
Greedy Givens algorithms for computing
the rank-k updating of the QR decomposition q

Erricos John Kontoghiorghes *

Institut d’informatique, Universit�ee de Neuchâatel, �EEmile-Argand 11, Case Postale 2,

CH-2007 Neuchâatel, Switzerland

Received 1 March 2001; received in revised form 16 February 2002; accepted 25 April 2002

Abstract

AGreedy Givens algorithm for computing the rank-1 updating of the QR decomposition is

proposed. An exclusive-read exclusive-write parallel random access machine computational

model is assumed. The complexity of the algorithms is calculated in two different ways. In

the unlimited parallelism case a single time unit is required to apply a compound disjoint Gi-

vens rotation of any size. In the limited parallelism case all the disjoint Givens rotations can be

applied simultaneously, but one time unit is required to apply a rotation to a two-element vec-

tor. The proposed Greedy algorithm requires approximately 5=8 the number of steps per-

formed by the conventional sequential Givens rank-1 algorithm under unlimited

parallelism. A parallel implementation of the sequential Givens algorithm outperforms the

Greedy one under limited parallelism. An adaptation of the Greedy algorithm to compute

the rank-k updating of the QR decomposition has been developed. This algorithm outper-

forms a recently reported parallel method for small k, but its efficiency decreases as k in-

creases.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: QR decomposition; Givens rotations; Parallel model of computation; Parallel random access

machine; Complexity

www.elsevier.com/locate/parco

Parallel Computing 28 (2002) 1257–1273

qThis work is in part supported by the Swiss National Foundation Grants 1214-056900.99/1 and 2000-

061875.00/1. Part of the work was done while the author was visiting the ALADIN group at INRIA-

IRISA, Rennes, France under the support of the host institution and the Swiss National Foundation

Grant 83R-065887.
* Tel.: +41-32-718-2738; fax: +41-32-718-2701.

E-mail address: erricos.kontoghiorghes@unine.ch (E.J. Kontoghiorghes).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02)00132-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357315212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mail to: erricos.kontoghiorghes@unine.ch

1. Introduction

Consider the QR decomposition (QRD) of the non-singular matrix A 2 Rn�n

A ¼ QR; ð1Þ
where Q 2 Rn�n is orthogonal and R 2 Rn�n is upper triangular. lf x; y 2 Rn�k, then
the rank-k updating of the QRD (UQRD) problem is the recalculation of the QRD

~AA � Aþ xyT ¼ ~QQ~RR; ð2Þ
when (1) has already been computed [11,13]. Thus, the UQRD problem is equivalent
to computing the QRD

QðRþ zyTÞ ¼ ~QQ~RR; ð3Þ
where z ¼ QTx. The sequential Givens method solves the rank-1 UQRD problem in
two stages [4,5]. The first stage computes

GTð Z R QT Þ ¼ ð fe1 H GTQT Þ; ð4Þ
where G is the product of n� 1 Givens rotations which annihilate the elements of z
from bottom to the top, f2 ¼ zTz; e1 is the first column of the n� n identity matrix In,
and H is upper Hessenberg. The second stage applies n� 1 Givens rotations to
retriangularize the upper Hessenberg matrix

~HH ¼ H þ fe1yT: ð5Þ
That is, it computes

ĜGTð ~HH GTQT Þ ¼ ð ~RR ~QQ Þ; ð6Þ

where ĜGT is the product of Givens rotations which annihilate the elements of the
subdiagonal of ~HH from top to the bottom.

In the rank-k UQRD problem, the orthogonal factorizations (4) and (6) are re-
placed by the factorizations

GT
Bð z R QT Þ ¼ ðRz H GT

BQ
T Þ ð7Þ

and

ĜGT
Bð ~HH GT

BQ
T Þ ¼ ð ~RR ~QQ Þ; ð8Þ

where GBRz is the QRD of z and ~HH ¼ H þ RzyT. A parallel algorithm––the SK al-
gorithm––solves the rank-k (16 k < n) UQRD problem using 2ðnþ k � 2Þ com-
pound disjoint Givens rotations (CDGRs) [9]. The SK algorithm employs the Sameh
and Kuck annihilation scheme in [12] to compute the QRD of z using ðnþ k � 2Þ
CDGRs. This results H in (7), and consequently ~HH , to have zero in its last n� k � 1
subdiagonals. The retriangularization of ~HH is obtained using ðnþ k � 2Þ CDGRs. A
CDGR is the product of a number of disjoint Givens rotations that can simulta-
neously annihilate elements of a matrix [3,7]. A Givens rotation in plane ði; jÞ that
reduces to zero the element Bi;k when it is applied from the left of B 2 Rm�n will be
denoted by GðkÞi;j , where 16 i; j6m and 16 k6 n.

1258 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

The complexity analyses of the algorithms to be discussed are based on an exclu-
sive-read exclusive-write (EREW) parallel random access machine (PRAM) compu-
tational model [2,8]. It is assumed that sufficient processors are available to apply
simultaneously all the disjoint Givens rotations. The complexity of applying a single
Givens rotation will be defined in two different ways. In the unlimited parallelism
case a single time unit is defined to be the time required to apply a Givens rotation
on any matrix conformable with the transformation. In the limited parallelism case a
single time unit is defined to be the time required to apply a Givens rotation to a two-
element vector [9]. Thus, in the second case, the complexity of a Givens rotation is
determined by the length of the vectors affected by the rotation. The complexity
based on the unlimited parallelism will also hold for SIMD systems if all the matrices
(i.e. z, R and Q) can be stored in a single memory layer [7]. The times to construct a
Givens rotation and to compute the updating H þ RzyT will not be taken into ac-
count. Thus, the complexity of the rank-1 algorithms includes the computations of
(4) and (6). Similarly, for the complexity of the rank-k algorithms the computations
(7) and (8) are considered.

In this work Greedy parallel Givens strategies are investigated which use a smaller
number of CDGRs than the sequential and SK algorithms for solving the rank-1 and
rank-k (k < log2 n) UQRD problems, respectively. In the Section 2 the Greedy algo-
rithm for solving the rank-1 UQRD problem is presented. The adaptation and mod-
ification of a Greedy sequence to solve the rank-k UQRD problem is considered in
Section 3. Finally, in Section 4 some conclusions are presented.

2. The Greedy rank-1 updating algorithm

Using the Greedy, or recursive doubling, method the reduction of the n-element
vector z to the form fe1 can be achieved by applying the minimum number of
dlog2 ne CDGRs. It is assumed that there are enough processors to apply all the dis-
joint rotations simultaneously. This implies that at least bn=2c processors are avail-
able. The Givens rotations are not performed on adjacent planes and, generally, the
application of the single Givens rotation Gð1Þi;j ði > jÞ from the left of the augmented
matrix (z R) annihilates the ith element of z and fills in the elements j to (i� 1) of the
ith row of R. However, a sequence of CDGRs can be found which retriangularizes R
fast enough so that the complexity of solving the UQRD problem is less than that of
the sequential algorithm.

Assume for simplicity that n ¼ 2g. At the ith (i ¼ 1; . . . ; g) step of the Greedy al-
gorithm the elements 2ðg�iÞ þ 1 to 2ðgþ1�iÞ of z are annihilated by the 2g � 2g CDGR

Cði;gÞ ¼
Y2ðgþ1�iÞ

j¼2ðg�iÞþ1

Gð1Þ
j;j�2ðg�iÞ ;

which can also be written as

Cði;gÞ ¼ Cði�1;g�1Þ 0
0 I ðg�1Þ2

� �
for i > 1:

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1259

The orthogonal matrix GT in (4) is given by Cðg;gÞ

Cð1;gÞ. It can be proved that the
matrices

H ðgÞ ¼ Cðg;gÞ

Cð1;gÞR
and

~HH ðgÞ ¼ H ðgÞ þ fe1yT ð9Þ
have special recursive structures which facilitate the development of an efficient
Givens algorithm for triangularizing ~HH ðgÞ.

Theorem 1. The structure of the matrix H ðgþ1Þ ¼ Cðgþ1;gþ1Þ

Cð1;gþ1ÞR is given by

H ðgþ1Þ ¼ ; ð10Þ

where gP 0, ~BBðgÞ and B̂BðgÞ are full matrices, RðgÞ is upper triangular, H ðgÞ has the same
structure as H ðgþ1Þ but with g replaced by g � 1 and H ð0Þ is a non-zero scalar.

Proof. The proof is by induction. For g ¼ 0 the matrix H ð1Þ ¼ Cð1;1ÞR ¼ Gð1Þ2;1R is a
2� 2 full matrix which satisfies the structure (10). The inductive hypothesis is that
H ðgÞ has a structure defined in (10). It is required to show that H ðgþ1Þ has the structure
(10). Recall that H ðgÞ is of order n� n with n ¼ 2g. Consider the case with n ¼ 2ðgþ1Þ.
The application of the first CDGR from the left of the R gives

Cð1;gþ1ÞR ¼ ð11Þ

where RðgÞ and �RRðgÞ are upper triangular, and B̂BðgÞ and �BBðgÞ are full matrices. This is
obvious since the Givens rotation Gð1Þj;j�2g fills in the elements ðj� 2gÞ to ðj� 1Þ of the
jth row of R ðj ¼ 2g þ 1; . . . ; 2gþ1Þ. That is, the fill-in of R from the application of
Cð1;gþ1Þ is enclosed in a parallelogram of height 2g. For ~BBðgÞ ¼

Qg
i¼1 C

ði;gÞ �BBðgÞ the ap-
plication of the CDGRs from the left of R can be written as

H ðgþ1Þ ¼
Ygþ1
i¼1

Cði;gþ1ÞR ¼
Qg

i¼1 C
ði;gÞ 0

0 I2g

� �
�RRðgÞ �BBðgÞ

RðgÞ B̂BðgÞ

 !

¼
Qg

i¼1 C
ði;gÞ�RRðgÞ ~BBðgÞ

RðgÞ B̂BðgÞ

 !
:

Now, using the inductive hypothesis H ðgÞ ¼
Qg

i¼1 C
ði;gÞ�RRðgÞ, it follows from the latter

that H ðgþ1Þ can be expressed in the form

H ðgþ1Þ ¼ H ðgÞ ~BBðgÞ

RðgÞ B̂BðgÞ

 !
;

which completes the proof. �

1260 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

Clearly ~HH ðgÞ (see (9)) has the same structure as H ðgÞ. Only the first row of ~HH ðgÞ dif-
fers from H ðgÞ. Fig. 1 shows the recursive structure of H ðgÞ and the process of reduc-
ing (z R) to (f1e1 H ðgÞ) for g ¼ 4. In the first picture the numeral i ði ¼ 1; . . . ; gÞ
denotes the elements of z and R which are annihilated and filled in, respectively,
by the ith CDGR.

The reduction of the matrix ~HH ðgÞðg > 1Þ to upper triangular form can be obtained
by constructing the orthogonal factorizations

~GGT ~HH ðgÞ ¼ ~GGT
~HH ðg�1Þ ~BBðg�1Þ

Rðg�1Þ B̂Bðg�1Þ

 !
¼ ð12aÞ

and

~GGT
�

W ðg�1Þ ~BBðg�1Þ�
R̂Rðg�1Þ B̂Bðg�1Þ�

 !
¼ ~RR; ð12bÞ

where W ðg�1Þ and R̂Rðg�1Þ are upper triangular matrices and (~GG ~GG�Þ~RR is the QRD of
~HH ðgÞ. That is, ĜGT in (6) is given by ~GGT

�
~GGT.

The factorization of (12a) can be computed in 2ðg�2Þ steps using a Givens sequence
similar to that in [7]. At the ith ði ¼ 1; . . . ; 2ðg�2ÞÞ step the pth subdiagonal of ~HH ðg�1Þ is
annihilated by applying the CDGR Cði;gÞ, where p ¼ 2ðg�2Þ � iþ 1. The jth element of
the pth subdiagonal is zeroed by the Givens rotation GðjÞ

pþj;jþ2ðg�1Þ , where j ¼
ri; . . . ; 2

ðg�2Þ þ i� 1 and ri, is the index of the first non-zero element. Thus, Cði;gÞ

is defined by

Cði;gÞ ¼
Y2ðg�2Þþi�1

j¼ri

GðjÞ
pþj;jþ2ðg�1Þ : ð13Þ

The 2ðg�2Þ-element vector r can be written as r ¼ ðrð1Þ; . . . ; rðg�1Þ), where rðlÞk ¼ k,
l ¼ 1; . . . ; g � 1 and k ¼ 1; . . . ; d2g�2�le. The subvector rðlÞ starts at position qþ 1
of r, where q ¼ ð2l�1 � 1Þ2g�l�1. Thus, rqþk � rðlÞk ¼ k. For example, if g ¼ 5, then
r ¼ ð1; 2; 3; 4; 1; 2; 1; 1Þ.

Notice that the factorization (12a) can start after the second CDGR on z has been
applied. Fig. 2 illustrates the factorization of (12a), where g ¼ 4. The full matrices
~BBðg�1Þ and B̂Bðg�1Þ are not shown. Arcs connecting the elements (and subrows) of
~HH ðg�1Þ and Rðg�1Þ indicate those affected by Givens rotations.
The factorization (12b) is divided into two stages. In the first stage the upper tri-

angular matrix R̂Rðg�1Þ is reduced to zero by applying 2ðg�1Þ CDGRs. This is performed
using the strategies employed to update a QL decomposition by a lower triangular
matrix [6,7]. The CDGRs annihilate, diagonal by diagonal, the non-zero entries of
R̂Rðg�1Þ while preserving the triangular structure of W ðg�1Þ. Specifically, at the ith
(i ¼ 1; . . . ; 2ðg�1Þ) step the CDGR

Cði;gÞ ¼
Y2ðg�1Þ�iþ1

j¼1
Gðiþj�1Þ

jþ2ðg�1Þ;iþj�1

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1261

is applied in order to annihilate the ith superdiagonal of R̂Rðg�1Þ where, in this context,
the main diagonal is equivalent to the first superdiagonal. Fig. 3 illustrates this
Givens sequence.

In the second stage of computing (12b) the matrix B̂Bðg�1Þ� is triangularized using
2g � 3 CDGRs by employing the Sameh and Kuck (SK) annihilation scheme in

Fig. 1. The computationi of ðf1e1 H ð4ÞÞ using the Greedy algorithm and the structure of ~HH ð4Þ.

1262 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

[12]. The elements of a column of B̂Bðg�1Þ� are annihilated by successive CDGRs from
bottom to the top with the ð2i� 1Þth CDGR starting to annihilate the elements of
the ith column. Notice, however, that the annihilation of B̂Bðg�1Þ� can commence after
the last two rows of R̂Rðg�1Þ have been zeroed. That is, the annihilation of B̂Bðg�1Þ� starts
after the second CDGR of the first stage has been applied. Hence, 2g � 1 CDGRs are
needed to compute factorization (12b).

Fig. 4 illustrates the annihilation pattern of the Greedy parallel Givens strategies
for solving the rank-1 UQRD problem, where g ¼ 4. In this figure, a numeral i de-
notes the elements annihilated by the ith CDGR. The steps of the Greedy algorithm
are shown in Algorithm 1. The standard colon notation has been used to represent
sequences of adjacent elements. The loop at lines 3–19 reduces z to fe1 while simul-
taneously computing the factorization (12a). The loop at lines 20–37 computes the
factorization (12b). Note, the two conditional statements (lines 5–11 and lines 12–
17) controlled by the parallel do at line 4 are executed simultaneously. This also holds
for the conditional statements controlled by the parallel do at line 21. A Givens ro-
tation is applied from the left of a two-row matrix and annihilates the first element of
the second row. A number of Givens rotations are applied simultaneously using a for
all loop. For notational simplicity Gj denotes the 2� 2 rotation applied at the jth
step of the for all loop.

Fig. 3. Assimilation of R̂Rðg�1Þ in the factorization of (12b) using CDGRS, where g ¼ 3.

Fig. 2. Factorization of (12a) using CDGRs, where g ¼ 4 and r ¼ ð1; 2; 1; 1Þ.

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1263

Algorithm 1. The Greedy algorithm for solving the rank-1 UQRD problem (3),
where n ¼ 2g.
1. Let z ¼ QTx and ~RR ¼ ðR QTÞ 2 Rn�2n, where n ¼ 2g

2. Let rqþk ¼ k, where k ¼ 1; . . . ; d2g�2�le; l ¼ 1; . . . ; g � 1 and q ¼ ð2l�1 � 1Þ2g�l�1

3. for i ¼ 1; 2; . . . ; 2ðg�2Þ þ 2 do
4. parallel do

5. if (i6 g) then
6. for all j ¼ 1; 2; . . . ; 2ðg�iÞ do-in-parallel
7. Let r ¼ 2ðg�iÞ þ j

8.
zj ~RRj;j:2n

zr ~RRr;j:2n

� �
 Gj

zj ~RRj;j:2n

zr ~RRr;j:2n

� �
9. end for all

10. if (i ¼ g) then ~RR1;1:n ~RR1;1:n þ z1yT end if
11. end if

12. if (i > 2) then
13. for all j ¼ ri�2; . . . ; 2

ðg�2Þ þ i� 3 do-in-parallel
14. Let s ¼ 2ðg�2Þ þ j� iþ 3 and r ¼ 2ðg�1Þ þ j

15.
~RRr;j:2n
~RRs;j:sn

� �
 Gj

~RRr;j:2n
~RRs;j:2n

� �
16. end for all

17. end if

18. end parallel

19. end for
20. for i ¼ 1; 2; . . . ; 2g � 1 do

Fig. 4. Annihilation pattern of the Greedy rank-1 UQRD algorithm, where g ¼ 4.

1264 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

21. parallel do

22. if ði6 2ðg�1ÞÞ then
23. for all j ¼ 1; 2; . . . ; 2ðg�1Þ � iþ 1 do-in-parallel
24. Let r ¼ iþ j� 1

25.
~RRr;r:2n
~RR2ðg�1Þþj;r:2n

� �
 Gj

~RRr;r:2n
~RR2ðg�1Þþj;r:2n

� �
26. end for all

27. end if

28. if ði > 2Þ then
29. for all j ¼ 1; 2; . . . ; 2ðg�1Þ do-in-parallel
30. Let r ¼ 2ðg�1Þ þ 2j� iþ 1 and s ¼ 2ðg�1Þ þ r
31. if (j < r6 2ðg�1Þ) then
32. ~RRs�1:s;2ðg�1Þþj:2n Gj

~RRs�1:s;2ðg�1Þþj:2n
33. end if
34. end for all

35. end if
36. end parallel

37. end for

2.1. Complexity

The total number of CDGRs required to solve the rank-1 UQRD using the Gree-
dy algorithm is given by

TULgrðgÞ ¼ 2þ 2ðg�2Þ þ 2g � 1 ¼ 5� 2ðg�2Þ þ 1 for g > 1:

This corresponds to the unlimited parallelism case. The number of processors re-
quired is given by

2g�1 þ
X2g�1
i¼1
ð3� 2g�1 þ iÞ ¼ 2g�2ð7� 2g�1 þ 3Þ:

Notice that this is the number of processors needed to perform the first CDGR of the
Greedy algorithm.

As shown in [9], the complexity of the sequential rank-1 UQRD method when ex-
ecuted on the PRAM is given for the cases of unlimited and limited parallelism, re-
spectively, by

TULseqðgÞ ¼ 2ð2g � 1Þ
and

TLseqðgÞ ¼
X2g�1
i¼1
ðð2g þ 2þ iÞ þ ð2gþ1 þ 1� iÞÞ ¼ 3ð22g � 1Þ:

In the unlimited parallelism case the sequential algorithm requires 2gþ1 þ 1 proces-
sors in order to apply in parallel the rotations to all affected pairs of elements.
Omitting additive constants it follows that

TULgrðgÞ=TULseqðgÞ ’ 5=8:

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1265

Thus, the Greedy algorithm requires approximately 5=8 of the number of steps
performed by the serial Givens rank-1 algorithm under the assumption of unlimited
parallelism.

Consider now the complexity of the Greedy algorithm in the case of limited par-
allelism. The first g CDGRs which reduce z to fe1 and partly compute (12a) require
gð2gþ1 þ 1Þ steps. The ith ði ¼ g þ 1; . . . ; 2g�2 þ 2Þ CDGR of the Greedy algorithm
(see line 15 of Algorithm 1) requires (2gþ1 � ri�2 þ 1) steps. Therefore, the remaining
(2g�2 � g þ 2) CDGRs which complete the factorization (12a) have complexity

X2g�2
i¼g�1
ð2gþ1 � ri þ 1Þ ¼ 2gþ1ð2g�2 � g þ 2Þ � Sg;

where

Sg ¼
X2g�2
i¼g�1
ðri � 1Þ ¼

X2g�2
i¼1

ri �
Xg�2
i¼1

ri � ð2g�2 � g þ 2Þ

¼ 1þ
Xg�2
i¼1

X2i�1
j¼1

j�
Xg�2
i¼1

i� ð2g�2 � g þ 2Þ

¼ 2g�3ð2g�2 � 3Þ=3� gðg � 5Þ=2� 8=3:

Now, the ith ði ¼ 1; . . . ; 2g�1Þ CDGR which annihilates the corresponding superdi-
agonal of R̂Rðg�1Þ in (12b) requires (2gþ1 þ 1� i) steps. The remaining 2g�1 � 1
CDGRs of the Greedy algorithm complete the triangularization of B̂Bðg�1Þ� with the ith
(i ¼ 1; . . . ; 2g�1 � 1) CDGR having complexity (3� 2g�1 þ 1� i). From this it fol-
lows that the number of steps required to compute (12b) is given byX2g�1

i¼1
ð2gþ1 þ 1� iÞ ¼ 2g�1ð3� 2g � 1Þ � 1:

Thus, the total complexity of the Greedy algorithm is given by

TLgrðgÞ ¼ 2g�1ð7þ 2gþ2Þ � 2g�3ð2g�2 � 3Þ=3þ gðg � 3Þ=2þ 5=3:

For large g it follows that

TLgrðgÞ=TLseqðgÞ ¼ ð3� 22gþ1 � 22g�5Þ=ð9� 22gÞ ’ 2=3:

It is assumed that 2g�1 processors are available to apply simultaneously the disjoint
rotations of the Greedy algorithm. Consider now the execution of the sequential
Givens algorithm on the PRAM when these processors are used to apply in parallel a
rotation on 2g�1 pairs of elements. In this case the complexity of the sequential
Givens algorithm becomes:

~TTLseqðgÞ ¼
X2g�1
i¼1
dð2g
�

þ 2þ iÞ=2g�1e þ dð2gþ1 þ 1� iÞ=2g�1e
	

¼ 2ð2g
�

� 1Þ þ ð2g�1 � 2Þ þ 2g þ 3
	
þ 2ð2g
�

� 1Þ þ 2g þ 2g�1 � 1
	

¼ 7� 2g � 4

1266 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

and

TLgrðgÞ= ~TTLseqðgÞ ffi 2ðgþ1Þ=7:

Thus, in this case, the sequential algorithm outperforms the Greedy one.
Notice that the fill-in of R in (4) using the Greedy and conventional sequential

rank-1 algorithms is
Pg

i¼1 2
2ðg�iÞ ’ 22g=3 and ð2g � 1Þ, respectively. Thus, the Greedy

algorithm requires more memory locations than the sequential one.

2.2. Recursive derivation of the QRD of ~HH ðgÞ for g > 3

The recursive computation of (12a) and (12b) is considered in the context of un-
limited parallelism. Substituting g � 1 for g in ~HH ðgÞ gives

~HH ðgÞ ¼ ð14aÞ

where

~BBðg�1Þ ¼
~BBðg�1Þ
~BBðg�1Þ

 !
: ð14bÞ

Initially the orthogonal factorizations

~HH ðg�2Þ ¼ �GGA
�RRðg�2Þ ð15Þ

and

�GGT
B ð16Þ

are computed, where �RRðg�2Þ, ~WW ðg�2Þ and R̂Rðg�1Þ are upper triangular. For

�BBðg�1Þ1 ¼
�GGT
A
~BBðg�1Þ1

~BBðg�1Þ2

 !

and

W ðg�1Þ ¼
�RRðg�2Þ �GGT

A
~BBðg�2Þ

0 ~WW ðg�2Þ

 !
;

the upper triangular factor of the QRD of ~HH ðgÞ is derived after computing the or-
thogonal factorization

�GGT W ðg�1Þ �BBðg�1Þ1

R̂Rðg�1Þ �BBðg�1Þ2

 !
¼ ~RR: ð17Þ

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1267

As for the factorization (12a) the factorization (16) can be computed in 2g�2 steps.
The orthogonal matrix �GGT

B is defined as the product of the CDGRs Cð2
g�2;gÞ

Cð1;gÞ,

where Cði;gÞ ði ¼ 1; . . . ; 2g�2Þ is defined by

Cði;gÞ ¼
Y2ðg�2Þ
j¼1

GðpÞ
jþ2ðg�2Þ;pþ2ðg�1Þ for p ¼ iþ j� 1:

Fig. 5 illustrates the factorization (16), where g ¼ 4. The two full matrices ~BBðg�1Þ2 and
B̂Bðg�1Þ are not shown.

TheQRD (15) is derived in TULgrðg � 2Þ ¼ 5� 2ðg�4Þ þ 1 steps and the factorization
(17) is computed in 2g � 1 steps. Factorizations (15) and (16) can start, respectively, af-
ter the third and second CDGR has been applied from the left of z. Hence, the total
number of steps required to triangularize ~HH ðgÞ using the above method is given by

~TTULrgðgÞ ¼ max 1
�
þ TULgrðg � 2Þ; 2þ 2ðg�2Þ

	
þ 2g � 1

¼ 21� 2ðg�4Þ þ 1 for g > 3;

with

~TTULrgðgÞ=TULgrðgÞ ’ 21=20:

This indicates that the recursive method requires more CDGRs for solving the rank-1
UQRD problem than does Algorithm 1. The same conclusions are anticipated if the
above method is used with g replaced by g � 2i ði ¼ 0; . . . ; log2 g � 1Þ in (14a) and
(14b). Observe that at least 2ðg�2Þ steps will be required to compute simultaneously
the factorizations equivalent to (15) and (16), and 2g � 1 steps are needed to find the
final factorization which corresponds to (17). That is, the recursive triangularization
~HH ðgÞ will require at least the same number of steps as TULgrðgÞ.

3. The greedy rank-k algorithm

The Greedy Givens annihilation scheme described in [3,10] can be used to com-
pute the QRD of z 2 Rn�k using g þ ðk � 1Þ log2 g CDGRs, where n ¼ 2g � k: The
case k < g is considered only within the context of unlimited parallelism. The em-

Fig. 5. Factorization of (16) using CDGRs, where g ¼ 4.

1268 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

ployment of the Greedy algorithm will result in ~HH having an almost full structure
that is difficult to exploit. This can be overcome by using a variant of the Greedy al-
gorithm called log-Greedy. At each step the log-Greedy algorithm annihilates 2blog2 lic

elements of the ith column by preserving previously zeroed elements, where li is the
maximum number of elements in column i that can possibly be annihilated. When
blog2 lic < log2 li, the rotations are chosen so that less fill-in occurs in R. For
k ¼ 1 and n ¼ 2g both algorithms are equivalent to the Greedy rank-1 algorithm.
Obviously, for computing the QRD of z the log-Greedy algorithm requires more
steps than the Greedy algorithm when k > 1, but the difference in the number of step
between the two algorithms is negligible when k < g.

Let ~GGði;qÞ ðiP qÞ denote the CDGR applied at step i in column q of z. Let F ði;qÞ

denote the fill-ins of R resulting from the application of ~GGði;qÞ. All of the fill-ins of
R resulting from the application of ~GGð1;qÞ; ~GGð2;qÞ; . . . ; are denoted by F ð:;qÞ. A fill-in
is shaped like a parallelogram with the maximum height of the parallelograms cor-
responding to F ð:;qÞ being 2ðg�qÞ. Fig. 6 illustrates the log-Greedy scheme for comput-
ing the QRD of z in (7) and the structure of H, where g ¼ 5 and k ¼ 4. The numeral i
in z and H denotes the annihilated entries and fill-ins, respectively, which have re-
sulted from the application of the corresponding CDGR. The fill-ins F ð:;qÞ

(q ¼ 1; 2; 3; 4) are shown using different shades.
Notice that H and ~HH ¼ H þ RzyT have the same structure. The retriangularization

of ~HH can be obtained in k multi-step stages. In stage j the algorithm annihilates si-
multaneously the fill-ins resulting from the application of the CDGRs in column
(k � jþ 1) of z––i.e. the fill-ins F ð:;kþ1�jÞ. Using the Givens strategy for computing
the factorization (12b) a parallelogram of height 2p can be annihilated in 2ðpþ1Þ � 1
steps. Thus, the jth (j ¼ 1; . . . ; k) stage is completed in 2ðg�kþjÞ � 1 steps which corre-
sponds to the number of steps required to annihilate the biggest fill-in of F ð:;kþ1�jÞ.
After the first k � 1 stages the matrix ~HH will have the same recursive structure as
H ðgÞ in (10). However, the computation of factorization (12a) can start before
F ð2;2Þ is completely annihilated. The number of steps (i.e. CDGRs) required by the
log-Greedy algorithm to solve the rank-k UQRD problem (1 < k < g and n ¼ 2g)
is given approximately by

Tlogrðk; gÞ ’
Xk
j¼1

2ðg�kþjÞ ¼ ð1� 2�kÞ2ðgþ1Þ;

where the computation of factorization (12a), the QRD of z and small constants
have been ignored.

The complexity of the (unlimited parallelism) SK algorithm in [9] is given by

TULskðgÞ ¼ 2ð2g þ k � 2Þ � 2gþ1 for k � 2g

and it follows that

Tlogrðk; gÞ=TULskðgÞ ’ 1� 2�k:

Thus, as k increases, the efficiency of the log-Greedy algorithm decreases in relation
to the SK algorithm. For k > g the triangularization of z using the Greedy algo-
rithms is inefficient since they result in ~HH being a full matrix that requires Oð2ðgþ1ÞÞ

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1269

CDGRs for triangularization. The k-times (1 < k < g) repetition of rank-1 Givens
algorithm to solve the rank-k UQRD problem will perform approximately 5k=8
more steps than the log-Greedy method.

Fig. 7 shows the first stage in triangularizing ~HH and the whole process for solving
the rank-2 UQRD problem, where g ¼ 4. The non-empty F ði;2Þ ði ¼ 2; 4; 6Þ is distin-
guished by bold frames and a numeral i denotes the entries annhiliated by the ith
CDGR. Note that the triangularization of ~HH starts before the QRD of z is completed
and also that the computation which corresponds to the factorization (12a) starts at
step 9.

4. Conclusions

Givens strategies have been proposed for solving the rank-kUQRD problem. The
analysis of the algorithms is based on an EREW PRAM computational model. Ini-

Fig. 6. The log-Greedy scheme for computing the QRD of z and the fill-ins of R, where g ¼ 5 and k ¼ 4.

1270 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

tially the rank-1 UQRD problem was investigated. The first Greedy Givens sequence
was found to require 3=8 less time units than the conventional sequential Givens
method under unlimited parallelism. However, in the case of limited parallelism
the sequential method was found to be the most efficient when the processors are
used to perform simultaneously the Givens rotations to all of the relevant two-ele-
ment vectors. A modification of the Greedy algorithm which recursively computes
the QRD of (12a) and (12b) required slightly more CDGRs. A log-Greedy Givens

Fig. 7. Solving the rank-2 UQRD problem using the log-Greedy method, where g ¼ 4.

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1271

strategy has been described for solving the rank-k UQRD problem under unlimited
parallelism. This algorithm is found to outperform an existing parallel method (the
SK algorithm in [9]) for small k. In general, the efficiency of the log-Greedy method
decreases as k increases.

In order that the complexity analysis of the algorithms be more realistic it should
not be assumed that all of the disjoint Givens rotations can be applied simulta-
neously. In such circumstances the complexity analysis under limited parallelism
should apply to the performance of the algorithms when implemented on a shared
memory machine [1]. Furthermore, under this additional assumption, the annihila-
tion schemes presented here will be a special case of a wider class of Givens se-
quences which needs to be developed [8].

The QR decomposition of ~HH can be obtained by a series of n Householder trans-
formations. The transformations annihilate column-by-column the non-zero ele-
ments below the main diagonal of ~HH and without creating any fill-in. The
efficiency of this strategy compared to that of using Givens rotations merits investi-
gation. Currently the design of Givens sequences for computing the QRD decompo-
sition on the PRAM under limited parallelism is considered.

Acknowledgements

The author is grateful to Maurice Clint and the two anonymous referees for their
constructive comments and suggestions.

References

[1] J. Boleng, M. Misra, Load balanced parallel QR decomposition on shared memory multiprocessors,

Parallel Computing 27 (10) (2001) 1321–1345.

[2] M. Cosnard, M. Daoudi, Optimal algorithms for parallel Givens factorization on a coarse-grained

PRAM, Journal of the ACM 41 (2) (1994) 399–421.

[3] M. Cosnard, J.-M. Muller, Y. Robert, Parallel QR decomposition of a rectangular matrix,

Numerische Mathematik 48 (1986) 239–249.

[4] P.E. Gill, G.H. Golub, W. Murray, M.A. Saunders, Methods for modifying matrix factorizations,

Mathematics of Computation 28 (126) (1974) 505–535.

[5] G.H. Golub, C.F. Van Loan, Matrix computations, third ed., Johns Hopkins University Press,

Baltimore, Maryland, 1996.

[6] E.J. Kontoghiorghes, Parallel strategies for computing the orthogonal factorizations used in the

estimation of econometric models, Algorithmica 25 (1999) 58–74.

[7] E.J. Kontoghiorghes, Parallel algorithms for linear models: numerical methods and estimation

problems, in: Advances in Computational Economics, vol. 15, Kluwer Academic Publishers, Boston,

MA, 2000.

[8] E.J. Kontoghiorghes, Parallel Givens sequences for solving the general linear model on a EREW

PRAM, Parallel Algorithms and Applications 15 (1–2) (2000) 57–75.

[9] E.J. Kontoghiorghes, Parallel strategies for rank-k updating of the QR decomposition, SIAM Journal

on Matrix Analysis and Applications 22 (3) (2000) 714–725.

[10] J.J. Modi, M.R.B. Clarke, An alternative Givens ordering, Numerische Mathematik 43 (1984) 83–90.

1272 E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273

[11] S.J. Olszanskyj, J.M. Lebak, A.W. Bojanczyk, Rank-k modification methods for recursive least

squares problems, Numerical Algorithms 7 (1994) 325–354.

[12] A.H. Sameh, D.J. Kuck, On stable parallel linear system solvers, Journal of the ACM 25 (1) (1978)

81–91.

[13] G.M. Shroff, C.H. Bishof, Adaptive condition estimation for rank-one updates of QR factorizations,

SIAM Journal on Matrix Analysis and Applications 13 (4) (1992) 1264–1278.

E.J. Kontoghiorghes / Parallel Computing 28 (2002) 1257–1273 1273

	Greedy Givens algorithms for computing the rank-k updating of the QR decomposition
	Introduction
	The Greedy rank-1 updating algorithm
	Complexity
	Recursive derivation of the QRD of H˜(g) for g>3

	The greedy rank-k algorithm
	Conclusions
	Acknowledgements
	References

