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SUMMARY 

Motivation: Development of an in silico cell, a computer resource for modeling and 
analysis of physiological processes is an urgent task of systems biology and 
computational biology. Mathematical modeling of the genetic regulation of cell 
metabolism pathways, in particular, salvage pathways, is an important problem to be 
solved as part of this line of work. 

Results: By using the GeneNet technology, we reproduced the gene network of the 
regulation of salvage pathways in the E. coli cell. Mathematical models were constructed 
by the method of generalized Hill functions to describe the efficiency of enzyme systems 
and regulation of expression of genes coding for these enzymes. 

Availability: The diagram of the gene network is available through the GeneNet 
viewer at http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/viewer/index.shtml. Models are 
available on request. 

INTRODUCTION 

Salvage pathways are the metabolic pathways used by Escherichia coli for synthesis 
and conversion of adenine, hypoxanthine, guanine, xanthine, and their nucleosides and 
pyrimidine ribo- and deoxyribonucleotides. 

The gene network of regulation of salvage pathways in the E. coli cell was 
reconstructed. Mathematical models of enzymatic reactions were constructed. A database 
storing experimental data on the behavior of components of this gene network was 
developed (Khlebodarova et al., 2006). Parameters of the models were determined by 
numerical simulation. The results of calculation of steady-state properties and behavior of 
the components of the molecular system derived from the models are in agreement with 
experimental evidence. 

METHODS AND ALGORITHMS 

The gene network of salvage pathways was reconstructed with the use of the GeneNet 
technology (Ananko et al., 2005), allowing accumulation and presentation of data on the 
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structure and function of molecular systems. Mathematical models of the regulation of 
gene expression and efficiency of enzyme systems were constructed by the method of 
generalized Hill functions (Likhoshvai, Ratushny, 2006). 

RESULTS 

The gene network of regulation of salvage pathways was reconstructed with the use of 
the GeneNet technology (Ananko et al., 2005). In addition to de novo synthesis, purines, 
pyrimidines and their nucleosides can be formed in the cells via salvage reactions. The 
salvage pathways of E. coli involve 33 enzymes catalyzing 85 reactions (Table 1). 

Table 1. Enzymatic reactions present in the salvage pathway network 
Enzyme Gene Reaction Alternative substrate ЕС 
Adenylate kinase adk GTP + AMP ↔ 

ADP + GDP 
ATP, ITP, DAMP 2.7.4.3 

Guanylate kinase gmk GMP + ATP ↔ 
GDP + ADP 

DGMP 2.7.4.8 

Nucleoside-diphosphate 
kinase 

ndk GDP + ATP ↔ 
GTP + ADP 

UDP, CDP, DGDP, DUDP, 
DCDP, DADP, DTDP 

2.7.4.6 

AMP Nucleosidse amn AMP → AD + R5P  3.2.2.4 
Adenosine deaminase add ADN → INS + NH3 DA 3.5.4.4 
Adenine deaminase yicP AD → NH3 + 

HYXN 
 3.5.4.2 

Inosine/ Guanosine kinase gsk INS + ATP → IMP 
+ ADP 

GSN 2.7.1.73 

Adenine 
phosphoribosyltransferase 

apt AD + PRPP → PPI 
+ AMP 

 2.4.2.7 

Xanthine-guanine 
phosphoribosyltransferase 

gpt XAN + PRPP → 
XMP + PPI 

GN, HYXN 2.4.2.22 

Hypoxanthine 
phosphoribosyltransferase 

hpt HYXN + PRPP → 
PPI + IMP 

GN 2.4.2.8 

Xanthosine phosphorylase xapA DIN + PI ↔ HYXN 
+ DR1P 

DA, DG, INS, ADN, 
GSN, XTSN 

2.4.2.1 

Purine nucleotide 
phosphorylase 

deoD DIN + PI ↔ HYXN 
+ DR1P 

DA, DG, INS, ADN, 
GSN 

2.4.2.1 

Uridine phosphorylase udp URI + PI ↔ URA + 
R1P 

 2.4.2.3 

Thymidine/deoxyuridine 
phosphorylase 

deoA DU + PI ↔ URA + 
DR1P 

DT 2.4.2.4 

Cytidylate kinase cmk CMP + ATP ↔ 
ADP + CDP 

UMP, DCMP 2.7.4.14 

dTMP kinase tmk DTMP + ATP ↔ 
ADP + DTDP 

 2.7.4.9 

Uridylate kinase pyrH UMP + ATP ↔ 
UDP + ADP 

DUMP 2.1.4.- 

Uracil 
phosphoribosyltransferase 

upp URA + PRPP → 
UMP + PPI 

 2.4.2.9 

Cytosine deaminase codA CYTS → URA + 
NH3 

 3.5.4.1 

Uridine/Cytodine kinase udk URI + GTP → GDP 
+ UMP 

CYTD 2.7.1.48 

Thymidine (deoxyuridine) 
kinase 

tdk DT + ATP → ADP 
+ DTMP 

DU 2.7.1.21 

dCTP deaminase dcd DCTP → DUTP + 
NH3 

 3.5.4.13 

Cytidine deaminase cdd DC → NH3 + DU CYTD 3.5.4.5 
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Enzyme Gene Reaction Alternative substrate ЕС 
5'-Nucleotidase ushA AMP → PI + ADN GMP, IMP, XMP, UMP, 

CMP, DCMP, DGMP, 
DAMP, DTMP, DUMP 

3.1.3.5 

Ribonucleoside-
diphosphate reductase 

nrdAB ADP + RTHIO → 
DADP + OTHIO 

GDP, CDP, UDP 1.17.4.1 

Ribonucleoside-
triphosphate reductase 

nrdD ATP + RTHIO → 
DATP + OTHIO 

GTP, CTP, UTP 1.17.4.2 

Ribonucleoside-
diphosphate reductase II 

nrdEF CDP + RTHIO → 
DCDP + OTHIO 

  

dUTP pyrophosphatase dut DUTP → PPI + 
DUMP 

 3.6.1.23 

Thymidylate synthetase thyA DUMP + METTHF 
→ DHF + DTMP 

 2.1.1.45 

Nucleoside triphosphatase mutT GTP → GMP + PPI DGTP 3.6.1.- 
Deoxyguanosinetriphosph
ate triphophohydrolase 

dgt DGTP → DG + PPP GTP 3.1.5.1 

 
Table 1 shows the enzymatic reactions present in the gene network under consideration, 

names of enzymes catalyzing corresponding reactions, and names of genes coding for the 
enzymes. Table 2 summarizes the components of the salvage pathway network. 

Table 2. Components of the salvage pathway network 
Operon RNA Enzyme Reaction Inorganic 

substance 
Repressor Transcription 

factor 
Reference 

30 30 32 476 82 58 10 390 
 
Escherichia coli possesses the ability to take up purine and pyrimidine nucleosides from 

the growth medium and use them as sources of nitrogen and carbon. Nucleoside 
phosphorylases catalyze the phosphorolytic cleavage of the nucleoside, thereby forming the 
free nucleotide base and (deoxy)ribose-1-phosphate. The base can be utilized by the purine 
or the pyrimidine salvage pathways, and the ribose-1-phosphate and the deoxyribose-1-
phosphate can be converted to intermediates of the pentose phosphate shunt and of 
glycolysis, respectively. Of the four different nucleoside phosphorylases in E. coli, uridine 
phosphorylase (udp) and thymidine phosphorylase (deoA) are specific for pyrimidine 
nucleosides whereas purine nucleoside phosphorylase (deoD) and xanthosine phosphorylase 
(xapA) are specific for purine nucleosides. Purine nucleoside phosphorylase is important for 
the breakdown of all purine nucleosides and deoxynucleosides except xanthosine. 
Xanthosine phosphorylase (XapA), on the other hand, has specificity toward xanthosine and 
all other purine nucleosides and deoxynucleosides except adenosine and deoxyadenosine. 
Purine nucleoside phosphorylase (DeoD) is encoded by the last gene of the deoCABD 
operon. The regulation of these genes is complex and involves two repressors (CytR and 
DeoR) and an activator (cyclic AMP [cAMP] receptor protein-cAMP complex). Despite the 
action of two repressors, the deo genes are always expressed at a low basal level to ensure a 
rapid metabolism of purine nucleosides taken up from the medium. In contrast, xapA is 
expressed only if the inducer xanthosine is present in the growth medium. The xanthosine-
induced activation of xapA expression is mediated by the regulatory protein XapR 
(Jorgensen, Dandanell, 1999). Apart of XapR, the following transcription factors control the 
expression of the genes of the salvage pathways: FNR (nrdDG), FUR (nrdHIEF), Fis 
(nrdAB), Nac (codBA), CRP (hpt), CRP, CytR (udp, cdd, cytR, deoCABD), DeoR 
(deoCABD), IHF (hpt). In addition to the transcription level, salvage pathway genes are 
regulated at the translation level. Expression of the upp gene of E. coli, which encodes the 
pyrimidine salvage enzyme uracil phosphoribosyltransferase, is negatively regulated by 
pyrimidine availability. The regulation occurs mainly by UTP-sensitive selection of 
alternative transcriptional start sites, which produces transcripts that differ in the ability to 
be productively elongated (Tu, Turnbough, 1997). 
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Application of the method of generalized Hill functions to modeling the molecular 
processes of salvage pathways can be exemplified by regulation of the activity of adenine 
phosphoribosyltransferase (APRT, coded by apt gene) in E. coli. The enzyme catalyzes a 
salvage reaction yielding AMP (Table 1). It is known that all acyclic nucleoside-5'-
phosphates considerably inhibit APRT activity by competition for the substrate PRPP 
(Hochstadt-Ozer and Stadtman, 1971). An equation for the steady-state rate of the 
reaction is proposed:  
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where e0 is APRT concentration; S1, S2, P1, P2, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, 
R11, R12 are concentrations of low-molecular-weight substances AD, PRPP, PPI, AMP, 
ADP, dADP, ATP, dATP, dAMP, GTP, ITP, XTP, UTP, GDP, Mg2+, and cAMP, 
respectively; kcat is the catalytic constant; Km,Si are the Michaelis constants for corresponding 
substrates; Ki,Pi, constants of inhibition by corresponding products; ki,Ri,S2, constants of 
inhibition by the corresponding regulator competing for the substrate PRPP; and klR12, kR12, 
constants determining the efficiency of the effect of cAMP on the reaction rate. 

Experimental data reported in (Hochstadt-Ozer and Stadtman, 1971) were used for 
testing the model of regulation of APRT activity. These data illustrate the effects of 
various low-molecular-weight substances (see comments on Eq. (1)) on APRT activity at 
various concentration combinations (Fig. 1). 

 

Figure 1. Effect of various regulators (for designations see text, comments on Eq. (1)) on the rate of the 
reaction catalyzed by APRT (a). Effect of PRPP of the rate of the reaction catalyzed by G6P1D at various 
concentrations of regulators Ri. (for each predicted curve Rj = 0 mM, at j ≠ i) and AD = 0.2 mM (b, c, d). Dots 
indicate experimental values reported in (Hochstadt-Ozer, Stadtman, 1971). Curves are results of calculation 
according to Eq. (1) at the following parameter values: kcat = 560 min-1; Km,S1 = 0.011 mM; Km,S2 = 0.1 mM; 
Ki,P1 = 0.8 mM; Ki,P2 = 0.03 mM; ki,R1,S2 = 0.13 mM; ki,R2,S2 = 0.02 mM; ki,R3,S2 = 0.27 mM; ki,R4,S2 = 0.008 mM; 
ki,R5,S2 = 0.0055 mM; ki,R6,S2 = 0.79 mM; ki,R7,S2 = 0.84 mM; ki,R7,S2 = 2.0; kiR8S2 = 0.8 mM; ki,R11,S2 = 10 mM; 
ki,R12,S2 = 1.7 mM; klR12 = 0.5; ki,R9,S2 = 0.27 mM; and ki,R10,S2 = 0.27 mM. 
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DISCUSSION 

The reaction catalyzed by APRT is an example of multicomponent and complex 
regulation of a molecular system involving numerous structurally similar components. 
When this feature of the cellular system is taken into account, the connectivity of the 
graph representing the system increases dramatically. Molecular systems can also acquire 
this property because of a vast number of nonspecific interactions in the cell. Thus, the 
enzymatic system under discussion concerns a basic property of the cell. Consideration of 
such features in mathematical modeling of molecular systems is of paramount importance 
for proper description of actual molecular processes in a living cell.  

Reconstruction of the gene network and development of mathematical models 
describing the efficiency of operation of enzymatic systems are essential for constructing 
a general kinetic model of salvage pathways. Such a model would allow predicting the 
progress of processes in the system, understanding their mechanisms, determining key 
links of the gene network, and analyzing effects of mutations on its operation. It will be 
an inextricable part of the “in silico cell” computer resource. 
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