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Abstract

In 1957 D.R. Hughes published the following problem in group theory. Let G
be a group and p a prime. Define Hp(G) to be the subgroup of G generated
by all the elements of G which do not have order p. Is the following conjecture
true: either Hp(G) = 1, Hp(G) = G, or [G : Hp(G)] = p? After various classes
of groups were shown to satisfy the conjecture, G.E. Wall and E.I. Khukhro
described counterexamples for p = 5, 7 and 11. Finite groups which do not
satisfy the conjecture, anti-Hughes groups, have interesting properties. We give
explicit constructions of a number of anti-Hughes groups via power-commutator
presentations, including relatively small examples with orders 546 and 766. It is
expected that the conjecture is false for all primes larger than 3. We show that
it is false for p = 13, 17 and 19.

1. Introduction

Hughes [11] published the following problem in group theory.

Let G be a group and p a prime. Define Hp(G) to be the subgroup
of G generated by all the elements of G which do not have order p.
Is the following conjecture true: either Hp(G) = 1, Hp(G) = G, or
[G : Hp(G)] = p?

Hp(G) is called the Hughes subgroup. For finite groups this conjecture has
become known as the Hughes conjecture, and all groups in this paper are finite
unless otherwise stated.

Initial positive results about the conjecture include the following. In 1956,
before publication of the conjecture and perhaps as partial justification for it,
Hughes [10, Lemma 4] proved the conjecture for p = 2 for all (finite or infinite)
groups. Next, in 1958 Straus and Szekeres [21] proved it for p = 3 for all (finite
or infinite) groups. Then, in 1959 Hughes and Thompson [12] proved that the
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Hughes conjecture is true for any finite group that is not a p-group, and focus
shifted to finite p-groups.

Later work culminated in some positive results about finite p-groups with
specific structural properties. The conjecture was proved for metabelian groups
in 1969 by Hogan and Kappe [8] and for groups with nilpotency class less than
2p − 1 in 1971 by Macdonald [19] (who earlier [18] showed the same for 2-
generator groups with class less than 2p). But these results followed the discov-
ery of the first counterexamples. (Later counterexamples prove that Macdon-
ald’s class bounds are tight in the situations for which we have counterexamples.)

In 1967, G.E. Wall [23] found a counterexample for p = 5. Wall’s counterex-
ample relies on the existence of a Lie relator of weight 9 which holds in the
associated Lie rings of Burnside groups of exponent 5, but is not a consequence
of the 4-Engel identity. In fact Wall found a Lie relator of weight 2p− 1 which
holds in the associated Lie rings of groups of exponent p, and conjectured that
if p ≥ 5 then this Lie relator is not a consequence of the (p− 1)-Engel identity
in characteristic p. (It has been known since the 1950’s that the associated Lie
rings of groups of exponent p have characteristic p and satisfy the (p− 1)-Engel
identity.) Wall confirmed his conjecture for p = 5 by hand calculation in related
associative rings. John Cannon [3] used a computer to confirm Wall’s conjec-
ture for p = 5 and 7. Cannon’s work on this is described in more detail [2,
Chapter VI] in his doctoral thesis which was supervised by Wall, and the result
was extended to p = 11. Wall amplified his proof in [24]. It follows from Wall’s
and Cannon’s work that there are 3-generator counterexamples to the Hughes
conjecture for p = 5, 7 and 11.

Later, in 1981 and 1982, E.I. Khukhro [13, 14] found further counterexam-
ples. Khukhro’s 1981 counterexample is a 3-generator 5-group of order 5917 and
class 9 with Hughes subgroup of index 25, and his 1982 counterexample is a
2-generator 7-group of order 71075 and class 14 with Hughes subgroup of index
49. Khukhro’s 3-generator 5-group example relies on the existence of Wall’s new
Lie relator for p = 5. His 2-generator 7-group example is slightly more subtle.
An important instance of Wall’s new relator has multiweight (p− 1, p− 1, 1) in
three variables x, y, z. If we write this relator as fp(x, y, z), then fp(x, y, [x, y])
has multiweight (p, p) in two variables x and y. So the associated Lie ring of
the Burnside group B(2, 7) satisfies the relation f7(x, y, [x, y]) = 0. Khukhro
showed that f7(x, y, [x, y]) = 0 is not a consequence of the 6-Engel identity, and
deduced the existence of his 2-generator 7-group counterexample to the Hughes
conjecture.

When p = 5 the corresponding relation f5(x, y, [x, y]) = 0 of weight 10 is a
consequence of the 4-Engel identity. This is why there is no 2-generator 5-group
counterexample with class 10. In fact there is no 2-generator counterexample
for p = 5 at all. This can be confirmed by an analogous computation to the
one we use later in §2. We compute Q, the largest nilpotent quotient of the 2-
generator 5-group with the fifth powers of all elements outside its derived group
trivial. It turns out that Q actually has exponent 5, so Q is the same as the
restricted Burnside group R(2, 5). (This is the basis for the result for p = 5 in
[16, Corollary 2].)
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Having proved the existence of some anti-Hughes groups, Khukhro proved
more. In [15] he showed that almost all p-groups satisfy the Hughes conjecture,
in a well defined sense. He went on to show that the existence of a d-generator
anti-Hughes group for a prime p implies the existence of a largest such group, so
that all d-generator anti-Hughes groups for that prime are quotients of it. Nice
overviews of his and other results on the Hughes’ problem appear in [16, 17].

As pointed out by Macdonald [18], 2-generator anti-Hughes groups provide
counterexamples to various conjectures about p-groups. Indeed this work was
motivated in part by a request from R.K. Dennis for small counterexamples.
Dennis was investigating problems about the exponents of generating sets of fi-
nite groups and anti-Hughes groups provide interesting case studies for p-groups.
In particular, our 2-generator anti-Hughes groups are groups with exponent p2

in which all elements of any minimal generating set have order p.
This makes it worthwhile for us to be able to compute with anti-Hughes

groups. Calculations with p-groups can be carried out effectively with the use of
power-commutator presentations (PCPs). Such computations can be done using
the p-quotient algorithm as implemented in Magma [1], and as a share package
in GAP [4]. Detailed descriptions of these presentations, their algorithms, some
applications and further references are provided in [20, 9]. Suffice it to say, we
can efficiently answer very many interesting questions about p-groups if we have
have PCPs for them.

Although Khukhro gave precise definitions of his groups, it seems that up
till now nobody has actually constructed power-commutator presentations for
them. This is not surprising, since computing PCPs for the groups is a non-
trivial exercise. We construct PCPs for Khukhro’s two counterexamples, and
we also construct quotient groups of order 546 and 766 (among many others),
which are quite small counterexamples to the Hughes conjecture. They are very
much smaller than previously known, but we have no reason to believe that
these are the smallest counterexamples.

Supplementary materials, including some Magma programs which compute
anti-Hughes groups, are available at our websites [6], together with their out-
puts. These outputs give some further details on our anti-Hughes groups and
also provide information on computer resource usage.

Using the same types of ideas, we have constructed PCPs for a 3-generator
7-group of class 13 and order 72631 which is an anti-Hughes group, and for a
2-generator counterexample of class 22 and order 112408.

Our group constructions are independent of the theory of Lie relators in
Burnside groups, but Khukhro has shown that 3-generator, class 2p− 1, coun-
terexamples to the Hughes conjecture exist if and only if there is a new Lie
relator of weight 2p − 1. Similarly he has shown that 2-generator, class 2p,
counterexamples exist if and only if the relation fp(x, y, [x, y]) = 0 is not a
consequence of the (p − 1)-Engel identity. So our group constructions give in-
dependent verification of the existence of these new relators for p = 5, 7 and
11.
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We have also carried out Lie algebra calculations to show that the relation

fp(x, y, [x, y]) = 0

is not a consequence of the (p − 1)-Engel identity for p = 13, 17 and 19. So
2-generator counterexamples to the Hughes conjecture also exist for p = 13, 17
and 19, though it is not easy to construct them. We have some hope of even-
tually constructing a PCP for a 2-generator 13-group of class 26 which is a
counterexample, but the computations are taking months of computer time and
are far from complete. The theory of Lie relators in Burnside groups is rather
tricky, and we do not explore this subject here. Some details may be found
in [22] where Theorem 2.5.1 gives a sequence of multilinear identities Kn = 0
(n ≥ 2) which hold in the associated Lie rings of Burnside groups of prime power
exponent pk. Wall’s identity is equivalent to K2p−1 = 0, which is multilinear in
2p− 1 variables. So we have (modulo constants)

fp(x, y, z) = K2p−1(x, x, . . . , x︸ ︷︷ ︸
p−1

, y, y, . . . , y︸ ︷︷ ︸
p−1

, z),

and
fp(x, y, [x, y]) = K2p−1(x, x, . . . , x︸ ︷︷ ︸

p−1

, y, y, . . . , y︸ ︷︷ ︸
p−1

, [x, y]).

It seems very likely that the relation fp(x, y, [x, y]) = 0 is not a consequence of
the (p − 1)-Engel identity for any prime p > 5, but we have no idea how one
might prove this general result.

In each of our anti-Hughes groups the Hughes subgroup has index p2. In 1986
Wall [25] showed that if, for a prime p, for all j = 1, . . . , n the law Kj(p−1)+1 is
not a consequence of the Ki with smaller indices, then there is a counterexample
where the index of the Hughes subgroup is pn. This criterion does not hold for
n = 3 and p = 5, so Wall’s theory does not yield a 5-group with Hughes subgroup
of index 53. The question of whether Wall’s criterion holds for n = 3 and p = 7
seems to be beyond the range of direct computational investigation.

Our anti-Hughes groups have class 2p− 1 or 2p because these are the lowest
possible classes. The restricted Burnside groups R(3, 5) and R(2, 7) are known
to have classes 17 and 28, respectively, so corresponding counterexamples exist
with classes at least as big as those.

It is worth noting that the existence of a d-generator anti-Hughes p-group
G implies the existence of n-generator anti-Hughes p-groups for all n ≥ d. This
follows from consideration of K = G× Cp. Clearly Hp(K) = Hp(G)× Cp.

2. Khukhro’s 7-group

Following Khukhro [14] we let F be the free group of rank 2, and we let
N be the normal subgroup of F generated by {g7 | g /∈ F ′}. We consider the
nilpotent quotients of F/N , looking for a quotient which does not have exponent
7. Khukhro’s theoretical work guarantees that such a quotient exists. As he

4



proved, the class 13 quotient of F/N has exponent 7, but the class 14 quotient
does not. In fact the class 14 quotient of B(2, 7) has order 71074, but the class
14 quotient of F/N has order 71075. Let this class 14 quotient be H, and let H
be generated by a and b. Then [b, a] has order 49. Also γ3(H) has exponent 7
and H ′ has class 6. It follows that ([b, a]g)7 = [b, a]7 for all g ∈ γ3(H), and this
implies that all the elements [b, a]g (g ∈ γ3(H)) have order 49. So the Hughes
subgroup 〈g ∈ H | g7 6= 1〉 = H ′, which has index 49.

The difficulty with computing a PCP for this group is finding a sufficiently
small generating set for the normal subgroup N . The p-quotient algorithm,
as implemented in Magma and as a share package in GAP, incorporates very
sophisticated techniques for finding relatively small test sets of words for en-
forcing exponent p, but this is precisely what we do not want to do. However
these same techniques are also appropriate for finding a relatively small set of
generators for N .

We construct H as follows (using the Magma program [6, gettestwords.m]
followed by the start of [6, p7g2r1075.m]). First we construct the class 13
quotient of B(2, 7) (which we denote by B(2, 7 : 13)), and then we construct
the p-covering group of this class 13 quotient. Call this p-covering group Q. It
has order 71258. Suppose that Q is generated by a and b. Let G = Q/N , where
N is the normal subgroup of Q generated by {g7 | g /∈ Q′}. This is Khukhro’s
counterexample to the Hughes conjecture of order 71075 and class 14.

Finding a reasonably small set of 7th powers which generate N requires a
certain amount of thought! Every element outside the derived group of Q is a
power of an element from the set

S = {ag | g ∈ Q′} ∪ {aibg | 0 ≤ i ≤ 6, g ∈ Q′}.

Now N is contained in the centre of Q, since Q is the p-covering group of a group
of exponent 7. In fact N ≤ M , where M is the p-multiplicator of B(2, 7 : 13).
Also S is a normal subset of Q, and S is a union of conjugacy classes of Q.
So if we let T be a set of representatives for these conjugacy classes, then N is
generated by {t7 | t ∈ T}. Since M is central in Q and of exponent 7, it is only
necessary to compute these conjugacy classes modulo M . But even so, this set
T is huge. However we can reduce the set of 7th power relations significantly. It
will be helpful in what follows if we can assume that γ3(Q) has exponent 7. This
is easy to check. Since Q has class 14 it follows that γ3(Q) has class at most
4, so it is only necessary to check that the elements from a set of generators of
γ3(Q) all have order 7. Now γ3(Q) is the normal closure of [b, a, a] and [b, a, b],
and so it is only necessary to check that [b, a, a]7 = [b, a, b]7 = 1. This is easily
done.

The first major reduction is the following lemma which implies that we only
need to compute a set of representatives for the conjugacy classes of S modulo
γ9(Q)M .

Lemma 1. If g ∈ Q and h ∈ γ9(Q) then (gh)7 = g7.

Proof. The Hall collection process implies that (gh)7 = g7h7uv, where u is
a product of 7th powers of elements in the derived group of 〈g, h〉, and where
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v lies in the 7th term of the lower central series of 〈g, h〉. Since γ3(Q) has ex-
ponent 7, it follows that h7 = u = 1. And since h ∈ γ9(Q), it follows that
v ∈ γ15(Q) = {1}. �

So we need to compute the conjugacy classes of S modulo γ9(Q)M . Since

Q/γ9(Q)M ∼= B(2, 7 : 8),

this is equivalent to computing conjugacy classes in B(2, 7 : 8). In principle,
Magma can compute these conjugacy classes with a single command. But,
as we shall see, S is a union of 8 × 723 conjugacy classes modulo γ9(Q)M .
Since the Magma command would attempt to store representatives for all these
classes, Magma would quickly run out of memory. So we compute a set of
representatives “by hand” — we are able to do this symbolically, without storing
representatives for each individual class. Let G be the class 8 quotient of B(2, 7),
and (with some abuse of notation) let a and b be the generators of G. We let
S1 = {ag | g ∈ γ2(G)} and we let S2 = {aibg | 0 ≤ i ≤ 6, g ∈ γ2(G)}. We want
to compute representatives for the conjugacy classes of S1 and S2.

First consider the set S1. Working modulo γ3(G) we see that a is conjugate
to a[b, a]k for all k = 0, 1, . . . , 6. So all the elements of S1 are conjugate to ag
for some g ∈ γ3(G). Working modulo γ4(G), we see that γ3(G) is generated by
[b, a, a] and [b, a, b]. (These are PCP generators G.4 and G.5 of G.) If g ∈ γ3(G)
then

(ag)[b,a]k = ag[b, a, a]−k modulo γ4(G),

and so a complete set of representatives for the conjugacy classes of S1 modulo
γ4(G) is a[b, a, b]k (0 ≤ k ≤ 6).

Working modulo γ5(G) we see that γ4(G) is generated by [b, a, a, a], [b, a, a, b]
and [b, a, b, b]. (These are PCP generators G.6, G.7 and G.8 of G.) If g ∈ γ3(G)
then

(ag)[b,a,a]r[b,a,b]s = ag[b, a, a, a]−r[b, a, a, b]−s modulo γ5(G),

and so a complete set of representatives for the conjugacy classes of S1 modulo
γ5(G) is

a[b, a, b]r[b, a, b, b]s (0 ≤ r, s ≤ 6).

Next we notice that γ5(G) is an elementary abelian subgroup of G, and that
[a, γ4(G)] is a subgroup of γ5(G). We let K be a complement for [a, γ4(G)] in
γ5(G), so that [a, γ4(G)] ∩ K = {1} and [a, γ4(G)]K = γ5(G). Fortunately we
are able to choose the complement K so that it is also a complement for all
the groups [a[b, a, b]r[b, a, b, b]s, γ4(G)] for all 0 ≤ r, s ≤ 6. So a complete set of
representatives for the conjugacy classes of S1 is

a[b, a, b]r[b, a, b, b]sk (0 ≤ r, s ≤ 6, k ∈ K).

Similarly we see that a complete set of representatives for the conjugacy
classes of S2 modulo γ5(G) is

aib[b, a, a]r[b, a, a, a]s (0 ≤ i, r, s ≤ 6).
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We are similarly able to find a single complement L in γ5(G) for all the subgroups

[aib[b, a, a]r[b, a, a, a]s, γ4(G)].

So a complete set of representatives for the conjugacy classes of S2 is

aib[b, a, a]r[b, a, a, a]sk (0 ≤ i, r, s ≤ 6, k ∈ L).

We compute K and L using [6, gettestwords.m]. The subgroup K is
generated by G.10, G.12, G.14, G.19, G.22, G.23, G.27, G.31, G.32, G.35, G.37,
G.39, G.43, G.45, G.47, G.49, G.51, G.53, G.54, G.56, G.58, and the subgroup
L is generated by G.9, G.11, G.13, G.15, G.17, G.20, G.25, G.28, G.30, G.33,
G.36, G.38, G.40, G.42, G.44, G.46, G.48, G.50, G.52, G.55, G.57. It is not
clear from the method of constructing these sets of representatives that they are
irredundant sets, but in fact they are. Magma shows that the centralizer of a in
G has order 725, which implies that the conjugacy class of a has size 733. Since
G is relatively free, all the elements ag (g ∈ G′) have conjugacy classes of size
733, and since there is a total of 756 elements of the form ag this implies that
there are 723 conjugacy classes. The same considerations apply to the elements
aibg (g ∈ G′).

We now lift these representatives for the conjugacy classes of S1 and S2 to
preimages in Q. The preimage of K is generated by Q.10, Q.12, . . . , Q.58 modulo
γ9(Q), and the preimage of L is generated by Q.9, Q.11, . . . , Q.57 modulo γ9(Q).

The most significant reduction in the set of generators for N = 〈g7 | g /∈
Q′〉 comes from an application of Higman’s Lemma [7]. Higman shows that if
x1, x2, . . . , xm are elements of a group G, then (x1x2 . . . xm)n = uv, where u lies
in the subgroup generated by elements of the form (xixj . . . xk)n where 1 ≤ i <
j < . . . < k ≤ m and where {i, j, . . . , k} is a proper subset of {1, 2, . . . ,m}, and
where v is a product of commutators of weight at least m, each involving all of
the generators x1, x2, . . . , xm. We apply this lemma to the 7th power of one of
our representatives. Let

w = a[b, a, b]r[b, a, b, b]s(Q.10)α10(Q.12)α12 . . . (Q.58)α58 .

The PCP generators of Q all have weights reflecting the terms of the lower
central series of Q which they lie in. Thus a has weight 1, [b, a, b] has weight
3, [b, a, b, b] has weight 4, Q.10 has weight 5, . . . , and Q.58 has weight 8. We
define the weight of w to be

1 + 3r + 4s + 5α10 + . . . + 8α58.

We also define the exponent length of w to be 1 + r + s + α10 + . . . + α58. We
show that we need only impose relations w7 = 1 for words of weight at most 14
(because 14 is the nilpotency class of Q).

So suppose that w has weight k > 14. By a subword of w we mean a word
of the form

w′ = aβ [b, a, b]r
′
[b, a, b, b]s

′
(Q.10)β10(Q.12)β12 . . . (Q.58)β58
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where β ≤ 1, r′ ≤ r, s′ ≤ s, β10 ≤ α10, . . . , β58 ≤ α58, and where the
exponent length of w′ is less than the exponent length of w. We apply Higman’s
Lemma, with m equal to the exponent length of w, and n = 7. We then
substitute a for x1, substitute [b, a, b] for x2, x3, . . . , xr+1, substitute [b, a, b, b]
for xr+2, xr+3, . . . , xr+s+1, and so on. Higman’s Lemma implies that w7 = uv,
where u lies in the subgroup generated by elements of the form (w′)7 with w′

a subword of w, and where v is a product of commutators each of which lie in
γk(Q) where k is the weight of w. Note that if w′ is a subword of w then either
w′ is another of our representatives for the conjugacy classes of S1 with lower
weight than w, or w′ ∈ γ3(Q) which implies that (w′)7 = 1. So if k > 14, then
by repeated application of Higman’s Lemma we see that w7 lies in the subgroup
generated by the elements (w′)7 where w′ ∈ S1 is a subword of w of weight at
most 14.

There is a further reduction we can make. Suppose that w has weight at
most 14, and also suppose that w has exponent length greater than 1 but less
than 7. As we mentioned above, the Hall collection process implies that if g, h
are elements of a group, then (gh)7 = g7h7w1w2, where w1 is a product of
7th powers of commutators involving g and h, and where w2 is a product of
commutators in g and h of weight at least 7. We combine this result with the
proof of Higman’s Lemma. We let m be the exponent length of w, and we apply
this result to the word (x1x2 . . . xm)7, taking g = x1x2 . . . xm−1 and h = xm.
So

(x1x2 . . . xm)7 = (x1x2 . . . xm−1)7x7
mw1w2

where w1 is a product of 7th powers of commutators with at least one entry
xm, and w2 is a product of commutators each of which has weight at least 7
and each of which has at least one entry xm. Expanding these commutators,
we may assume that all the entries in the commutators in the products w1 and
w2 lie in the set {x1, x2, . . . , xm}. So we have

w−1
1 x−7

m (x1x2 . . . xm−1)−7(x1x2 . . . xm)7 = w2.

Using Higman’s Lemma again we see that this implies that (x1x2 . . . xm)7 = uv
where
• u lies in the subgroup generated by elements of the form (xixj . . . xk)7 where
1 ≤ i < j < . . . < k ≤ m and where {i, j, . . . , k} is a proper subset of
{1, 2, . . . ,m} and by elements of the form c7 where c is a commutator with
at least one entry xm, and
• v is a product of commutators of weight at least 7 each involving all of the
generators x1, x2, . . . , xm.

We now substitute PCP generators of Q for the elements x1, x2, . . . , xm as
above. There are two key points to note.
1) Elements of the form c7 where c is a commutator with at least one entry xm

become trivial under the substitution since γ3(Q) has exponent 7.
2) Since m < 7, commutators of weight at least 7 involving all of the generators
x1, x2, . . . , xm must have repeated entries. In particular, they become trivial
under the substitution if k + 7−m > 14 where k is the weight of w.
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So if k + 7−m > 14 then we see that w7 lies in the subgroup generated by
elements (w′)7, where w′ is a subword of w.

The combined effect of all this is that the subgroup generated by the elements
(ag)7 (g ∈ Q′) is generated by the elements w7 where w has the form

w = a[b, a, b]r[b, a, b, b]s(Q.10)α10(Q.12)α12 . . . (Q.58)α58 , (1)

and where if w has weight k and exponent length m then k ≤ 14 and k+7−m ≤
14.

We now consider the subgroup generated by the elements (aibg)7 (g ∈ Q′).
As we showed above, this subgroup is generated by elements w7 where w has
the form

w = aib[b, a, a]r[b, a, a, a]s(Q.9)α9(Q.11)α11 . . . (Q.57)α57 . (2)

Using the same argument as above, we see that if this word has weight k and
exponent length m where k > 14 or k+7−m > 14, then w7 lies in the subgroup
generated by elements (w′)7 where w′ is a subword of w. Such a subword w′

has one of three types. It could be a word of the same form as w (which is fine),
or we could have w′ ∈ γ3(Q) (which is fine, since γ3(Q) has exponent 7), or we
could have

w′ = ai′ [b, a, a]r
′
[b, a, a, a]s

′
(Q.9)β9(Q.11)β11 . . . (Q.57)β57

for some i′, r′, s′, β9, . . . , β57. In this last case (w′)7 lies in the subgroup
generated by 7th powers of elements of the form (1). So the subgroup 〈g7 | g /∈
Q′〉 is generated by elements of the form (1) and (2) which have weight k and
exponent length m satisfying k ≤ 14, k + 7−m ≤ 14. There is a total of 272 of
these words.

3. Khukhro’s 5-group

The construction of Khukhro’s 3-generator 5-group is very similar to the
construction of his 2-generator 7-group, as shown in [6, p5g3r917.m]. We first
construct the 5-covering group Q of the class 8 quotient of B(3, 5). Denote
the generators of Q by a, b, c. Then we let N be the normal subgroup of Q
generated by {g5 | g /∈ 〈c〉Q′}. We let H = Q/N . Then H is a group of order
5917, whereas B(3, 5 : 9) has order 5916. The element cN ∈ H has order 25. If g
is any element of Q′ then there is an automorphism of H mapping aN to aN ,
bN to bN , and mapping cN to cgN , and so all the elements cgN have order 25.
This implies that the Hughes subgroup of H has index 25.

Once again, the main difficulty in carrying out this computation is in finding
a relatively small number of 5th powers which generate N . Using similar argu-
ments to those above, we see that N is generated by the 5th powers of conjugacy
class representatives of the following:

a[c, b]rk (0 ≤ r ≤ 4, k ∈ K1), (3)
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aib[c, a]rk (0 ≤ i, r ≤ 4, k ∈ K2), (4)

aibjc[b, a]rk (0 ≤ i, j, r ≤ 4, i + j 6= 0, k ∈ K3), (5)

where K1, K2 and K3 are certain sets of size 529 consisting of products of PCP
generators of Q of weights 3, 4 and 5. It is easy to check that Q′ has exponent 5,
so using the same arguments as above we see that the subgroup generated by 5th

powers of elements of type (3) and (4) is generated by words of type (3) and (4)
with weight k and exponent length m, where k ≤ 9 and k+5−m ≤ 9. However
there is a problem with words of type (5). We use Higman’s Lemma to show
that if w has weight k and exponent length m where k > 9 or k + 5 − m > 9,
then w5 lies in the subgroup generated by elements (w′)5 where w′ is a subword
of w. The problem is that aibjc[b, a]rk has subwords of the form c[b, a]rk, and
we do not want to include 5th powers of these words as relations. The “work
around” to this problem is as follows. If j > 0 we write

aibjc[b, a]rk = aibj−1(bc)[b, a]rk

and if j = 0 but i > 0 then we write

aic[b, a]rk = ai−1(ac)[b, a]rk.

Then we redefine the weight and exponent length of the word by letting (bc) (or
(ac)) contribute only one to the weight and one to the exponent length. Thus
the redefined weight and exponent length are both one less than the original
weight and exponent length. If w = aibj−1(bc)[b, a]rk, and if the redefined
exponent length is m, then when we apply Higman’s Lemma, we substitute a for
x1, x2, . . . , xi, substitute b for xi+1, xi+2, . . . , xi+j−1, substitute bc for xi+j , and
then carry on as before. This has the effect that a subword of x1x2 . . . xm either
maps to a subword of w of type (5) under the substitution, or to a conjugate of
a power of an element of type (3) or (4), or to an element of Q′. We treat words
of the form ai−1(ac)[b, a]rk similarly. So modifying the definitions of weight and
exponent length for words of type (5) in this way we see that N is generated
by the 5th powers of words of type (3), (4) and (5) with weight k and exponent
length m with k ≤ 9 and k + 5−m ≤ 9. There are 1201 of these words.

4. Constructing smaller counterexamples

It is easy to obtain quotient groups of the two groups constructed above
which are still counterexamples to the Hughes conjecture. Consider our 2-
generator 7-group of order 71075; its centre has order 7407. The element [b, a]7

lies in the centre of H, but we can factor out a subgroup of the centre of
order 7406 which does not contain [b, a]7. This gives us a counterexample to
the Hughes conjecture of order 7669. We can continue iterating this procedure
until we obtain a quotient group with centre of order 7. In this way we obtain
counterexamples with order as small as 7117, see [6, p7g2r1075.m].

There is a vast amount of choice in picking subgroups of the centre to factor
out in this way, so there is no reason to suppose that 7117 is the smallest group
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you could obtain with such a procedure. A simple method is to look at the PCP
generators which have nonzero exponent in the evaluation of [b, a]7. For each
such PCP generator, (there are 222 of these), we construct complements and
factor them out as above, yielding final anti-Hughes groups with orders ranging
from 7117 to 7121, see [6, p7exp.m].

Applying an analogous procedure to Khukhro’s example of order 5917 we
obtain an anti-Hughes group of order 599, see [6, p5g3r917.m].

We also tried another approach. The underlying theory implies that there
is a 2-generator anti-Hughes 7-group of class 14 in which the normal closures of
the generators both have class 7. The Magma implementation of the p-quotient
algorithm has a facility (via the MaxOccurrence parameter) which enables you
to force the normal closures of the generators to have specified classes. Using
this we obtain an anti-Hughes group of order 7597. Factoring out subgroups of
the centre as above, the smallest anti-Hughes quotient we found this way has
order 7119, see [6, p7g2mo.m]. This computation is much faster (compared with
p7exp.m) because it starts with a smaller group (but leads to a larger reduced
group after factoring out subgroups of the centre).

Next we tried adding defining relators to our group. After some experimen-
tation we found that if we start with the group generated by a and b, with
relators

[b, a, a, a, a, b], [b, a, a, a, a, a, b], [b, a, a, a, a, a, a, b],
[a, b, b, b, b, a], [a, b, b, b, b, b, a], [a, b, b, b, b, b, b, a],

and impose the condition that the normal closures of a and b are nilpotent of
class 7, then we can construct a counterexample of order 7159 and class 14.
Repeatedly factoring out complements to [b, a]7 in the centre of this group we
obtain an example of order 771, see [6, p7g2qmo.m]. In this case, relaxing the
conditions on the normal closures of a and b leads to a larger starting group,
order 7165, but not a smaller final group, see [6, p7g2q6.m].

For faster computation we replaced the three relators

[a, b, b, b, b, a], [a, b, b, b, b, b, a], [a, b, b, b, b, b, b, a]

by
[b, a, b, b, b, a], [b, a, b, b, b, b, a], [b, a, b, b, b, b, b, a]

and then systematically added as relators PCP generators which did not kill
off [b, a]7. The addition of five such relators gives us a 2-generator anti-Hughes
7-group of class 14 and order 797 which satisfies 11 commutator defining rela-
tors and in which the normal closures of both generators have class 7. Then
repeatedly factoring out complements to [b, a]7 in the centre leads to 2-generator
anti-Hughes 7-group of class 14 and order 766, see [6, p7g2q11mo.m]. This is
the smallest 2-generator anti-Hughes group that we have found.

Similarly, there is a 3-generator 5-group counterexample to the Hughes con-
jecture generated by a, b, c where the normal closures of a and b are nilpotent
of class 4 and the normal closure of c is abelian. (In this example we should
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also have the Hughes subgroup equal to 〈c〉G′.) We first construct the largest
class 8 group of exponent 5 in which the normal closures of the three generators
have classes 4, 4, 1 respectively. Then we construct the p-covering group of this
group, while maintaining the restriction on the normal closures of the gener-
ators. This gives us a group of order 5171. Then we factor out the subgroup
generated by the 5th powers of elements outside the subgroup 〈c〉G′, and this
gives us a counterexample of order 5123. Reducing this example in the same
way as above gives us an example of order 554, see [6, p5g3mo.m].

We now add defining commutator relators to the 5-group. With relators
[c, a, b] and [c, b, b, b, a] we obtain an example of order 550, see [6, p5g3q.m];
then, with those relators and with the normal closures of a and b having class
4 ([6, p5g3qmo.m]) we obtain an example of order 548. Further experimenting
reveals that we can add 6 more defining relators and retain the anti-Hughes
property, leading to an example of order 546 ([6, p5g3q8mo.m]). This is the
smallest 3-generator anti-Hughes group that we have found.

A similar approach allows us to construct a PCP for Wall’s 3-generator 5-
group defined in [23]. It has order 5167 and class 11. Its largest class 9 quotient
has order 5151 and is also an anti-Hughes group. Repeated factoring out of
complements leads to an anti-Hughes group with order 556, see [6, wallcl9.m];
with the normal closures of a and b having class 4 we obtain an example of order
554.

5. Further examples

As demonstrated by the outputs on [6], our computations thus far can be
done quite easily. The timings and memory usages shown in the outputs are
for runs done on a Dell XPS M1330 laptop with 2.4GHz Intel Core 2 Duo cpus.
When going on to consider larger examples we used a standalone implementa-
tion of the p-quotient algorithm. We wrote special new code to enforce p-th
power relations, which runs considerably faster than the previous code. We also
distributed the power checking over several processors.

We constructed a 3-generator 7-group with Hughes subgroup of index 49.
We first constructed the largest class 12 group of exponent 7 generated by three
elements a, b, c where the normal closures of a and b have class 6 and the normal
closure of c is abelian. This group has order 72078. We next constructed the p-
covering group of this group, while maintaining the restriction that the normal
closures of a, b, c have class 6, 6, 1 respectively. This gave us a group G of order
72875. We then factored out the normal subgroup generated by 7th powers of
elements outside the subgroup 〈c〉G′. This gave us a group of order 72631, with
Hughes subgroup of index 49.

Our success in constructing examples with extra defining relators suggested
that it might be possible to construct a 2-generator 11-group of class 22 as a
counterexample to the Hughes conjecture. In the end we imposed the relators
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[b, a, a, . . . , a︸ ︷︷ ︸
k

, b] for k = 4, 5, 6, 7, 8, 9, 10, 11,

[b, a, b, b, . . . , b︸ ︷︷ ︸
k

, a] for k = 3, 4, 5, 6, 7, 8, 9, 10,

[b, a, a, a, b, b], [b, a, a, a, b, a, a, b, a], [b, a, a, b, a, b, b, b, b, b],

as well as imposing the conditions that the normal closures of a and b have class
11. This gave us a 2-generator example of order 112408 and class 22.

6. Lie algebra calculations

In principle, to show that fp(x, y, [x, y]) = 0 is not a consequence of the
(p− 1)-Engel identity, one could compute the class 2p quotient of the free (p−
1)-Engel Lie algebra over GF(p) on two generators a, b, and then verify that
fp(a, b, [a, b]) 6= 0. Such calculations can readily be done with the program
described in [5]. However even for p = 13 this would be a massive computation.
Our idea was to add extra relations to the Lie algebra, the trick being to add
enough extra relations to make the dimension of the algebra manageable but
without adding in so many extra relations that the resulting algebra did satisfy
fp(a, b, [a, b]) = 0.

After some experimenting we settled on the following extra relations. First,
we added in the relations w = 0 for every Lie product w(a, b) with multiweight
(r, s) in a and b where r > p, or s > p, or |r − s| ≥ 3. We also added in the
relation [b, a, a, a] = 0, as well as the (p − 1)-Engel identity. For p = 11, 13, 17
and 19 this gave Lie algebras of class 2p and dimensions 471, 1809, 22816 and
29131. In each case it was straightforward to check that fp(a, b, [a, b]) 6= 0. For
p = 7 the Lie algebra defined above has class 12 and dimension 37, but if we
omit the relation [b, a, a, a] = 0 (but keep the other relations), then we obtain a
Lie algebra of class 14 and dimension 153 in which f7(a, b, [a, b]) 6= 0.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: the
user language, J. Symbolic Comput. 24 (1997) 235–265.
See also http://magma.maths.usyd.edu.au/magma/

[2] John J. Cannon, Computation in finite algebraic structures, PhD thesis, The
University of Sydney (1969).

[3] , Some combinatorial and symbol manipulation programs in group
theory, Computational problems in abstract algebra (Proc. Conf., Oxford
1967), Pergamon, Oxford, 1970, pp. 199–203.

[4] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.4.12, 2008; http://www.gap-system.org/

13



[5] George Havas, M.F. Newman and M.R. Vaughan-Lee, A nilpotent quotient
algorithm for graded Lie rings, J. Symbolic Comput. 9 (1990) 655–664.

[6] George Havas and M.R. Vaughan-Lee, Anti-Hughes groups; supplementary
materials (2009), http://www.itee.uq.edu.au/∼havas/hughes and http:
//users.ox.ac.uk/∼vlee/hughes.

[7] Graham Higman, Some remarks on varieties of groups, Quart. J. Math.
Oxford Ser. 2 10 (1959) 165–178.

[8] Guy T. Hogan and Wolfgang P. Kappe, On the Hp-problem for finite p-
groups, Proc. Amer. Math. Soc. 20 (1969) 450–454.

[9] Derek F. Holt, Bettina Eick and Eamonn A. O’Brien. Handbook of Compu-
tational Group Theory, Chapman & Hall/CRC, 2005.

[10] D.R. Hughes, Partial difference sets, Amer. J. Math. 78 (1956) 650–677.

[11] D.R. Hughes, A problem in group theory, Bull. Amer. Math. Soc. 63 (1957)
209.

[12] D.R. Hughes and J.G. Thompson, The H-problem and the structure of
H-groups, Pac. J. Math. 9 (1959) 1097–1101.

[13] E.I. Khukhro, On the connection between the Hughes conjecture and re-
lations in finite groups of prime exponent, (Russian) Mat. Sb. 116 (1981)
253–264; translation in Math. USSR Sbornik 44 (1983) 227–237.

[14] , On the associated Lie ring of a free 2-generator group of prime
exponent and the Hughes conjecture for 2-generator p-groups, (Russian) Mat.
Sb. 118 (1982) 567–575; translation in Math. USSR Sbornik 46 (1983) 571–
579.

[15] , On Hughes’ problem for finite p-groups, (Russian) Algebra i Logika
26 (1987) 642–646, 650; translation in Algebra and Logic 26 (1988) 398–401.

[16] , On finite p-groups not satisfying the Hughes conjecture, (Russian)
Sibirsk. Mat. Zh. 35 (1994) 221–227; translation in Siberian Math. J. 35
(1994) 202–207.

[17] , Generalizations of the restricted Burnside problem for groups with
automorphisms, Groups St. Andrews 1997 in Bath, II, 474–491, London
Math. Soc. Lecture Note Ser. 261, Cambridge Univ. Press, Cambridge, 1999.

[18] I.D. Macdonald, The Hughes problem and others, J. Austral. Math. Soc.
10 (1969) 475–479.

[19] , Solution of the Hughes problem for finite p-groups of class 2p− 2,
Proc. Amer. Math. Soc. 27 (1971) 39–42.

14



[20] C.C. Sims, Computation with finitely presented groups, Cambridge Univer-
sity Press, 1994.

[21] E.G. Straus and G. Szekeres, On a problem of D.R. Hughes, Proc. Am.
Math. Soc. 9 (1958) 157–158.

[22] M.R. Vaughan-Lee, The restricted Burnside problem, second ed., Oxford
University Press, 1993.

[23] G.E. Wall, On Hughes’ Hp-problem, Proc. Internat. Conf. Theory of Groups
(Canberra, 1965), Gordon and Breach, New York, 1967, pp. 357–362.

[24] , On the Lie ring of a group of prime exponent, Proceedings of the
Second International Conference on the Theory of Groups (Canberra, 1973),
667–690, Lecture Notes in Math. 372, Springer, Berlin, 1974.

[25] , On the multilinear identities which hold in the Lie ring of a group
of prime-power exponent, J. Algebra 104 (1986) 1–22.

15


