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Abstract 
In the literature on working memory (WM), a paradox exists 
according to which very similar memory tasks provide 
support for very different estimates of working memory 
capacity. The current paper analyses the conflicting estimates 
of a capacity of 4+/-1 with a capacity of 1. To this end a 
dynamic process model of short-term recognition is used to 
generate data to which exponential speed-accuracy trade-off 
functions are fitted. The results show that even though the 
process model has a capacity larger than one, the exponential 
SAT functions indicate a one-chunk hypothesis. Further 
nested modeling reveals, counter to the dominant belief, that 
retrieval rate is insensitive to differences in WM capacity. 
The resolution of the WM capacity paradox lies in the choice 
of dependent measure. 

Keywords: working memory capacity; speed-accuracy 
tradeoff; memory retrieval; model comparison. 

Introduction 
The last ten years have seen increased efforts in elucidating 
various aspects of working memory. Currently, there are 
several theories of working memory (see the chapters in 
Miyake & Shah, 1999) giving different explanations of 
behavioural data. Although many similarities exist among 
the theories, there are also important differences. In this 
paper, I will address the paradox of different estimates of 
working memory capacity and contrast the view that 
working memory can hold about 4 +/- 1 chunks (Cowan, 
2001) with the view that the focus of attention is limited to 1 
chunk (McElree, 2006). The paradox lies in the fact that the 
behavioural paradigms that provided different estimates are 
very similar – presentation of a sequence of words – 
whereas the dependent measure differs. I will use an 
activation-based model of working memory that has been 
applied to the list presentation paradigm (Davelaar, et al., 
2005, 2006) and assess whether the model can reconcile the 
different views. Stated differently, is it possible that the 
estimate of 4 +/- 1 is compatible with the estimate of 1, 
when the paradigm-specific feature, i.e., the dependent 
measure, is taken into account? 

The starting point is the paper by Nelson Cowan (2001) in 
which he reviewed a wide literature on attention and 
memory and concluded that the capacity limit or the focus 
of attention is around four chunks. Such a limit was 
suggested previously in a review by Donald Broadbent 
(1975) based on similar analyses of the literature. 
Furthermore, computational analyses using models such as 
the Search of Associative Memory (SAM; Raaijmakers & 
Shiffrin, 1980) supported the estimate of around four 
(Raaijmakers, 1982). 

 The commentaries based on Cowan’s target article 
included empirical arguments supporting the view that the 
focus of attention is limited to one chunk (McElree & 
Dosher, 2001). This particular empirical argument focuses 
on the speed of retrieval from working memory and is 
central to the current paper. McElree and Dosher (2001) 
based their argument on data obtained using the response-
signal speed-accuracy tradeoff (SAT) procedure. In this 
procedure, participants are presented with a sequence of 
words and receive a test probe after the final item. The 
participant has to indicate whether the test probe is one of 
the items in the just-presented sequence. Instead of freely 
responding, the participant makes a response as soon as a 
signal (e.g., a beep) is given. The profile of retrieval can be 
mapped out by employing a wide range of response signal 
delays. With very short delays, the participant is unlikely to 
have processed the test probe and performance is at chance. 
With a longer delay, performance rises above chance and 
with very long delays, performance asymptotes. The 
function that is traced by this procedure is called the speed-
accuracy tradeoff function and can be described by or fitted 
with Equation 1 that involves three parameters: the intercept 
(T0), the rate (s), and the asymptote (d’asy). 

 

 
for t>T0, 0 otherwise (1)        

 
The argument favouring the one-chunk hypothesis is as 

follows. Assume that the representation can either be in or 
outside the focus of attention. When it is in the focus of 
attention it is more readily accessible and should therefore 
lead to a faster rate of retrieval. This is measured by the rate 
parameter of the SAT function. Empirical studies 
consistently show (e.g., McElree, 1996; McElree & Dosher, 
1989; Wickelgren, Corbett & Dosher, 1980) that the SAT 
function for the very last item has a faster rate than the SAT 
functions of the other items. In addition, the retrieval speeds 
for all pre-final items are equal. This suggests that the very 
last item is in the focus of attention, while the other items 
are not and thus that the capacity is limited to one item – the 
very last presented (or the very last processed McElree, 
1998) item.  

Initially, one would comment that it is possible that the 
most recent item is consistently in working memory, 
whereas the pre-final items reside in working memory with 
a lower probability. Therefore the estimated retrieval speeds 
for those items is a mixture of the fast and slow speeds, 
where the slow speed correspond with retrieval of presented 
items that are displaced from working memory (Cowan, 
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2001). The implied assumption underlying this view is that 
the probability of residing in working memory is a constant 
factor. Two objections to this assumption can be articulated. 
First, if a fixed-capacity buffer is used to encode a sequence 
of words, the probability of being in the buffer is highest for 
the most recent item. Thus theoretically, there is recency 
gradient within the buffer. Second, empirical observations 
show a recency gradient over the last four items for 
accuracy and reaction times (e.g., McElree & Dosher, 1989; 
McKone, 1995; Ratcliff, 1978), suggesting that if these 
items are in the buffer, a recency gradient must exist within 
the buffer. 

To appreciate the complexities of these findings, consider 
that the encoding phase in the paradigms used by 
Raaijmakers (1982) and McElree and Dosher (1989) is 
identical but that the test phase differs. In addition, whereas 
Raaijmakers (1982) and Cowan (2001) focused on memory 
accuracy, McElree and Dosher (2001) focused on retrieval 
rate, which they argue provides direct evidence for distinct 
representational states. It should be said that the asymptotic 
accuracy of the SAT functions show a typical recency 
gradient. Therefore the paradox might be recast as a 
difference in opinion about what constitutes a proper 
dependent measure. This might well be the critical factor 
that prevents resolution of this central feature of working 
memory. The proposed way forward is to use a 
computational model with a capacity larger than one and 
produce the SAT functions. This requires (1) a process 
model of recognition memory that (2) implements a 
dynamic buffer, and (3) is capable of producing retrieval 
dynamics that can produce SAT functions. Several process 
models of recognition memory exist (Gillund & Shiffrin, 
1986; Hintzman, 1984; Hockley & Murdock, 1987; 
McClelland & Chappell, 1998; Norman & O’Reilly, 2003; 
Shiffrin & Steyvers, 1997), but only a subset have been 
applied to SAT functions (Diller, Nobel & Shiffrin, 2001). 
Instead of readjusting the models to also include a dynamic 
buffer, the research strategy followed here is to extend a 
dynamic buffer model (Davelaar, et al., 2005; Haarmann & 
Usher, 2001) with a matching process that allows for a 
yes/no-recognition decision. This involves combining the 
dynamic buffer model with Ratcliff’s (1978) diffusion 
model. 

Model Description 
The dynamic buffer model is based on the view that the 
content of working memory is the active part of long-term 
memory. More precisely, representations in consolidated 
memory, such as semantic long-term memory, phonological 
long-term memory (Baddeley, Gathercole & Papagno, 
1997), and other modalities in long-term memory, are 
activated through sensory information. This activation is 
short-lived and would decay to baseline activation if there 
was not an active process that counteracts this decay. This 
process of active maintenance is a function of working 
memory (Baddeley, 1996) and has been called primary 
memory (Norman, 1968). The consequence of this process 

is that more than one representation can be activated 
simultaneously, albeit at different levels of activation. 
Previous work has shown that this model, which has many 
points of contact with Cowan’s embedded processes 
framework (1995, 2001), is able to capture several 
observations in list memory paradigms. The core aspect of 
the model is the differential Equation 2 that governs the 
change of activation for every representation in long-term 
memory per timestep, 

 

 

(2) 
 

 
where xi is the internal activation of representation i, F = 

1/(1+x) is the output activation function, α captures the 
process of active maintenance. When α = 0, the model 
reduces to system with a capacity of one and is 
indistinguishable from theoretical models that purport to 
assume that only one representation can be active at any one 
moment (Brown, Neath & Chater, 2007; Howard & Kahana, 
2002)1. All representations compete with each other through 
the inhibition parameter, β = 0.2, which governs the 
maximum capacity. Each representation receives activation, 
Ii = 0.33, from sensory processing levels. The activation 
dynamics is supplemented with zero-mean Gaussian noise 
with standard deviation, σ = 1.0. Representations that are 
active above a fixed threshold θ = 0.2 interact with other 
aspects of the cognitive system. This includes episodic 
memory encoding and probe matching.  

The diffusion model as used by Ratcliff (1978) is in 
essence a dynamic signal detection model and includes the 
mean drift rate, ξ, which represents the amount of match 
between the probe and the memory item. From trial to trial 
the amount of match varies and this variability is captured 
by the standard deviation, η, of the drift rate. When applying 
the diffusion model to behavioural tasks, the effective drift 
rate for a given trial is drawn from a normal distribution 
with mean υ and standard deviation η. For each unit of time, 
zero-mean Gaussian noise with standard deviation 0.1 is 
added to the mean drift rate causing the total amount of 
evidence indicating a match or mismatch to drift towards a 
boundary. When a match boundary is reached, system 
responds with a yes-response. When a non-match boundary 
is reached, a no-response is emitted. The original diffusion 
model has many more parameters and has been applied to a 
wide range of reaction time paradigms. Relevant to the 
current discussion is that the diffusion model has been 

                                                           
1 So-called single-store models include some form of relative 

strength calculation. When reimplementing those models in a 
connectionist form in order to allow direct comparison, these 
models require a stage where multiple representations are active to 
allow for the ratio-rule type of calculation. An extreme version of 
this is where only one representation is allowed to be active during 
encoding, while multiple representations are active during retrieval 
(Sederberg, et al., 2008). 
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applied to the response-signal speed-accuracy tradeoff 
procedure (McElree & Dosher, 1989; Ratcliff, 1978, 2006). 

The diffusion model takes the value for the drift rate from 
the dynamic buffer model. Specifically, the drift rate on 
each trial is the above-threshold activation for that 
representation. To produce SAT functions, the following 
two situations need to be explicated. First, when the 
response-signal appears and the diffusion process has not 
reached any boundary, the response is based on whether the 
process is moving towards the yes- or no-boundary. This 
represents making decisions based on partial information 
(see for discussion, Ratcliff, 2006). Second, when a 
boundary has been reached before the response-signal, the 
corresponding decision will be given at the time of the 
response-signal. The resulting decision probabilities are 
converted into d’ scores and the full SAT functions are 
fitted with two version of Equation 1. In version 1, all 
parameters are free to vary across conditions, yielding 18 
free parameters. In version 2, the reduced model that is 
supported by the empirical literature is used. This model has 
a fixed T0 for all conditions and two different rates, yielding 
9 free parameters. 

The process model as described above was applied to a 
sequence of six words. Each of six representations was 
activated sequentially for 1,000 iterations. Then one of the 
six positions was probed and a SAT function created for that 
serial position by using response-signals at 100, 200, 300, 
400, 500, 750, 1,000, 1,500, 2,000, and 3,000 iterations. 
Each serial position was probed 1,000 times at each of the 
ten response-signal delays. The effective capacity of the 
model is easily assessed by counting the number of 
representations that are active above threshold at t = 6,000 
iterations. In order to address the possibility that different 
parameters obtained from the exponential SAT function are 
sensitive to different working memory capacities, the 
simulations are repeated for α = 0 (no buffer), α = 1.8 (small 
capacity), and α = 2.0 (large capacity). 

Simulation Results 
Figure 1 shows a noise-less simulation of a sequence (with α 
= 2.0). At time = 6,000, the very last item is the most active 
and activation levels decrease with the temporal distance of 
presentation. Figure 2 shows the frequency distribution of 
the activations for each of the items in Figure 1 at t = 6,000 
iterations. As can be seen, items that are still in the 
activation buffer at time of test show a step-like function, 
with the very last item being more active than all other 
active items, which in turn have similar activation levels. 
The reason for this is immediately apparent when taking a 
closer look at Equation 2. Assume that at time of test, the 
activation level does not change and is above threshold. The 
resulting F(xi) is governed by α and β, leading to 
convergence of the activations. Only the very last item still 
receives external input, leading to a higher activation. 
 
 
 

 
 

 
Figure 1. A noise-less simulation of 12 sequentially 
activated items. The x-axis indicates time in iterations. The 
y-axis indicates activation level, F(xi). 
 

 
 
Figure 2. Frequency distributions of the activation levels of 
the 12 items in Figure 1 at t = 6,000 iterations. 

 
The simulated data and corresponding best-fitting SAT 

functions for the simulation of α = 2.0 are presented in 
Figure 3. Table 1 shows the parameter values of the best-
fitting reduced model for each of the values of α. The 
models were fit by maximising the adjusted R2. 

Although the reduced model fits the data less well 
compared to the saturated model, the change in goodness of 
fit, ∆R2, is negligible given the amount of variability present 
in real data. This supports the findings in the empirical 
literature that led to the one-chunk hypothesis. However, the 
model maintains multiple items at the time of test, as seen 
by the capacities. The capacity at α = 2.0 is higher than at α 
= 1.8. 
 
 
 

last item 
penultimate 

item

item -3 

last item penultimate 
item

87



Table 1: Parameter estimates for the 9-parameter 
exponential SAT function and the estimates of buffer 
capacity. 
 
  simulation 
parameters Serial 

position 
α = 0 α = 1.8 α = 2.0 

d’asy 1 0.015 0.014 0.173 
d’asy 2 0.028 0.031 0.261 
d’asy 3 0.000 0.107 0.509 
d’asy 4 0.025 0.632 0.910 
d’asy 5 0.018 1.966 1.652 
d’asy 6 1.208 3.760 2.471 
     
T0 1-6 279.56 338.12 33.92 
s 1-5 0.0005 0.0068 0.0102 
s 6 0.0019 0.0088 0.0129 
     
R2-adjusted  .996 .999 .999 
∆R2  0 .001 0.0002 
     
capacity  1 2.64 3.38 

Note: the capacity was estimated by counting the number 
of above-threshold representations at t = 6,000 iterations. 

 
The parameter values for the d’asy are well-fitted by an 

exponential function, allowing the 6 free parameters to be 
reduced to 2 free parameters. In addition, s could be fitted 
with a function with only 1 parameter. Therefore, the best-
fitting 9-parameter model could be further reduced to a 4-
parameter model. This further parameter reduction allowed 
an examination of model fit as a function of differences in 
buffer capacity. To do this the data form the simulations 

with α = 1.8 and α = 2.0 were compared. This resulted in a 
“full” model having 8 free parameters with 4 parameters for 
each α-level. The 8-parameter model, [2F(d’asy) – 2G(s) – 
2H(T0)], (F(x) has 2 parameters) and all nested models were 
fit to 120 datapoints by maximizing the adjusted R2. Of 
special interest was the identification of parameters that 
reduce the fit and thus carry the difference in buffer 
capacity. The results are shown in Table 2 and are clear-cut. 
The goodness of fit is largely unaffected when G(s) or H(T0) 
is fixed between the two levels of α. However, a 5% 
decrease in fit is observed when F(d’asy) is fixed. The 
interpretation of this finding is that differences in buffer 
capacity are only picked up in the differences in gradient of 
the d’asy function. The rate parameter seems insensitive to 
variation in buffer capacity and is therefore only useful to 
assess which item or one-chunk was the most-recently 
processed. 
 
Table 2: Results of nested modeling fits on the data from the 
two different WM capacity simulations. The number of free 
parameters are given between brackets after each model. 
 
Model Degrees of 

freedom 
adjusted R2 

Full model (8) 112 .989 
F-fixed (6) 114 .942 
G-fixed (7) 113 .988 
H-fixed (7) 113 .989 
F/G-fixed (5) 115 .942 
F/H-fixed (5) 115 .943 
G/H-fixed (6) 114 .987 
All fixed (4) 116 .943 
 

Figure 3. Simulation data and best-fitting reduced model for the simulation with α = 2.0. 
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Discussion 
This paper focused on the paradox that different estimates of 
working memory capacity are estimated based on very 
similar tasks. Using a dynamic model of short-term 
recognition, data were generated and fitted by exponential 
SAT functions. Contrary to what was previously thought, 
the results show that the rate of retrieval from WM is 
insensitive to the WM capacity and instead is most sensitive 
to the recency of cognitive processing. The asymptotic 
accuracy is found to be the only parameter that is sensitive 
to WM capacity. The resolution of the WM paradox lies in 
the choice of dependent measure, with accuracy being the 
preferred measure for estimating WM capacity and retrieval 
rate being the preferred measure for identifying the most 
recently processed chunk in WM. 

The process model predicts that items that are not in WM 
will lead to misses. Therefore for items that were presented 
a very long time ago, only misses should happen. This is 
partially correct. One would, however, expect that 
deactivated items require an additional process of episodic 
retrieval to allow for contextual matching. This is likely to 
result in slower retrieval dynamics and quite likely to a 
larger intercept. The problem is that in order to assess this 
possibility, trials would have to be separated into those in 
which the probe matches with a deactivated item and trials 
in which the probe matches a pre-recency active item. This 
is not possible experimentally and thus differences in 
intercept for pre-recency items are always mixtures. The 
same holds for the retrieval speeds. With long lists, very 
early items could be probed and used to check if they do 
have the slowest retrieval speed and the largest intercept. 
The difficulty here is that performance is close to chance 
(Wickelgren, Corbett & Dosher, 1980). Wickelgren et al. 
used a 16-word list and measured the SAT of the list item -
12 (position 4). In some of the participants, the intercept for 
the item -12 was larger than all other items. Although this 
might suggest that the intercept is the preferred parameter to 
assess whether items are retrieved from WM or form long-
term memory, a thorough empirical investigation waits. 

What does the reinterpretation of the exponential SAT-
parameters mean for the use of the exponential SAT-
procedure? Several authors have commented that 
exponential and diffusion SAT are too similar to be 
distinguished (McElree & Dosher, 1989; Ratcliff, 2006). 
Others have argued that diffusion SAT should be used as it 
is based on an actual theory of memory retrieval (Ratcliff, 
2006), whereas the exponential SAT is not based on a 
theory and therefore only of statistically-descriptive use. 
Despite the finding that exponential SAT can not be used to 
address capacity estimates, it is able to identify the last 
processed item (McElree, 1998). This utility depends 
heavily on the assumption that across many trials, 
participants process the stimuli in identical ways. Whether 
the SAT-procedure is robust against violation of the 
identical-processing assumption remains for future analyses. 
What does all this mean for WM capacity? The analyses 
presented here suggest that WM can hold multiple items in 

an active stat to varying degrees, but that the very last 
processes item is in a highly accessible state. The work also 
demonstrates more generally the importance of using 
explicit formal analyses to verify the interpretations based 
on statistical tests. 
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