Analyze [7]

sets, 2) the efficient generation of metrics and statistics that

our analysts need for each data set, and 3) the ability to support

exploratory analysis of large data sets in an efficient manner

[8]. With respect to the latter, our analysts want to be able to

ask questions of the data and get back answers in seconds (not

minutes) independent of the size of the data set (from tens of

thousands of tweet to tens of millions) so as not to interrupt

their analytical “flow” as they work with the data.
Creating an analysis environment that met these goals

involved a significant engineering effort but also a research

exploration of the trade-offs involved with selecting one class

of technology over another and then determining the software

architectural style that would allow these disparate technolo-

gies to be integrated into a single operational system [7].
The software architecture encompassing both systems is

shown in Fig. 1. EPIC Collect consists of the EPIC Event

Editor that allows analysts to indicate the events and keywords

they are interested in and a middleware component that

connects to the Twitter Streaming API and stores the tweets

that flow in from that service into a large in-memory queue.

Multiple workers process that queue in parallel, computing

various statistics, logging each tweet, and then handing the

tweets to a Cassandra cluster for long-term storage.1

Our Cassandra cluster then acts as the foundation of EPIC

Analyze, our analysis environment. We make use of Pig and

Hadoop to calculate metrics that require processing every

tweet in a data set; Solr to enable advanced search capabilities

over those tweets; Redis to cache the results of certain queries

and to aid in the pagination of our data sets; and Postgres to

store shared annotations (comments and tags) that our analysts

make on tweets as they analyze our data sets. All of these tech-

nologies are orchestrated by the EPIC Analyze web application

(implemented in Ruby on Rails) to provide our analysts with

a wide range of advanced browsing, filtering, searching, and

1All of the technologies mentioned in this paper (e.g. Cassandra, Redis, etc.)
have websites, documentation, tutorials, etc. that can be found via Internet
search; we have thus abbreviated explanations here in the interest of space.

analytical capabilities. This architecture has multiple extension

points; this has allowed us to integrate third-party analysis

tools (e.g. Splunk) into the system allowing our analysts to

pick and choose among a variety of analytical options.

Both of these systems have been described in detail in the

papers cited above. For this paper, we will simply make note

of the extreme heterogeneity of this software infrastructure.

We make use of six generic software frameworks (Postgres,

Pig, Hadoop, Solr, Cassandra, and Redis) each with their own

concepts and APIs, three major custom-built components, a

third-party data analysis tool, and a variety of “glue code” not

shown in the diagram. Furthermore, the architecture shown

in Fig. 1 is a logical representation that does not reveal

the intricate nature of the deployment of this architecture

onto a cluster of machines—four for Cassandra, one each

for Redis and Postgres, four for Hadoop and Solr, one for

EPIC Collect, and one for EPIC Analyze—all located within

a professionally-maintained data center at the University of

Colorado. Both the architecture and the operational aspects

of these systems place significant demands on the team of SE

researchers that have worked on Project EPIC since Fall 2009.

We now turn to the lessons learned about the design

challenges of data-intensive software systems as we worked to

design, develop, and deploy EPIC Collect and EPIC Analyze.

III. DESIGN CHALLENGES OF DATA-INTENSIVE

SOFTWARE SYSTEMS

In this section, we identify and discuss challenges that are

associated with the design and development of data-intensive

software systems. Where appropriate, we identify choices that

can be made to address these challenges and what trade-offs

need to be considered when making those choices.

A. Lack of Developer Support

The first challenge that is encountered by software engineers

moving into the design space of data-intensive systems is

the paucity of tools designed to help developers work with

20

the highly heterogeneous software architectures that these

systems require. In contrast, consider the tools that a developer

has when developing a single desktop or mobile application.

Modern development environments such as XCode or Eclipse,

provide advanced text editors, code completion, automated

refactoring, advanced application frameworks, static analysis,

UI development tools, relational database development tools,

integrated debuggers, and the like.

In contrast, the developer of a data-intensive system loses

nearly all of that support and has to cobble together gen-

eral tools (editors, command-line build systems, standalone

compilers, etc.) to produce an environment that is somewhat

productive. There are no advanced modeling tools for Hadoop

or integrated Hadoop debuggers; there are no tools that auto-

matically configure Redis or MongoDB or Cassandra with the

data models that a system requires and certainly no support for

migration when those data models evolve over time. Further-

more, when it comes time to deploy the system on a cluster (of

possibly hundreds) of machines, there are complicated system

administration tasks to learn alongside obscure provisioning,

virtualization, and configuration management frameworks to

make use of to transition a system from design and devel-

opment to production operation. Developers in this space are

essentially back to square one, similar to desktop application

developers back in the 1980s. Project EPIC’s experience vali-

dates this situation: building data-intensive systems is currently

a laborious, error-prone process. We are focusing our efforts in

this space on a general framework that significantly reduces the

cost of building systems that work with multiple data stores.

While this is an unfortunate and challenging situation, it rep-

resents a major research opportunity for software engineering.

What modeling frameworks do developers of data-intensive

systems need? What debugging tools would be most helpful?

How do software engineers model and select the deployment

options their system needs and can the actual deployment

be automated or significantly reduced in complexity? The

distributed systems community has developed a wide range of

tools and frameworks that can be used to design and build

these systems but with very little support for the software

engineer. Now, the SE research community must work to make

these tools and frameworks accessible to a wider range of

software developers with appropriate support for modeling,

design, and debugging.

B. Need for Multidisciplinary Teams

A second challenge in working on the design of data-

intensive software systems is the necessity of a multidisci-

plinary team that provides expertise on a diverse set of skills

and topics. Data intensive systems are typically “full-stack”

applications that require well-designed user interfaces with

the ability to display, browse, sort, filter, query, and analyze

information, middleware components that respond to requests

from the UI as well as perform analytics, collect data, migrate

data, clean data, etc. to persistence technologies that store

data often on clusters of machines. The management of those

clusters may require an entire array of software components

to handle provisioning, virtualization, and configuration. In

addition, these systems have to handle an iterative data life
cycle that includes a) developing questions to be answered, b)

curating the potential data sources, c) collecting data from

these sources, d) cleaning the collected data, e) storing it,

f) processing/analyzing the data, and then g) displaying and

visualizing the data in response to queries. The results of

those queries provide new information that may lead to new

questions that trigger a new iteration of the data life cycle.

Even if the results do not trigger new questions, these systems

must still support the ongoing collection of data from the

identified data sources leading inevitably to questions of long-

term storage and the development of data management and

data retention policies that then must be implemented.

To properly handle the design and development of these

systems and the demands of the data life cycle, a team

developing data intensive systems requires, in general, people

skilled in software engineering, distributed systems, system

administration, data analysis (statistics and machine learning,

graph theory, etc.), information retrieval, natural language pro-

cessing, data persistence, information visualization, and user

interface design and development and, specific to an individual

project, application domain experts who can identify the types

of data that can be collected or generated and the important

questions that can be asked of the domain. It can be quite

challenging to assemble such a team; Project EPIC was able

to do so given its origin as a large NSF project supported by

a multidisciplinary team with experience performing interdis-

ciplinary research. In addition, Project EPIC was situated at

a research university where it was possible to consult with

experts outside the team as needed to cover any gaps in the

team’s knowledge and skills.

C. Iterative Life Cycles and a Commitment to the Domain

A third challenge in working with big data is the need

for highly-iterative life cycles with a development team that

is committed to understanding the application domain of the

system and the needs and culture of its end users. This is,

of course, true of all software systems (if one wants them

to be used [9]) but these concerns are especially stressed

in these situations. Understanding of the domain is essential

because one needs to make sure the system will answer

the right questions. Getting the questions wrong will lead

to the collection of the wrong data (and lots of it) which

will eventually have to be migrated, used to answer different

questions, or deleted—all tasks that will take time and will

prevent the team from moving the project’s focus to the right

questions and the right data. Understanding the needs of the

system users is also essential in determining the right set of

technologies to incorporate into the system design. Will the

users be asking the same set of questions of the data each

time or will their questions evolve over time? Do they need

interactive access to the data or will batch-generated reports

be sufficient? Do the reports present information on the entire

data set or on windows of time within the data set? Are textual

reports of statistics and metrics enough or is visualization

21

required? Is 24/7 data collection required? Are the data sources

steady or bursty? Are there multiple data sources or just one?

Do metrics need to be calculated as data streams in, or can

they be generated after the data is stored?

The answers to these questions all impact the technol-

ogy decisions that must be made and how the data that

is collected/generated is stored and processed. Technologies

for batch processing data make fundamentally different as-

sumptions than technologies for processing streaming data.

These technologies can be combined into a single system

(using, for instance, the Lambda Architecture [10]) but at the

cost of significant complexity for the software engineers and

operational complexity for system administrators. The only

way to mitigate that cost is for the developers and users to

work closely together, to be willing to iteratively prototype

solutions, to test those prototypes with users, and to be willing

to undertake the pain of having to migrate large amounts of

data to new solutions if initial technology choices prove to be

inadequate with respect to changing requirements.

We have documented our own experience working in this

way on a crisis informatics system designed to reunite pets

with their families after disasters [11]. In that work, we

describe the range of user-centered design techniques we

used in the development of this data-intensive system and

the modified agile life cycle we employed to ensure the

system would meet the needs of its user community. Agile life

cycles and user-centered design techniques provide a basis for

meeting this challenge but additional SE research is needed

to further explore this space: how do teams deal with the

consequences of making a wrong design choice; what tools

can be provided to minimize the impact of storing large data

sets in the “wrong” format; what new roles are needed on the

development team to ensure that steady progress is made when

designing and developing data-intensive systems?

D. Matching Frameworks with Requirements

A fourth challenge in designing data-intensive systems is

the need to properly match the characteristics of the dis-

tributed systems frameworks available for use in developing

big data systems with the requirements of the system-under-

development. We did not select Cassandra as our primary

persistence framework because it was “popular.” We selected

it because it perfectly matched the needs of EPIC Collect [6].

We were in a situation where our previous choice of using a

relational database to store Twitter data had reached its limits.

Firstly, Twitter at the time (early 2011) was rapidly evolving

the types of metadata that would ship with each tweet. Each

time the metadata changed, we had to make a decision as

to whether we wanted to store one of the new attributes. If

so, we had to alter the schema of our database, migrate our

existing set of data to the new schema, and update our software

to properly store the new attributes when saving tweets. This

type of change rapidly grew into a maintenance nightmare

that threatened our ability to collect data 24/7—a requirement

imposed by our collaborators whose research depended on

getting “complete” data sets on the mass emergency events

they selected for study.

Secondly, the size of our data sets were moving into the

territory where relational databases demand “vertical scaling”

techniques (essentially buying an expensive server with more

memory and disk space) or shifting to using sharding tech-

niques that require the developers to rewrite their software

to store data in multiple relational databases partitioned by

some sort of application-defined key. This aspect was again

a potential maintenance nightmare: now we would have to

manage multiple relational databases with very little tool

support and we had the potential of getting our partitioning

strategy wrong and ending up with unbalanced data sets (and

thus unbalanced load) across the multiple machines.

Finally, with relational databases it is difficult to ensure that

data is reliably saved; one can regularly run database “dumps”

and then ensure that the extracted data is backed-up on a

separate machine but this adds to the operational complexity

of the environment and we were (at the time) a team of two SE

researchers trying to perform our own research while providing

a production software system that collects data 24/7.

Cassandra helped us solve each of these problems. The fact

that Cassandra does not impose a schema allowed us to simply

store the JSON objects delivered by Twitter unmodified.

Changes in the metadata no longer had an impact during

collection; it might have an impact during analysis (e.g. when

a computation relies on a particular attribute being present)

but at the time we were focused solely on getting to a reliable

situation with respect to data collection and had decided that

we would deal with analysis-related problems at a later stage.

We could have adopted a similar strategy with our relational

database but once one starts storing BLOBs in a relational

database one should examine why a relational approach is

being used in the first place.

Cassandra replaces the need for vertical scaling and shard-

ing with the more palatable option of horizontal scaling. In-

deed, Cassandra’s design is inspired by Google’s BigTable [12]

and Amazon’s Dynamo [13]; it was designed for horizontal

scaling from the start. With horizontal scaling, if a system is

running out of disk space, simply add another server to the

cluster. If a system needs more processing power, add another

server. When Cassandra runs on a cluster, it automatically

partitions the data across the cluster, performs reads and writes

in parallel, and is able to scale to extremely large sets of data.

The software engineer no longer has to worry about handling

sharding-related issues at the application layer. Instead, data

can be persisted to Cassandra and those details are handled

automatically. Issues related to vertical scaling also go away

since horizontal scaling provides significant disk space and

compute power by clustering cheaper, commodity hardware.

Finally, Cassandra nearly eliminates the need for software

engineers to worry about data loss. That is because it can be

configured with a replication factor and it will then ensure that

each row of data sent to it is stored multiple times on different

servers in the cluster. Replication occurs when the row is being

written for the first time so if the write completes, developers

22

know that the data has also been replicated. Replication may

also occur when the size of the cluster changes: the addition of

a new node may allow distinct copies to live on distinct nodes

while the removal of a node may require creating new copies

of the rows stored on that server to be created on yet another

server to ensure that the replication factor is maintained.

If the primary node for a row goes down, Cassandra will

automatically return the row from one of its replicas. All of

this is handled automatically after the replication factor is set

for the first time removing the need for developers to handle

replication at the application level.

We therefore selected Cassandra as our persistence solution

since it gave us the scalability, flexibility, and reliability that

solved (indeed eliminated) very real problems that we were

struggling with at the time. We reviewed a wide range of

NoSQL solutions before selecting Cassandra. MongoDB is a

capable, indeed popular, document database but back in 2011

it was not reliable when operating in a cluster configuration

and our data sets were too big to be stored on a single machine.

HBase did not offer the performance that we needed with re-

spect to our reads and writes. Solr/Lucene is a document-based

system that focus on providing advanced search capabilities

and should not be used as a general purpose, long-term storage

solution. These are just examples of the systems we reviewed

alongside Cassandra and each one failed to meet our needs

with respect to data collection.

The key lesson here is that members of a development team

must invest the time to deeply understand the wide range

of software frameworks that are available to include in the

design of a data-intensive software system whether they are

considering a candidate persistence technology, a distributed

computation framework, a search technology, a caching tech-

nology, etc. The technology that is selected for inclusion

should closely match the requirements of the larger system and

solve real problems that the system would encounter without

its use. This is a generally-applicable statement to system

design but it is especially true in the big data design space.

Generic frameworks that are misapplied will not scale or will

not function at a level of reliability needed to prevent problems

during production operation.

This challenge represents another research opportunity for

the SE community. The characteristics of these systems should

be documented from the perspective of a software architect:

when should each framework be used; what frameworks work

well together and what sort of scalability, flexibility, and

reliability guarantees can be achieved; can abstraction layers

be created on top of these frameworks to make them more

accessible to a wider range of software engineers?

E. Easy Becomes Hard at Scale

One surprising challenge in the design and development

of data-intensive software systems is the way in which func-

tionality that is straightforward to implement for desktop and

mobile applications—such as sorting, maintaining data model

consistency, or displaying data—transform into significant

engineering challenges, often requiring the use of unfamiliar

algorithms and/or approaches. For instance, at Project EPIC,

we regularly deal with files of Twitter data exported from

Cassandra that are tens of gigabytes in size. Students working

with large data for the first time will often complain that

they are unable to open these files to see what is in them.

When questioned, it becomes clear that the students were

trying to load the entire file into memory. Such difficulties

become learning experiences about how to work with files of

this side, handling them in chunks, or importing the data in

some form into another database for processing. This type of

transformation is needed for other operations as well.

When displaying large data sets, one can choose to provide

a “big picture view” via descriptive stats or graphs but one

can never display the entire data set at once. Firstly, the data

set is too big to bring into main memory, and secondly, the

time it would take to transfer, e.g., millions of tweets across

a network connection for display in a web application is too

long for human operators. Instead, developers must “paginate”

the data set and display just fifty tweets (or some similar

number of tweets) per “page” of a data set instead. Adding

the mechanisms to handle pagination over a data set is an

unfamiliar operation for many software engineers. In desktop

and mobile applications, many developers are used to being

able to load all of their data into memory at once and then

display it in various ways across the views of their application.

EPIC Analyze instead keeps an index of tweet references for

a data set in Redis and uses array manipulations to quickly

calculate the tweet references that appear in a particular page.

It then sends those tweet references to Cassandra to retrieve

the tweets which are then displayed in the browser. This

display process occurs in under a second (even for data sets

containing millions of tweets) but is way more complex than

what would be required for a desktop application. Yet this type

of architectural complexity is required to achieve sub-second

response on large data sets.

Likewise the task of sorting data transforms from a straight-

forward operation to a significant engineering challenge. With

EPIC Analyze, we have data sets consisting of millions of

tweets. These tweets are by default sorted by tweet id. When

analysts view Twitter data sorted in this way, it becomes

natural to want to view the data sorted by other attributes,

e.g. user screen names or favorite counts. Unfortunately, it

is not possible to sort this data on an alternative attribute at

interactive speeds. One would need to read all of the tweets

into memory, sort them on the new attribute, and write them

back to Cassandra in the newly sorted order and one would

need to do that for each sort dimension. Out of curiosity, we

tested this approach for sorting on a small data set of ∼180K

tweets. It took seven minutes to read all of these tweets into

main memory for sorting and this is one of Project EPIC’s

smaller data sets. This approach simply would not work on

data sets consisting of millions of tweets.

Instead, we developed a new incremental sorting method

[14] that sorts our data sets as a batch process along all desired

sort dimensions; it is incremental in that it can handle the case

where a data set is under active collection and is able to sort

23

new tweets that are added to the data set each day without

having to re-sort previously sorted tweets. Our method takes

about five minutes to process the 180K tweet data set and once

it is done it can display a page of sorted tweets along any

dimension in under one second. While we eventually reached

the state that allowed our analysts to sort our data sets along

any dimension they desired, it took a significant amount of

design and engineering to offer a feature that is otherwise

standard across “small data” applications.

Finally, in many small-scale applications, it is important to

maintain data model consistency. For instance, if one were to

model EPIC Collect’s data model in a relational database, one

would create tables for events, keywords, tweets, and users.

Events are associated with a start date and an end date and a set

of keywords. Tweets are collected that contain those keywords;

they are stored in the tweets table and are associated with a

particular event. Each tweet was generated by a particular user

and the user’s information is stored in the users table. An event

has many tweets; a user has many tweets; each tweet belongs

to a single user and at least one event. With a relational model,

third normal form is a desired goal and so one would strive

to maintain a single entry per unique user in the user table;

each time a tweet is collected from a previously-seen user, the

collection software must read the metadata associated with

the user and see if it has changed. If it has, it must update

the information in the user table overwriting the information

that was stored there previously (object-relational mappers

typically do not support keeping track of previous values of

the fields in a database row). If an event is deleted, then most

relational systems would delete all of its associated tweets and

keywords. If a user no longer has any tweets, it too might be

deleted. Likewise deleting a user would delete its tweets and

might cascade to delete events and keywords.

All of this is done in an attempt to enforce data consistency

such that any data in the database is up-to-date and that out-

of-date or inconsistent data is never shown to an end user.

All of these concerns are obsolete in data-intensive software
systems that make use of NoSQL technologies. Rather than

attempt to maintain only a single copy of a user, each tweet is

stored with its embedded user object; this means that within

our data store, we have one copy of the user object per tweet

that user generated. There is no attempt to keep track of the

“latest version of a user;” instead one re-designs questions to

care only about “the state of the user at the time this tweet was

generated.” Furthermore, there is no attempt to avoid wasted

disk space due to duplication because the underlying premise

of NoSQL is that “disk space is cheap” and that if one needs

more space one will add additional servers to the cluster.

This approach to data storage is a complete reversal of how

many software engineers were trained to think and it can be

difficult to set aside time-honored approaches such as third

normal form and relational technology and embrace the new

approaches that are needed to scale to truly large data sets. The

key lesson associated with this challenge is that developers

must be willing to abandon a wide range of techniques that

will no longer work when dealing with large data sets and must

be open to iteratively combining general purpose frameworks

in various ways until a “straightforward” operation—such as

sorting—becomes feasible at scale.

F. Data Modeling

As mentioned in Section I, data modeling is paramount to

the success of data-intensive software systems. A system must

be collecting the types of data needed to answer the questions

of its users and storing that data in such a way that those

questions can be answered in an efficient manner. Of course,

it is impossible to anticipate every question that a user might

have for a given application domain. In traditional information

systems, this problem is addressed by general-purpose query

systems. These systems can answer arbitrary questions over

structured data in an efficient manner; performance penalties

are encountered only when questions cannot take advantage of

indexes created for questions that were known from the start.

In big data and data-intensive systems, asking questions

on data not structured to answer that question in an efficient

manner often causes major problems: either the existing data

has to be reformatted (at great cost) or a computation is

devised to produce the answer but often with a considerable

performance penalty. Often, it is easiest to just update the

collection software to restructure new data in the format that

will allow both existing and new questions to be answered

in an efficient manner and simply acknowledge that the new

questions cannot be applied to the old data. One can observe

this happening with new features of large social media sites

like Twitter and Facebook. New features often only apply to

data that was generated after the feature was introduced and

is not available on previously created data.

A major difficulty with data modeling in big data systems is

the way in which seemingly minor choices with respect to the

way data is stored and referenced in NoSQL systems can have

major impacts on overall system performance. As documented

in [6] and [7], we had to apply significant effort to the design

of the row keys we used to store tweets in Cassandra. A row

key is used to retrieve rows from a column family (similar to

tables in relational database technology except that no schema

is enforced); each row has a set of columns; and each column

consists of a key and a value. As there is no schema, each row

can have a different number of columns and column names

can be completely different from row to row.

With respect to performance, row keys play a critical role.

Firstly, servers in a Cassandra cluster will split (i.e. partition)

the space of possible keys among themselves. All keys that fall

within a partition are stored on the same server. Secondly, row

keys determine how many columns can be associated with a

given row; this is important because Cassandra replicates rows.

If a row is “narrow” then it will consume less disk space and

be easier to replicate. If a row is “wide” it can be quite large

and impose performance penalties when replicated, especially

when a node is added or removed from the cluster and the

key space must be re-partitioned. Thirdly, row keys determine

what can be queried. If one stores row keys that make use of

application domain information such as dates and times, an

24

application can make time-based queries by formulating the

appropriate row keys correctly. However, if row keys do not

contain application domain information and instead are simply

unique integers, then one loses the ability to query particular

rows individually and must instead fall back to iterating over

all the rows in a column family (a much slower operation).

When storing tweets, one might consider using a tweet’s

unique id as the row key and then store each of its metadata

key-value pairs as columns in the resulting row. However, this

would create rows that are too narrow (only one tweet per

row) and would not make best use of Cassandra’s ability to

handle rows with lots of columns; plus it would be impossible

to query for a given tweet individually unless one maintained

an index of all previously stored tweet ids. Furthermore,

since tweet ids are monotonically increasing, one faces the

possibility of all tweets streaming in for a given time period

being mapped to a single node in a cluster, thus overworking

it and under-utilizing the rest of the cluster.

Thus, one must carefully design row keys such that a) they

generates rows that are not too wide to facilitate replication,

b) contain application domain information in them so they

are easily queried, and c) easily partitioned so that their

associated rows are evenly distributed across a cluster. With

EPIC Collect, we use row keys that consist of three parts: a

keyword, a julian date, and a hexadecimal digit. An example is

“flood:2015032:a” which represents one sixteenth of all tweets

that contain the keyword “flood” collected on Feb. 1, 2015.

What this scheme does is that it ensures that our rows

maintain a reasonable width, are easily queried, and partition

the load of reading/writing rows across all nodes in a cluster.

With this design, collecting 1M tweets on a given day for a

given keyword generates 16 different row keys each containing

only 62.5K tweets. If one needs to review “hurricane” tweets

collected on January 1st of 2014, then one asks Cassandra for

row keys: “hurricane:2014001:0” to “hurricane:2014001:f”.

The hexadecimal digit ensures that rows for a given keyword

and julian date are evenly distributed across the cluster since

there is more of a chance that each of the sixteen possible row

keys fall into different partitions on the cluster.

Unfortunately, none of these issues were clear when we

first started using Cassandra to store our Twitter data. It

required a lot of work to understand why we were experiencing

performance problems, linking those problems back to our

row keys, and then developing a proper design for our row

key to ensure good performance. The lesson of this particular

challenge then is to not underestimate the difficulty in getting

the data models of data intensive systems to properly take

advantage of the persistence technologies being used and

therefore be in a position to offer the best performance and

reliability that each technology can provide. There are future

SE research opportunities here to devise ways in which row

keys might be automatically generated for a particular class

of persistence technology given some description of the data

model of a big data software system, as well as finding ways

to reduce the complexities of working with more than one data

storage technology at a time.

IV. CONCLUSIONS

In this paper, we identify six challenges related to the design

of data-intensive software systems. We provide insight into

these challenges by sharing our experiences working to design

and develop two data-intensive systems for Project EPIC. We

hope that the identified issues demonstrate the complexities

that are involved in working in this design space and that our

approach to these challenges can aid other software engineers

and SE researchers solve problems when working on their own

data-intensive software systems. We also identified a variety

of research opportunities for the SE community to pursue to

make it easier to design data-intensive systems in the future.

ACKNOWLEDGMENT

This material is based upon work sponsored by the NSF

under Grant IIS-0910586.

REFERENCES

[1] L. Palen, J. Martin, K. M. Anderson, and D. Sicker, “Widescale
computer-mediated communication in crisis response: Roles, trust &
accuracy in the social distribution of information,” 2009, http://www.
nsf.gov/awardsearch/showAward.do?AwardNumber=0910586.

[2] L. Palen, K. M. Anderson, G. Mark, J. Martin, D. Sicker, M. Palmer,
and D. Grunwald, “A vision for technology-mediated support for public
participation & assistance in mass emergencies & disasters,” in ACM-
BCS Visions of Computer Science, April 2010, Article 8. 12 pages.

[3] M. Cox and D. Ellsworth, “Application-controlled demand paging
for out-of-core visualization,” in Proceedings of the 8th Conference
on Visualization. IEEE Computer Society Press, 1997, pp. 235–ff.
[Online]. Available: http://dl.acm.org/citation.cfm?id=266989.267068

[4] K. M. Anderson and A. Schram, “Design and implementation of a data
analytics infrastructure in support of crisis informatics research (nier
track),” in 33rd Int. Conf. on Software Engineering, 2011, pp. 844–847.

[5] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley, 2012.

[6] A. Schram and K. M. Anderson, “MySQL to NoSQL: Data model-
ing challenges in supporting scalability,” in ACM Conf. on Systems,
Programming, Languages and Applications: Software for Humanity,
October 2012, pp. 191–202.

[7] K. M. Anderson, A. A. Aydin, M. Barrenechea, A. Cardenas, M. Ha-
keem, and S. Jambi, “Design challenges/solutions for environments sup-
porting the analysis of social media data in crisis informatics research,”
in 48th Hawaii International Conference on System Sciences. IEEE,
January 2015, pp. 163–172.

[8] K. M. Anderson, A. Schram, A. Alzabarah, and L. Palen, “Architectural
implications of social media analytics in support of crisis informatics re-
search,” IEEE Bulletin of the Technical Committee on Data Engineering,
vol. 36, no. 3, pp. 13–20, September 2013.

[9] W. Orlikowski, “Learning from notes: Organizational issues in group-
ware implementation,” in 1992 ACM Conference on Computer-
Supported Cooperative Work, 1992, pp. 362–369.

[10] N. Marz and J. Warren, Big Data: Principles and Best Practices of
Scalable Realtime Data Systems. Manning Publications, 2015.

[11] M. Barrenechea, K. M. Anderson, L. Palen, and J. White, “Engineering
crowdwork for disaster events: The human-centered development of
a lost-and-found tasking environment,” in 48th Hawaii International
Conference on System Sciences. IEEE, January 2015, pp. 182–191.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in 7th Symposium on Operating
System Design and Implementation, 2006, pp. 205–218.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazons highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[14] A. A. Aydin and K. M. Anderson, “Incremental sorting for large dynamic
data sets,” in 1st IEEE International Conference On Big Data Computing
Service And Applications, March 2015, in press.

25

