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Consider the Anderson Hamiltonian HV = κ∆V + ξ(·) on the multidi-
mensional lattice torus V increasing to the whole of lattice, where ξ(·)
is an i.i.d. potential with distribution function F . For K = 1, 2, . . ., let
ψ(·; λK,V ) be the eigenfunction of HV associated with the Kth largest

eigenvalue λK,V , and let zK,V ∈ V be the coordinate of the Kth larger

value ξK,V of ξ(·) in V . It is well-known that if F satisfies the condition

log
(

− log(1−F (t))
)

= o(t) and some additional conditions on regular vari-
ation and continuity at infinity, then ψ(·; λK,V ) is (asymptotically) com-

pletely localized at the site zτ(K), V , as a localization centre for the eigen-

function for some (random) τ(K) = τV (K) > 1. In this paper, we study
the asymptotic behavior in probability of the indices τV (K) as V increases
and K > 1 is fixed. In particular, we show that if F satisfies the condition
− log(1−F (t)) = O(t3) (resp., −t−3 log(1−F (t)) → ∞) and additional reg-
ularity conditions at infinity, then τV (K) = O(1) (resp., τV (K) → ∞) with
high probability. For Weibull’s and double exponential types distributions,
we obtain the first order expansion formulas for log τV (K).

KEYWORDS:Anderson Hamiltonian; random potential; localization; largest
eigenvalues and eigenfunctions; localization centres; convergence in proba-
bility.

1. INTRODUCTION

This paper is a continuation of our previous works [4, 5] on extreme value
theory for spectrum of a finite-volume Anderson Hamiltonian

HV = κ∆V + ξV on l2(V );

here V is the ν-dimensional torus obtained by identifying opposite faces
of the cube [−n;n]ν in the ν-dimensional integer lattice Z

ν ; ∆V is the
lattice Laplacian on l2(V ) with periodic boundary data (i.e., a restriction
of the operator ∆ψ(x) :=

∑
|y−x|=1 ψ(y) to torus V where |· | is the periodic

norm |x| := miny∈2nZν

(
|x1 − y1|+ · · ·+ |xν − yν |

)
for x = (x1, . . . , xν) ∈
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Z
ν); κ > 0 stands for a diffusion constant; ξ(x), x ∈ Z

ν , are independent
identically distributed random variables (i.i.d. random potential) with a
common distribution function F . Throughout we assume that F (t) < 1 for
all real t ∈ R, i.e., ξ(· ) is unbounded from above potential. Note that the
spectrum of HV is a finite set, say, Spect (HV ) = {λk, V : 1 6 k 6 |V |},
where

λ1, V > λ2, V > . . . > λ|V |, V ;

here |V | stands for the volume of V . For κ = 0, this variational series
becomes

ξ1, V := ξ(z1, V ) > ξ2, V := ξ(z2, V ) > . . . > ξ|V |, V := ξ(z|V |, V ), (1.1)

i.e., zK,V ∈ V are the coordinates of the Kth larger values of the sample
ξV = {ξ(x) : x ∈ V }.

Let ψ(· ;λ) = {ψ(x;λ) : x ∈ V } be an eigenfunction of HV associated
with λ ∈ Spect (HV ) and normalized by the condition

∑
x∈V ψ(x;λ)

2 = 1.
Given K = 1, 2, . . ., let zτ(K), V ∈ V denote the localization centre of the

Kth eigenfunction ψ(· ;λK, V ) defined by

ψ(zτ(K), V ;λK, V ) := max
16l6|V |

ψ(zl, V ;λK,V ) for some τ(K) = τV (K).(1.2)

In the present paper, we study the asymptotic properties of the local-
ization centres zτ(K), V with high probability, as V ↑ Z

ν and K = 1, 2, . . . is

fixed; see Theorems 2.1, 2.3 and 2.4 below. Let us define the (generalized)
inverse function of − log(1− F ) by

f(s) := inf
{
t : 1− F (t) 6 e−s

}
(0 < s <∞);

cf. [4, 5]. (Notice that f is left-continuous nondecreasing function and
f(s) → ∞ as s → ∞). Throughout the paper, we assume that the distri-
bution function F satisfies the following conditions:

lim
s→∞

f(s)− f(sδ) = −ρ log δ for any 0 < δ < 1

for some 0 < ρ 6 ∞ such that ρ/κ is large enough,
(1.3)

and

(F (t+ s)− F (t− s)) | log s|µ = O(1)

as t→ ∞ and s ↓ 0 simultaneously
(1.4)

for some µ > ν, i.e., F is log-Hölder continuous of order µ at infinity.
For finite ρ, condition (1.3) is fulfilled if and only if the function g :=
− log◦(1 − F )◦ log := − log

(
1 − F (log(·))

)
is regularly varying at infinity
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with index 1/ρ, i.e., g(ct)/g(t) → c1/ρ as t→ ∞, for any c > 0. In the case
ρ = ∞, (1.3) is equivalent to the slow variation of g := − log◦(1− F )◦log,
therefore, log(− log(1−F (t))) = o(t) as t→ ∞. Condition (1.4) is fulfilled,

if for instance, the distribution function F has a density p(t) := dF (t)

dt
(t > t0). In this case, the main examples of (1.3) with ρ = ∞ are the
following distributions:

p(t) = exp {−Atα +O(log t)} as t→ ∞, (1.5)

for arbitrary α > 0 and A > 0 (i.e., Weibull’s type tails) as well as

p(t) = exp
{
− eBtγ +O(tconst)

}
as t→ ∞, (1.6)

for 0 < γ < 1 and B > 0 (i.e., the fractional-double exponential tails).
Distributions (1.3) with 0 < ρ < ∞ are represented by (1.6) with γ = 1
and B = 1/ρ (i.e., the double-exponential tails).

In [4], we show that, under conditions (1.3) and (1.4), the eigenfunc-
tions ψ(· ;λK, V ) (K > 1 fixed) are exponentially well localized, i.e., with
probability 1 there exist constants 0 < MV → ∞ and (random) indices
1 6 τ(K) = |V |o(1) such that

|ψ(x;λK, V )| 6 exp{−MV |x− zτ(K), V |} (x ∈ V ) (1.7)

for all (large) V ⊃ V0. Moreover, the Kth largest eigenvalue λK,V is
approximated by the principal (i.e., the first largest) eigenvalue of the
“single-peak” Hamiltonian κ∆V +

∑
|y−zτ(K), V |6J ξ(y)δy for some J > 0;

see also Theorems 3.1 and 3.4 below. This refers to the correspondence
λK, V ↔ zτ(K), V , so that the eigenvalue λK, V is associated with an iso-

lated high ξV -peak. The asymptotic behavior of indices τV (K) depends
strongly on the asymptotic geometric structure of ξV -peaks, which in turn
is determined by regularity and tail decay conditions on potential distribu-
tion [3–5].

In [5], we show that if the distribution function F satisfies condition

− log(1− F (t)) = o(t3) (1.8)

(heavy tails) and some additional conditions on regular variation at infinity,
then with probability 1 + o(1)

τV (K) → K as |V | → ∞,

i.e., λK, V is associated with zK,V ∈ V , the coordinate of the Kth largest
ξV -value. Notice that, under these conditions on F (1.8), the potential ξV
possesses extremely sharp peaks; see Section 3 in [5].
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In the present paper, we extend the results of [4, 5]. We prove that
for the lighter tails than those in (1.8), limit for τV (K) differs from K.
In particular, if F satisfies condition −t−3 log(1 − F (t)) → ∞ and addi-
tional regularity and continuity conditions at infinity, then τV (K) → ∞
with probability 1 + o(1) (cf. Theorems 2.1(ii)–(iii), 2.3 and 2.4 below).
Notice that, in contrary to the case (1.8), the landscape of ξV now becomes
“smoother ” as |V | → ∞, therefore, the eigenvalue λK,V is associated with
a lower and “slightly supported ” ξV -peak [3, 4].

For the infinite Anderson model H = κ∆ + ξ(· ) on l2(Zν), it is well
known (see, e.g., recent surveys [17], [21]) that almost sureH has pure point
spectrum at the edge of Spect (H) and the corresponding eigenfunctions
decay exponentially, provided F is Hölder continuous and ξ(0) has some
finite statistical moments. Notice also that the regions I ⊂ Spect pp(H) of
pure point spectrum are distinguished by Poissonian asymptotic behavior of
the eigenvalues λl, V ∈ I and their localization centres of the finite-volume
model HV as |V | → ∞ [19, 16, 14].

For the relationship between extreme value theory for the spectrum
Spect (HV ) and the long-time intermittency for the Anderson parabolic
problems ∂u/∂s=Hu, we refer to the recent surveys [12, 15, 18], where
one can find a comprehensive list of references on the subject.

The organization of the paper is as follows:
In Section 2, the main results of the paper are formulated. First, we

provide asymptotics for τV (K) under general conditions like (1.3) and (1.4)
(see Theorem 2.1 in Sect. 2.1). Further on, we give the first order asymp-
totic expansion formulas for log τV (K) in the case of Weibull’s type dis-
tributions (1.5) and fractional-double exponential distributions (1.6) (see,
respectively, Theorems 2.3 and 2.4 in Sect. 2.2).

Sections 3 and 4 provide the proof of the main results. In Section 3, we
announce the almost sure asymptotic expansion formulas for the eigenval-
ues λK,V and the corresponding eigenfunctions. In Sections 4.2, 4.3 and
4.4, we complete the proof of Theorems 2.1, 2.3 and 2.4, respectively, by
combining the results of Section 3 and the asymptotic properties of the
extreme values ξK, V given in Section 4.1.

2. MAIN RESULTS

2.1. Limits for Localization Centres

Throughout we use the following notation and definitions. For real func-
tions g(·) and h(·) > 0, we will write g(t) = O(h(t)) (resp., g(t) = o(h(t)))
as t → ∞, if limsup t |g(t)|/h(t) < ∞ (resp., limt g(t)/h(t) = 0). For
g(·) > 0 and h(·) > 0, limit g(t) ≍ h(t) means that g(t) = O(h(t)) and
h(t) = O(g(t)) as t→ ∞. By t0, |V0|, etc. we denote various large numbers,
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values of which may change from one appearance to the next. Similarly,
const , const ′, etc. stand for various positive constants.

We suppose that all random variables are defined on a common proba-
bility space (Ω,F ,P). Let zK,V ∈ V be the coordinates of the Kth largest
ξV -values (1.1), and let zτ(K), V be the localization centre of the Kth eigen-

function ψ(·;λK, V ) defined by (1.2) or (1.7).

Theorem 2.1. Assume that the distribution function F is log-Hölder
continuous of order µ > ν at infinity, i.e., (1.4) holds true. For fixed
K = 1, 2, . . ., we have the following limits in probability for the indices
τ(K) = τV (K).

(i) If

f(s)2(f(s+ c)− f(s)) ≍ 1 as s→ ∞, for any c > 0, (2.1)

then
limsup

V
τV (K) <∞.

(ii) If

lim
s→∞

f(s)2(f(s+ c)− f(s)) = 0 for any c > 0 (2.2)

and, additionally, f satisfies (1.3) with ρ = ∞, then

lim
V
τV (K) = ∞ and lim

V

log τV (K)

log |V |
= 0. (2.3)

(iii) If f satisfies (1.3) with (finite) sufficiently large ρ/κ, then there
exist nonrandom constants ε2(ρ/κ) > ε1(ρ/κ) > 0 such that

ε1(ρ/κ) 6 liminf
V

log τV (K)

log |V |
6 limsup

V

log τV (K)

log |V |
6 ε2(ρ/κ),

where εi(ρ) = (ρ log ρ)−2(ν/2 + o(1)) as ρ → ∞, for i = 1, 2 (cf. also
Theorem 3.4 below).

The proof of parts (i) and (ii) of Theorem 2.1 is given in Section 4.2. Part
(iii) can be shown by using the same arguments as in the proof of Theorem
4.4 and Corollary 4.5 in [4] combined with Theorem 2.16 by Gärtner and
Molchanov [13]; therefore, the proof of (iii) is omitted.

We now characterize the classes of distributions (2.1) and (2.2) in terms
of F .

Remark 2.2. (Regularity and decay conditions for the tails 1 − F at
infinity; see [3] for a detailed discussion and proofs).
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(i) Condition (2.1) implies that

log
(
1− F (t+ ct−2)

)

log
(
1− F (t)

) ≍ 1 as t→ ∞, for any c > 0, (2.4)

which in turn yields that − log(1 − F (t)) ≍ t3 as t → ∞. Moreover, there
is an example of F for which (2.4) holds true, however, (2.1) fails.

(ii) If condition (2.1) is fulfilled and if a function a(s) > 0 (s > 0) is
chosen to satisfy liminf s→∞ a(s) > c1 > 0 and liminf s→∞(s−a(s)) > c2 >
0, then

const (s− a(s))s−2/3

6 f(s)− f(a(s)) 6 const ′
(
s1/3 − a(s)1/3 + a(s)−2/3

)

for any s > s0 and for some const ′ > const > 0.
(iii) f satisfies (2.2) if and only if

lim
t→∞

log
(
1− F (t+ ct−2)

)

log
(
1− F (t)

) = ∞ for any c > 0. (2.5)

In this case, −t−3 log(1− F (t)) → ∞ as t→ ∞.
(iv) For 0 < ρ 6 ∞, condition (1.3) is fulfilled if and only if

lim
t→∞

log(1− F (t+ c))

log(1− F (t))
= ec/ρ for any c > 0, (2.6)

or equivalently, the function − log◦(1−F )◦log is regularly varying at infinity
with index 1/ρ (see, e.g., Theorems 1.5.12, 2.4.7 and Proposition 2.4.4(iv)
in [8]). In the case of ρ = ∞, either of conditions (1.3) and (2.5) implies
that log(− log(1−F (t))) = o(t) as t→ ∞ (see, e.g., Proposition 1.3.6(i) in
[8]).

2.2. Examples. The First Order Asymptotic Expansion Formulas

We now give the first order asymptotic expansion formulas for log τV (K),

provided the distribution function F has a density p(t) := dF (t)

dt
(t > t0)

satisfying the conditions of Theorem 2.1(ii). We restrict ourselves to the
cases of Weibull’s type density (1.5) with α > 3 and fractional-double
exponential density (1.6) with 0 < γ < 1.

Consider first the case (1.5). Clearly (1.5) implies that 1 − F (t) =
exp {−Atα +O(log t)} as t→ ∞, which in turn yields that

f(s) = (A−1s)1/α +O
(
s(1−α)/α log s

)
as s→ ∞. (2.7)
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Thus for α > 3, F satisfies (2.5) and (2.6) with ρ = ∞. Abbreviate

lV =
(
A−1 log |V |

)1/α
. (2.8)

Theorem 2.3. Let the distribution density p satisfy condition (1.5)
with α > 3. Then

lim
V

log τV (K)

l
α(α−3)/(α−1)
V

= 2νAκ2α/(α−1).

in probability.

Theorem 2.3 is proved in Sect. 4.3 by combining Theorem 3.2 below
and asymptotic properties of ξV -extremes studied in Sect. 4.1. Theorem
2.3 is announced in [6].

Consider now the case of p (1.6). Condition (1.6) implies that 1−F (t) =

exp
{
− eBtγ +O(tconst1)

}
as t→ ∞, which in turn yields that

f(s) = (B−1 log s)1/γ +O
(
s−1(log s)const2

)
as s→ ∞. (2.9)

Thus for 0 < γ < 1, F satisfies (2.5) and (2.6) with ρ = ∞. Abbreviate

dV =
(
B−1 log log |V |

)1/γ
. (2.10)

Theorem 2.4. Let p satisfy condition (1.6) with 0 < γ < 1. Then

lim
V

log τV (K)

d2γ−2
V (log dV )−2 log |V |

=
ν

2

( Bκγ
1− γ

)2

. (2.11)

in probability.

A sketch of the proof is given in Sect. 4.4. The arguments repeat those
of Theorem 2.3, where one exploits Theorem 3.3 instead of Theorem 3.2.

3. ASYMPTOTIC EXPANSION FORMULAS FOR THE LARGEST
EIGENVALUES

In this section we announce some results of [4] on the almost sure asymp-
totic structure of the first K largest eigenvalues λk, V and the correspond-
ing (normalized) eigenfunctions ψ(·;λk, V ) of the Anderson Hamiltonian
HV = κ∆V + ξ(·) when V ↑ Z

ν and K is fixed. We again assume that the
distribution function F of ξ(0) satisfies conditions (1.3) and (1.4).

Let us introduce additional notation we will use throughout Sections 3
and 4. For 0 < θ < 1/2, write LV, θ := f((1− θ) log |V |). Let ξ̃(x) : = ξ(x)
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if ξ(x) < LV, θ, and ξ̃(x) := 0 otherwise, i.e., ξ̃(·) is the “noise” potential.

Abbreviate also J := JV := [|V |(1+θ)/µ]. Given z ∈ V , consider now the
principal eigenvalue λ(J)(z) of the “single peak” Hamiltonian

κ∆V +
∑

y : 16|y−z|6J

ξ̃(y)δy + ξ(z)δz on l2(V ),

where δz stands for the Kronecker symbol. Let

λ
(J)
1,V :=λ(J)(zτ(1), V )>λ

(J)
2,V :=λ(J)(zτ(2), V )> . . .>λ

(J)
|V |,V :=λ(J)(zτ(|V |), V )

be the variational series of the sample {λ(J)(x) : x ∈ V }. (Recall that the
sites zl, V ∈ V (1 6 l 6 |V |) are associated with the variational series (1.1)
based on ξV ).

Theorem 3.1. (see Theorem 4.1 in [4]). Assume that F satisfies
conditions (1.4) and (1.3) with ρ = ∞, and pick (small) θ > 0 such that
µ > (1 + θ)ν/(1 − 2θ). Fix K = 1, 2, . . .. Then the following almost sure
limits hold true:

limsup
V

log
∣∣λK, V − λ

(J)
K,V

∣∣
JVMV (K)

6 −2,

liminf
V

log(λK,V − λK + 1, V )

JV

> −1

and

limsup
V

max
x 6=zτ(K),V

log
∣∣ψ(x;λK, V )

∣∣
MV (K)|x− zτ(K), V |

6 −1,

where MV (K) := log
(
λ
(J)
K,V −LV, θ

)
> log(LV, ε−LV, θ) → ∞ as |V | → ∞,

for each ε ∈ (0, θ).

For z := zτ(K), V , the variable λ
(J)(z) := λ

(J)
K,V is expanded in the series

over ξ̃(x)/ξ(z) (x ∈ V ) [4]. In particular, with probability 1

λ(J)(z) = ξ(z) + κ2
∑

|x−z|=1

1

ξ(z)− ξ̃(x)
+

+O

( ∑

|x−z|=1
|y−z|=1
|u−z|=2

1

(ξ(z)− ξ̃(x))(ξ(z)− ξ̃(y))

( 1

ξ(z)− ξ̃(u)
+

1

ξ(z)

))
(3.1)

as |V | → ∞. One can apply (3.1) to derive the asymptotic expansion

formulas for λ
(J)
K,V in the cases of Weibull’s type distributions (1.5) and
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fractional-double exponential distributions (1.6) satisfying the conditions
of Theorem 3.1.

Theorem 3.2. (see Theorem 6.3 and Corollary 6.4 in [4], or [6]). Assume
that the distribution density p of ξ(0) satisfies condition (1.5) with α > 3.
Fix K = 1, 2, . . ., and let lV be defined by (2.8). Then with probability
1 + o(1)

λ
(J)
K,V = lV + c0l−1

V + c1l
−α+1

α−1

V

(
1 + o(1)

)
as |V | → ∞,

where c0 := 2νκ2 and c1 := (α− 1)α−12νκ2α/(α−1).

Theorem 3.3. Assume that p satisfies condition (1.6) with 0 < γ < 1.
Fix K = 1, 2, . . ., and let dV be defined by (2.10). Then with probability
1 + o(1)

λ
(J)
K,V = dV + b0

dγ−1
V

log dV
+ b1

dγ−1
V log log dV
(log dV )2

+ b
dγ−1
V

(log dV )2
(
1 + o(1)

)
(3.2)

as |V | → ∞, where b0 := νBκ2γ(1 − γ)−1, b1 := b0(γ − 1)−1 and b :=

b1 log 2(1−γ)
√
e

Bκγ .

A sketch of the proof is given in Sect. 4.4. The arguments repeat those
of Theorem 6.4 and Corollary 6.4 in [4] and are based on the Laplace’s
method for the corresponding integrals.

We now extend the results of Theorem 3.1 to the case (1.3) with finite
ρ (i.e., the double exponential case), provided the constant ρ/κ is large
enough.

Theorem 3.4. (see Theorem 4.4 and Corollary 4.5 in [4], and Theorem
2.16 in [13]). Assume that F satisfies conditions (1.3) and (1.4) for some
constants µ > (1 + θ)ν/(1 − 2θ), 0 < θ < 1

2 and 0 < ρ < ∞ such that the
constant

M(ρ, κ, θ) := log

(
1

2ν

ρ

κ
log

1

1− θ

)
> 0 is large enough

(say, M(ρ, κ, θ) > log(36ν)). Then we have the almost sure assertions of

Theorem 3.1 with MV (K) := log(λ̃K,V −LV,θ)− log(2νκ) >M(ρ, κ, θ) and
fixed K > 1.

Moreover,
lim
V

(
λK, V − f (log |V |)

)
= 2νκq(ρ/κ)

for some nonrandom constant q(ρ) > 0 such that q(ρ) = (2ρ log ρ)−1 (1 + o(1))
as ρ→ ∞.
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From Theorems 3.1 and 3.4, we obtain the following Poisson limit the-

orem (as |V | → ∞) for the largest eigenvalues λK, V and the corresponding
localization centres zτ(K), V [2, 4]:

Assume that there exist the normalizing constants AV > 0 and BV such
that limV |V |P(λ(J)(0) > BV + A−1

V t) = e−t for any t ∈ R, and define the
point process N λ

V on [−1; 1]ν × R by

N λ
V :=

|V |∑

k=1

δXk, V
where Xk, V :=

(
zτ(k), V

|V |1/ν
,
(
λk, V −BV

)
AV

)
.

Then N λ
V converges weakly to Poisson process on [−1; 1]ν×R with intensity

measure dx× e−td t.
The proof of Theorems 3.1 and 3.4 rely on the fact that, under condi-

tions (1.3) and (1.4), the ξV -peaks possess a strongly pronounced geometric

structure which can be described as follows [1, 3]:
For arbitrary sufficiently small 0 6 ε < θ, there exist constants c1 >

c2 > 0 and (large) C > 0 such that almost sure

min
16k<n6|V |θ

∣∣zk, V − zn, V
∣∣ > |V |c1 ,

min
16k<n6|V |θ

(
ξk, V − ξn, V

)
> e−|V |c2

and, finally,
ξ[|V |ε], V − ξ

[|V |θ], V > C

for each V ⊃ V0. In this case, the largest eigenvalue λK, V is associated
with an isolated high ξV -peak; so that the asymptotic support of the cor-
responding eigenfunction ψ(·;λK, V ) consists of a single site zτ(K), V ∈ V ,

i.e., ψ(·;λK, V ) is a delta-like function.
For the lighter tails than those in (1.3) (including potentials with frac-

tional double-exponential tails (1.6) with arbitrary γ > 1 as well as bounded
from above potentials), the ξV -peaks possess a weakly pronounced geomet-

ric structure; in particular, almost sure ξ[|V |ε], V −ξ[|V |θ], V → 0 as |V | → ∞,

for all 0 6 ε < θ < 1. In this case, the eigenvalue λK, V does not longer cor-
respond to an isolated potential peak, but to an extremely large “island”
of high ξV -values of comparable amplitude [13, 10, 15, 4, 9]. See also [11]
for rigorous results on Poisson limit theorems and localization properties
for the largest eigenvalues in the case of double exponential distributions
(1.6) with γ = 1 and arbitrary B > 0.
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4. PROOF OF THEOREMS 2.1, 2.3 and 2.4

4.1. Preliminaries: Asymptotic Properties of Extreme Values of Po-
tential

Throughout this section, we essentially use the following representation
of the i.i.d. potential. As above, given a (right-continuous) distribution
function such that F (t) < 1 (t ∈ R), let f be the (left-continuous) in-
verse function of − log(1 − F ). Let η(x) = η(ω)(x) (x ∈ Z

ν ; ω ∈ Ω)
be independent exponentially distributed random variables with mean 1.
Clearly the random variables ξ(x) := f(η(x)) (x ∈ Z

ν) are independent
and have a (common) distribution function F . Given a sample η(· ) in V ,
we associate the sites zl, V ∈ V (1 6 l 6 |V |) with the variational series
η(z1, V ) > η(z2, V ) > . . . > η(z|V |, V ). Therefore, the variables

ξl, V := f(ηl, V ) := f(η(zl, V )) (1 6 l 6 |V |) (4.1)

form the variational series (1.1) based on the sample ξV .
In this section, we briefly study the asymptotic properties of extreme

values ηl, V as V ↑ Z
ν , which are transferred directly to ξl, V under ap-

propriate conditions on f . We first formulate the following well-known
properties of exponential order statistics.

Lemma 4.1. (see, e.g., [3]). (i) For fixedK = 1, 2, . . ., ηK,V −ηK + 1, V ≍
1 as |V | → ∞ in probability.

(ii) For an arbitrary sequence {KV } such that 1 6 KV 6 |V |,

limsup
V

√
KV max

KV 6l6|V |

∣∣∣∣ηl, V − log
|V |

l

∣∣∣∣ <∞

in probability.

Lemma 4.2. Assume that condition (2.1) is fulfilled. Then for arbi-
trarily fixed K = 1, 2, . . ., any 0 < ε < 1 and any sequence of integers
nV = O(|V |ε), we have the following limits in probability:

(i) ξnV , V ≍ (log |V |)1/3 as |V | → ∞,

and
(ii) 0 < liminf

V
min

K+16l6|V |ε
ξ2l,V (ξK, V − ξl, V )

1

log l

6 limsup
V

max
K+16l6|V |ε

ξ2l,V (ξK, V − ξl, V )
1

log l
<∞.

Proof. For this, apply formula (4.1), Lemma 4.1 and the assertions of
Remark 2.2(ii).
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Lemma 4.3. Assume that condition (2.2) holds true. Then for fixed
integers K > l > 1, we have the following limit in probability:

ξ2K,V (ξl, V − ξK,V ) → 0 as |V | → ∞.

Proof. This follows from formula (4.1) and Lemma 4.1(i).

The following lemma describes asymptotic properties of ηV -values neigh-
boring to ηV -peaks and is frequently used in this section .

Lemma 4.4. (see [3]). Fix a finite subset U ⊂ Z
ν\{0}, U 6= ∅, and a

sequence of nonrandom real functions {Dl(tU) : tU ∈ R
|U|}, l = 1, 2, . . ..

Further, abbreviate η(z; l) := Dl({η(z + x) : x ∈ U}) for each z ∈ Z
ν , and

fix a sequence of integers KV = O(|V |ε) for some 0 < ε < 1
2 . Then, for any

V and any t ∈ R,

∣∣∣∣P
(

max
16l6KV

η(zl, V ; l) 6 t

)
−

KV∏

l=1

P(η(0; l) 6 t)

∣∣∣∣ 6 c1|V |−c2 ,

where ci > 0 do not depend on V and t.

Lemma 4.5. Fix y ∈ Z
ν\{0} and a sequence of integers KV → ∞ such

that KV = O(|V |ε) for some 0 < ε < 1
2 . Then

lim sup
V

∣∣∣ max
16l6KV

η(zl, V + y)− logKV

∣∣∣ <∞

in probability.

Proof. This assertion follows from Lemma 4.4 with Dl(tU) ≡ ty (l =
1, 2, . . .) and Lemma 4.1(ii) with KV instead of |V |.

Lemma 4.6. (see, e.g., [1]). Assume that condition (1.4) holds true,
and fix 0 < ε < 1. Then with probability 1 the cardinality of the subset
{x ∈ V : ξ(x) > LV, ε} equals |V |ε(1 + o(1)) as |V | → ∞.

4.2. Proof of Theorem 2.1(i),(ii)

Clearly the conditions of Theorem 2.1(i) imply (1.4) and (1.3) with ρ = ∞,
i.e., the conditions of Theorem 3.1 where θ > 0 is chosen small enough.
We now show that the conditions of Theorem 3.1 yield that almost sure
log τV (K)/ log |V | → 0, i.e., the second assertion in (2.3). Indeed, fix ar-
bitrary (small) constants 0 < ε < ε′ < θ. By expanding λ(J)(zl, V ) over

ξ̃(x)/ξl, V (see (3.1)), we find that λ(J)(zl, V ) − ξl, V = o(1) uniformly in

12



1 6 l 6 |V |ε
′

, as |V | → ∞. Therefore, by Lemma 4.6, with probability 1
the cardinality of the subset {zl, V ∈ V : λ(J)(zl, V ) > LV, ε} tends to in-
finity as |V | → ∞. Using these limits and applying again Lemma 4.6,
we find that with probability 1 the site zτ(K), V belongs to the subset

{zl, V : λ(J)(zl, V ) > LV, ε} which is contained in {zl, V : 1 6 l 6 |V |ε
′

}
for each V ⊃ V0. Since ε′ > ε > 0 are arbitrarily small, this implies the
second limit in (2.3), as claimed.

Throughout this section, we essentially exploit the following auxiliary
random variables (see notation in the beginning of Sections 3 and 4.1):

ΛV (k) := ξ21,V
(
λ(J)(zk, V )− ξ1, V − 2νκ2ξ−1

1,V

)
. (4.2)

Clearly ΛV (τ(k)) ≡ Λk, V (1 6 k 6 |V |). For real a and b, we will write
a ∨ b := max(a, b), a ∧ b := min(a, b) and a+ := a ∨ 0.

With these remarks and abbreviations, we now are in a position to prove
the assertion of part (i) and the first assertion of part (ii) of Theorem 2.1.

(i) We first show that the assertion of (i) is a consequence of the follow-
ing limits in probability:

limsup
M→∞

limsup
V

1

logM
max

M6l6|V |ε
ΛV (l) < 0 (4.3)

and

liminf
M→∞

liminf
V

1

logM
ΛV (M) > −∞ (4.4)

for some ε ∈ (0, θ). This is done by induction in K > 1:
Write τV (0) := 0 by convention, and assume that

pM :=

K−1∑

l=0

limsup
V

P(τV (l) >M) → 0 as M → ∞. (4.5)

We further abbreviate eM := exp
{
(logM)2

}
(M = 1, 2, . . .) and observe

that the inequalities eM 6 τV (K) 6 |V |ε and max16l6K−1 τV (l) < M
imply that ΛV (l) > ΛV (M) for all eM 6 l 6 |V |ε. Using this implication
and recalling that almost sure τV (k)|V |−ε = o(1) for fixed k, we obtain
that

limsup
V

P(τV (K) > eM)

6 limsup
V

P

(
max

eM6l6|V |ε
ΛV (l) > ΛV (M)

)
+ pM → 0

as M → ∞, by (4.3)–(4.5). I.e., the assertion of (i) is proved.
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The remainder is devoted to the proof of (4.3) and (4.4). We start

with (4.3). For δ > 0, let Ω
(1)
V,δ ∈ F stand for the (measurable) subset of

configurations ξV = ξ
(ω)
V satisfying the following three inequalities:

ξ21,V max
26l6|V |ε

(
ξl,V − ξ1,V

) 1

log l
6 −3δ,

ξ1,V 6 δ−1(log |V |)1/3 and ξ[|V |ε],V − LV, θ > δ(log |V |)1/3.

Now, expanding λ(J)(zl, V ) in powers of ξ̃(zl, V + x)/ξl, V with |x| = 1 and
l 6 |V |ε (see (3.1)), we obtain that, for any 0 < δ < 1, any M > M0(δ),

any V ⊃ V0(M) and any ξ
(ω)
V (ω ∈ Ω

(1)
V,δ), the following inequality holds

true for all M 6 l 6 |V |ε:

ΛV (l) 6 −2δ log l + const
∑

|x|=1

ξ+(zl, V + x) +
const ′

(log |V |)1/3
.

From this and Lemma 4.4 with η(z; l) :=−2δ log l+const
∑

|x|=1 f+(η(z+x))

(M 6 l 6 |V |ε), we obtain that

limsup
V

P

({
max

M6l6|V |ε
ΛV (l) > −δ logM

}⋂
Ω

(1)
V,δ

)

6 1−
∞∏

l=M

P

(
− 2δ log l+ const

∑

|x|=1

ξ+(x) < −δ logM

)
. (4.6)

According to Remark 2.2(i), the right-hand side of (4.6) does not exceed

∞∑

l=M

exp

{
− const ′

(
log l −

1

2
logM

)3}
→ 0 as M → ∞.

This yields that

limsup
M→∞

limsup
V

P

(
max

M6l6|V |ε
ΛV (l) > −δ logM

)
6 limsup

V
P
(
Ω\Ω

(1)
V,δ

)
→ 0

as δ ↓ 0, by Lemma 4.2. Thus, (4.3) is proved.
To show (4.4), we apply the same arguments. For 0 < δ < 1 and M =

1, 2, . . ., let Ω
(2)
V,M,δ ∈ F denote the (measurable) subset of configurations

ξV = ξ
(ω)
V satisfying the following three inequalities:

ξ1,V
/
ξM,V < δ−1/2, ξ2M,V

(
ξM,V − ξ1,V

)
> −δ−1 logM

and
δ(log |V |)1/3 < ξM,V − LV,θ < δ−1(log |V |)1/3.
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By Lemma 4.2,

sup
M>1

limsup
V

P
(
Ω\Ω

(2)
V,M,δ

)
→ 0 as δ ↓ 0. (4.7)

Now, for any small δ > 0, any M > M0, any V ⊃ V0(M, δ) and any ξ
(ω)
V

(ω ∈ Ω
(2)
V,M,δ), we have that

ΛV (M) >

(
ξ1,V
ξM,V

)2[
ξ2M,V

(
ξM,V −ξ1,V

)
+κ2

( ∑

|x|=1

ξ(zM,V +x)

)∧
0−const

]

> δ−1

[
− δ−1 logM + κ2

( ∑

|x|=1

ξ(zM,V + x)

)∧
0− const

]}
.

Consequently,

limsup
V

P
(
{ΛV (M) < −2δ−2 logM} ∩ Ω

(2)
V,M,δ

)

6 limsup
V

P

( ∑

|x|=1

ξ(zM,V + x) < −const′ logM

)
→ 0 as M → ∞

by Lemma 4.4 with η(z; k)≡
∑

|x|=1f(η(z+x)). This and (4.7) yield (4.4).

Part (i) is proved.
(ii) We need to show the first assertion in (2.3). For a sequence sV =

log |V | + O(1), we define m̃V > 0 by f(sV − m̃V ) 6 f(sV ) − f(sV )
−2 6

f(sV − m̃V + 0), so that m̃V → ∞ according to the assumption of (ii).
Obviously, there is a sequence of integers mV → ∞ such that

f(2 logmV )

f
(
1
2 log |V |

) → 0 and
logmV

m̃V

→ 0. (4.8)

Let ΛV (l) be given by (4.2). We now show that the first limit in (2.3)
is a consequence of the following two limits in probability:

lim
V

max
kmV 6l<(k+1)mV

ΛV (l) = ∞ for fixed k = 1, 2, . . . (4.9)

and

lim
M→∞

lim
V

1

M
max

16l6M
ΛV (l) = 0. (4.10)

Indeed, for all M > 1 and V ⊃ V0(M), the inequality mink6K τV (k) 6 M
implies that

min
k6K

max
kmV 6l<(k+1)mV

ΛV (l) 6 max
16l6M

ΛV (l).
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Using this implication, we have that

limsup
V

P

(
min
k6K

τV (k) 6M
)

6 limsup
V

P

(
min
k6K

max
kmV 6l<(k+1)mV

ΛV (l) 6M
)

+ limsup
V

P

(
max

16l6M
ΛV (l) > M

)
→ 0 as M → ∞,

by (4.9) and (4.10).
We only need to check (4.9) and (4.10), say, for k = 1. Fix sufficiently

small ε > 0. Let Ω
(3)
V denote the (measurable) subset of configurations

ξV = ξ
(ω)
V satisfying

ξ1,V > LV, ε and ξ2mV ,V > ξ1,V − 2ξ−2
1,V ,

and, for M > 0, let Ω
(4)
V,M stand for the (measurable) subset of ξV = ξ

(ω)
V

satisfying

ξ1,V > LV, ε and max
16l62mV

∑

16|x|62

ξ+(zl, V + x)
/
ξ1,V <

1

M
.

We propose that

lim
V

P
(
Ω\Ω

(3)
V

)
= 0 and lim

V
P
(
Ω\Ω

(4)
V,M

)
= 0 for each M > 0. (4.11)

Indeed, the first limit follows directly from formula (4.1), Lemma 4.1(ii)
the second property (4.8) of mV (cf. also Lemma 4.3). The second limit
in (4.11) can be easily proved by combining formula (4.1), Lemmas 4.5
and 4.1 and the first property (4.8) of mV . We now abbreviate ζV (l) :=∑

|x|=1 ξ(zl, V + x) +
(∑

|x|=1 ξ(zl, V + x)
)∧

0. For any M > M0, any

V ⊃ V0(M) and any ξ
(ω)
V (ω ∈ Ω

(3)
V

⋂
Ω

(4)
V,M ), the following inequalities

hold true:

ΛV (l) >
(
ξ1,V

)2
(
ξl,V − ξ1,V +

( κ

ξl,V

)2∑

|x|=1

ξ(zl, V +x)

)
− const

> κ2ζV (l)− const′ for all mV 6 l < 2mV .

and

ΛV (l) 6 const
∑

|x|=1

ξ+(zl, V + x) +
const ′

LV,ε
for all 1 6 l 6M.
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Summarizing these estimates, we obtain the following limits for any M >

M0:

limsup
V

P

({
max

mV6l<2mV

ΛV (l) < M
}⋂

Ω
(3)
V

⋂
Ω

(4)
V,M

)

6 limsup
V

P

(
κ2 max

mV 6l<2mV

ζV (l) < 2M
)
= 0 (4.12)

(where the last limit is a consequence of formula (4.1) and Lemma 4.5)
and, moreover,

limsup
V

P

({
max

16l6M
ΛV (l) > logM

}⋂
Ω

(3)
V

⋂
Ω

(4)
V,M

)

6 limsup
V

P

(
max

16l6M

∑

|x|=1

ξ+(zl, V + x) > const logM
)

→ 0 as M → ∞,

(4.13)

where the last limit follows from formula (4.1), Lemma 4.5 and Remark
2.2(iii). Now, because of (4.11), limits (4.12) and (4.13) imply, respectively,
(4.9) and (4.10) for k = 1, as claimed.

4.3. Proof of Theorem 2.3

With constants c0, c1 as in Theorem 3.2 and lV given by (2.8), we abbre-
viate

nV :=
[
exp{a0l

α−2
V }

]
, CV,µ := lV + c0l−1

V + (c1 + µ)l
−α+1

α−1

V

and

σV (k) := lV −
log k

αAlα−1
V

+
c0

lV
+

(
κ

lV

)2 ∑

|x|=1

ξ+(zk,V + x) (1 6 k 6 |V |).

For sufficiently large a0 > 0 and for each µ < 0, we now prove the following
auxilary limits:

lim
V

P(τ(K) > nV ) = 0 and lim
V

P
(
σV (τ(K)) < CV,µ

)
= 0. (4.14)

To show the first limit in (4.14), we note that the random variables ΛV (k)
(4.2) satisfy (4.9), provided a sequence mV tends to infinity sufficiently
slowly. Therefore, the first assertion in (4.14) follows from the limit

lim
V

max
nV 6k6|V |ε

ΛV (k) = −∞ in probability (4.15)
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for some 0 < ε < θ < 1/2. To show (4.15), we apply Lemma 4.1(ii),
formulas (4.1) and (2.7) to estimate ξk,V . Thus, the expression under the
limit in (4.15) does not exceed

ξ21,V (ξnV ,V − ξ1,V ) + const lV = −
lognV

αAlα−3
V

(1 + o(1)) + const lV

in probability. Since the latter does not exceed −const ′lV where const ′ >
0, we arrive at (4.15).

Let us show the second assertion in (4.14). By combining (2.7), formula
(4.1) and Lemmas 4.1(ii) and 4.5, we obtain that, for each δ > 0,

limsup
V

P

((
λ(J)(zτ(K),V )− σV (τ(K))

)
l
α+1
α−1

V >δ,M6τ(K) 6 nV

)
→ 0

as M → ∞. Using this together with Theorems 3.2 and 2.1(ii) and the
first limit in (4.14), we arrive at the second limit in (4.14).

With abbreviation tV := exp
{
2νAκ2α/(α−1)l

α(α−3)/(α−1)
V

}
, we now are

in a position to prove that, for each δ > 0,

P(τ(K) > t1+δ
V ) → 0 and P(τ(K) < t1−δ

V ) → 0 (4.16)

as |V | → ∞. To show the first limit in (4.16), we observe that

P
(
t1+δ
V 6τ(K)6nV , σV (τ(K))>CV,µ

)
6P

(
max

t1+δ
V

6k6nV

σV (k)>CV,µ

)
.(4.17)

By Lemma 4.4 with

η(z; k) := −
log k

αAlα−1
V

+

(
κ

lV

)2 ∑

|x|=1

f+(η(z + x)),

we obtain that the right-hand side of (4.17) does not exceed

∑

t1+δ
V 6k6nV

P

( ∑

|x|=1

ξ+(x)>

(
lV
κ

)2[
log k

αAlα−1
V

+(c1+µ)l
−α+1

α−1

V

])
+|V |−const .(4.18)

For any small δ > 0, we now pick µ = µ(δ) < 0 to satisfy

ρ′ :=
δ

α
+

µ

2ν
κ−2α/(α−1) > 0 and δ′ := (1 + ρ′)α − 1− δ > 0.

Using the fact that

− logP

( ∑

|x|=1

ξ+(x) > t

)
= A(2ν)1−αtα +O(log t) as t→ ∞
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(see, pp. 627 in [20], or [7]) and applying then the inequality (a + b)α >

bα + αabα−1 for positive a and b, we obtain that the sum (4.18) does not
exceed

(log tV )
const

∑

t1+δ
V 6k6nV

exp

{
−

(
1

α log tV
log

(
k

t1+δ
V

)
+ 1 + ρ′

)α

log tV

}

6 (log tV )
const exp

{
− (1 + ρ′)α log tV

} ∑

k>t1+δ
V

exp
{
− (1+ρ′)α−1 log

k

t1+δ
V

}

6 t−δ′

V (log tV )
const → 0.

Consequently, the right-hand side of (4.17) tends to zero. Together with
(4.14), this yields the first limit in (4.16).

We show the second limit in (4.16) by the same arguments. For any
small δ > 0, we pick µ = µ(δ) < 0 such that

ρ′′ :=
δ

α
−

µ

2ν
κ−2α/(α−1) < 1 and δ′′ := (1− ρ′′)α + δ − 1 > 0,

and notice that

P

(
τ(K) 6 t1−δ

V , σV (τ(K)) > CV,µ

)

6
∑

k6t1−δ
V

P

( ∑

|x|=1

ξ+(x) >

(
lV
κ

)2[
log k

αAlα−1
V

+ (c1 + µ)l
−α+1

α−1

V

])
+ |V |−const

6 (log tV )
constexp

{
− (1 − ρ′′)α log tV

}

×
∑

k6t1−δ
V

exp

{
− (1− ρ′′)α−1 log

k

t1−δ
V

}
+ |V |−const

6 t−δ′′

V (log tV )
const ′

→ 0.

This and the second limit (4.14) conclude the proof of (4.16).

4.4. Sketch of the Proof of Theorems 3.3 and 2.4

Combining Theorem 2.1(ii), Lemmas 4.1(ii), 4.5, formulas (4.1) and (2.9)
similarly as in the proof of the first assertion of (4.14), we obtain with prob-

ability 1+o(1) that τV (K) → ∞ and τV (K) 6 NV := exp
{
d2γ−2
V log |V |

}
.

Therefore, taking into account (3.1) and again applying Lemmas 4.1(ii),

4.5 and formulas (4.1) and (2.9), we see that λ
(J)
K,V is approximated by the

Kth largest values of the following random variables

ΞV (x) := ξ(x) +
∑

|y−x|=1

κ2

dV − ξ̃(y)
(x ∈ V )
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and

χV (k) :=dV −
log k

γBdγ−1
V log |V |

+
∑

|y−zk,V |=1

κ2

dV − ξ̃(y)
(16k6NV ). (4.19)

Namely, with probability 1 + o(1)

λ
(J)
K,V = ΞK,V +O

(
d3γ−3
V

)
= χK,V +O

(
d3γ−3
V

)
. (4.20)

WriteBV for the right-hand side of (3.2), and letBV, µ := BV+µd
γ−1
V (log dV )

−2.
By applying Laplace’s method for certain integrals similarly as in the proof
of Lemma 6.7 in [4], we obtain that for each µ > 0, |V |P

(
ΞV (0) > BV,µ

)
→

0 and |V |P
(
ΞV (0) > BV,−µ

)
→ ∞ as |V | → ∞. This and the first assertion

of (4.20) conclude the proof of Theorem 3.3.
To prove Theorem 2.4, we exploit the random variables χV (·) (4.19).

Write TV := exp
{
Cd2γ−2

V (log dV )
−2 log |V |

}
, where constant C stands for

the right-hand side of (2.11). Similarly as in the proof (4.16), we obtain
that for each small δ > 0 and some µ = µ(δ) < 0,

P
(
τ(K)>T 1+δ

V

)
6P

(
max

k>T 1+δ
V

χV (k)>BV,µ

)
+ o(1)

6
∑

k>T 1+δ
V

P

(∑

|x|=1

κ2

dV − ξ̃(x)
>BV,µ−dV +

log k

γBdγ−1V log |V |

)
+o(1).(4.21)

To estimate the summands in (4.21) for k < T
O(1)
V , we apply the following

asymptotic tail bound as |V | → ∞:

P

( ∑

|x|=1

κ2

dV − ξ̃(x)
>BV,t−dV

)
6 exp

{
−
(
logTV

)(
etγB/C−1 + o(1)

)}

uniformly for t in finite intervals of R, which is derived again by Laplace’s

method for integrals. For k larger than T
O(1)
V in (4.21), we replace the

random variables ξ̃(x) (|x| = 1) by their maximum ξmax := max|x|=1 ξ̃(x),

where P
(
ξmax > t

)
6 2ν(1−F (t)) for all t. Together with these estimates,

direct calculations show that the right-hand side of (4.21) tends to 0 as
|V | → ∞. Similarly, P

(
τ(K)< T 1−δ

V

)
= o(1). These limits conclude the

proof of Theorem 2.4.

4.5. Conclusions and Remarks

(i) Under the conditions of Theorem 2.1(i), we see from the proof in
Sect. 4.2 that liminf V P(τV (K) > m) > 0 for each m > 1; meanwhile,
limsup V P(τV (K) >M) → 0 as M → ∞.
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(ii) For Weibull’s type distributions (1.5), the derivation of the first
order formula for log τV (K) claims the third order expansion formula for
the eigenvalue λK,V ; cf. Theorems 3.1, 3.2 and 2.3. Meanwhile, for the
fractional-double exponential distributions (1.6), we need the forth order
expansion formula for λK, V to derive limit (2.11) for log τV (K); cf. Theo-
rems 3.3 and 2.4.

In both cases, the main contribution to log τV (K) is determined by an
isolated ξV -peak and its nearest neighbor values; see the proof of Theorems
2.3 and 2.4. Notice also that the O-terms in (1.5) and (1.6) do not reflect
on the first order asymptotics for log τV (K).

(iii) In Theorem 2.1(iii) treating the double exponential case, we obtain
O-type asymptotic bounds for log τV (K). In order to prove more explicit
limits (for instance, ε1(·) ≡ ε2(·) in Theorem 2.1(iii)), we need to apply
more refined variational arguments. We notice that, in this case, the main
contribution to log τV (K) is determined by a lower isolated ξV -peak and a
huge flat “island” of its neighbor values; cf. Theorem 3.4.
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13. Gärtner, J., Molchanov, S.A.: Parabolic problems for the Anderson model. II.
Second-order asymptotics and structure of high peaks. Probab. Theory Relat.

Fields 111, 17–55 (1998)

21



14. Germinet, F., Klopp, F.: Spectral statistics for the discrete Anderson model in the
localized regime. Preprint arXiv:1006.4427 (2010). In: Minami, N., Ueki, N. (eds.)
Spectra of Random Operators and Related Topics(2011)

15. van der Hofstad, R., König, W., Mörters, P.: The universality classes in the
parabolic Anderson model. Commun. Math. Phys. 267, 307–353 (2006)

16. Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model.
Ann. Henri Poincaré 8(1), 27–36 (2007)
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