
Downloaded From: 
 
 

      RATCHETING OF STAINLESS STEEL 304 UNDER MULTIAXIAL 
NONPROPORTIONAL LOADING 

 
 

Kwang S. Kim 
Department of Mechanical Engineering, 

Pohang University of Science and Technology, 
Pohang 790-784, Korea 

Rong Jiao 
Department of Aerospace and Engineering 

Mechanics, University of Texas, 
Austin, Texas 78712, U.S.A. 

 
 

Xu Chen 
School of Chemical Engineering and 

Technology, Tianjin University,  
Tianjin 30072, China 

Masao Sakane 
 Department of Mechanical Engineering, 

Ritsumeikan University, Kasatsu-shi, 
Shiga 525-8577, Japan 

 

Proceedings of PVP2007 
2007 ASME Pressure Vessels and Piping Division Conference 

July 22-26, 2007, San Antonio, Texas 

PVP2007-26440
 
 

ABSTRACT 
Ratcheting tests are conducted on stainless steel 304 

under uniaxial, torsional, and combined axial-torsional loading. 
The ratcheting strain is predicted based on the constitutive 
theory that incorporates a modified Ohno-Wang kinematic 
hardening rule and Tanaka’s isotropic hardening model. The 
results show that the main features of the stress-strain response 
can be simulated with the constitutive model. The experimental 
and predicted ratcheting strains for nonproportional paths are 
found in decent correlation. Ratcheting strain depends highly 
on the loading path and load level, and less on cyclic hardening 
or softening of the material. The torsional ratcheting strain 
under mean shear stress with (or without) fully reversed axial 
strain cycling is found close to the axial ratcheting strain under 
equivalent mean stress with (or without) torsional strain 
cycling. 
 
INTRODUCTION 
 Ratcheting is a phenomenon in which plastic strain is 
accumulated under cyclic loading with mean stress. Increasing 
ratcheting strain will accelerate fatigue damage, eventually 
leading to failure of the material. For its implication on the 
safety of engineering components there has been an abundance 
of studies, both experimental and analytical, on the ratcheting 
behavior of engineering materials. Many analytical models 
have been proposed for predicting ratcheting, see [1, 2] for a 
review. Most of the models are based on the Armstrong-
Frederick kinematic hardening rule [3] with some modification 
of the dynamic recovery term. The Ohno-Wang model [4] is 
one of these models, where the critical state and power function 
introduced in the dynamic recovery term enables to predict 
uniaxial ratcheting successfully. However, it overpredicts 
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multiaxial ratcheting almost always. Consequently, many 
modified models have emerged. Chen et al. [5]’s model is one 
of them. In these modified models the efforts are usually placed 
on controlling ratcheting through a proper assessment of the 
nonproportional loading effect in nonlinear kinematic 
hardening models. These modifications usually generate better 
correlation as a whole, but not for all loading paths. The 
material is usually assumed cyclically stable. The inclusion of 
isotropic hardening in multiaxial ratcheting analysis is found 
only in a small number of studies. The ratcheting simulation is 
often limited to a small number of cycles where the cyclic 
change of the material is still in progress. Thus, it appears 
desirable to include isotropic hardening capability in the model 
for more meaningful comparison with experimental data. 

The additional hardening in stainless steels under 
nonproportional cyclic loading has been extensively studied 
and a large body of literature exists. In the framework of flow 
theories of plasticity or viscoplasticity, additional hardening is 
usually described by nonproportional loading parameters 
together with relevant evolution equations. The constitutive 
models in this category include Calloch and Marquis[6], 
Tanaka[7], among others. 

The objective of this study is to investigate the 
ratcheting behavior of stainless steel 304 by performing axial-
torsional cyclic tests and evaluate a predictive method based on  
Chen et al.’s model [5] extended to include the effect of cyclic 
hardening/softening and additional hardening under 
nonproportional loading. The isotropic hardening model 
employed in this study is Tanaka’s model [7] to be outlined 
later. The predicted constitutive response and ratcheting strain 
will be compared with experimental data for uniaxial, torsional, 
and a few nonproportional axial-torsional cycles. 
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EXPERIMENT 
The test material, stainless steel 304, was acquired in 

the form of a round bar with a diameter of 32mm. The chemical 
composition of the material is (wt.%): C 0.05, Si 0.38, P 
0.0274, S 0.025, Ni 9.018, Cr 18.417, Mo 0.206, Cu 0.411, V 
0.05, N 0.0626. The tensile stress-strain curve is given in Fig. 
1. Cylindrical specimens with outer and inner diameters of 
12.5mm and 10mm, respectively, were used in the tests. Tests 
were conducted on an Instron tension-torsion machine using a 
biaxial extensometer mounted on the outside of the specimen 
gage section. The strain rate of strain-controlled cycling was 

, and the stress rate of stress-controlled cycling was 
. All tests were conducted at room temperature. Tests 

carried out are as follows: 

s/102 3−×
50MPa / s

(1) Uniaxial ( / 2εΔ =0.4%, 1.6%, 2.0%), torsional 
( 0.8%), and circular path tests ( 0.4%, 

0.8%, 1.2%) under fully reversed strain control, 
/ 2eqεΔ = =/ 2eqεΔ

(2) Uniaxial ratcheting tests ( / 2σΔ = 235MPa, 

meanσ =235MPa; / 2σΔ = 200MPa, meanσ =200MPa), 
(3) Torsional ratcheting test 

 ( eqσΔ =235MPa, =235MPa), ( )mean eqσ

(4) Axial-torsional ratcheting tests with loading paths as given 
in Fig. 2. Case 1 – Case 5 were conducted under axial 
stress control and torsional strain control. Case 6 was 
carried out under torsional stress control and axial strain 
control. The details of these tests are specified in Table 1. It 
is noted the equivalent stress and strain are, respectively, 
defined by   , , 2 2 1/( 3 )eqσ σ τ= + 2 2 1/ 2( / 3)eqε ε γ= +2

where σ , τ , ε , γ  are the usual axial and shear 
stresses and strains. 

 
TABLE 1. LOADING CONDITIONS FOR MULTIAXIAL  

RATCHETING TESTS 
 

Path 
type 

Test 
no. meanσ  

(MPa) 

/ 2σΔ  
(MPa) 

/ 2γΔ  
(%) 

meanγ  
(%) 

Case 1 1 100 0 0.866 0 
Case 1 2 150 0 0.866 0 
Case 2 1 100 100 0.866 0 
Case 2 2 75 75 0.866 0 
Case 3  100 100 0.866 0 
Case 4  100 100 0.866 0 
Case 5  100 100 0.866 0 
Case 6 3 100mean MPaτ = , 3 / 2 0τΔ =

/ 2 0.5

, 

εΔ = 0
mean
ε =,  
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FIG. 1 TENSILE STRESS-STRESS CURVE 

OF STAINLESS STEEL 304 
 
 

 
 

FIG. 2 LOADING PATHS FOR RATCHETING TESTS 
 

CONSTITUTIVE MODEL 
The constitutive model used in this study is outlined in 

the following: 

Flow rule and yield surface 
 The total strain increment is decomposed into elastic 
and plastic parts: 
 
       ed d d= + pε ε ε ,        (1) 

 
where the elastic strain eε  is related to stress σ  by Hooke’s 
law: 

1
- ( )e tr I

E E

ν ν+
= σ σε ,   (2) 
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where  and E ν  are Young’s modulus and Poisson’s ratio, 
respectively. The plastic strain increment pdε  follows the 

flow rule given by:  
 

1
:p

p

d d
H

= s n nε .   (3) 

 
 In equations (2) and (3), s is the deviatoric stress tensor, 
i.e. 1/ 3 ( )tr= −s σ σ Ι , is the unit tensor and Ι ( )tr σ  is the 

trace of σ , the inner product is defined by ij ijs t: =s t , Hp is 
the plastic modulus determined by the flow rule, the hardening 
rule and the consistence condition, is the outward normal to 
the yield surface: 

n

 

 
3

2 σ

−
=

s
n

α
,    (4) 

 
and the symbol denotes MacCauley’s bracket: A A=  

if , 0A > 0A =  otherwise. 
The plastic yielding of the material is assumed to 

follow the von Mises yield criterion, which is given by: 
 

     23
( ):( )

2
f σ= − − − =s sα α 0 ,       (5) 

 
where f represents the yield surface, α is the back stress, and 
σ  is the radius of the yield surface that changes in the loading 
process. 

 

Kinematic hardening rule 
The kinematic hardening rule modified from the Ohno-

Wang model [4] by Chen et al. [5] is given by: 
 

 
1

M

i
i=

= ∑α α ,         (6) 

 

'2
- : ( ) :

3

i

imi i
i i i p i p

i

i

i i

d rd d
r

χ

γ=
⎡ ⎤

⎥
⎥⎦

⎢
⎢⎣

n
αα α

α ε α ε
α α

 ,     (7) 

 
where iα  is the i-th component of deviatoric back stress α , 

α  is the magnitude of iα , i.e. 3 / 2 :i ii =α α α  and 
' / 3 /pd dp= =εn n2 , where .1/ 2(2 / 3 : )p pdp d d= ε ε iγ ,  

and 
ir

iχ  are material constants, and  is an evolutionary 

parameter described below. The value of 
im

' : /i i< >n α α  are 
3
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less than 1 in non-proportional loading, and can be interpreted 
as a measure of nonproportionality. Therefore, the term 

' : /i
i

i
χ>n α α<  accounts for the nonproportional loading 

effect on ratcheting. 
 For 0iχ = , equation (7) reduces to the Ohno-Wang 

model [4] that overpredicts multiaxial ratcheting, whereas for 
, this model behaves like the Prager model [8] and 

predicts shakedown of ratcheting. For , this model 
provides a compromised behavior between overprediction and 
shakedown. 

iχ → +∞

0 iχ< < +∞

 For uniaxial loading, since iα  is in the same direction 

as the plastic strain rate, the term ': /i i< n α α >  becomes 

unity and the multiaxial parameter iχ  is ineffective. 
Therefore, equation (7) reduces to the Ohno-Wang model. As a 
result, the proposed model generates the same uniaxial 
behavior as the Ohno-Wang model, so all the parameters ( iγ , 

, ) of the Ohno-Wang model determined from uniaxial 
tests are applicable to this model without change. 

ir im

 The material parameters iγ  and  can be determined 
from tensile tests. For stainless steel 304 tested in this study, the 
values of 

ir

iγ  and  are listed in Table 2. ir
 

TABLE 2. MATERIAL CONSTANTS USED IN THE 
CONSTITUTIVE MODEL 

 

0195000MPa, 0.266, 200MPaE v σ= = =  

1 8 2000,1000,500,250,167,100,62.5,31.25γ
−
=  

1 8 60,60,40,50,27,24,17,52MPar
−
=  

0 0, 2.8, 65, 8 ( 1 ~ 8)i i ist im m iβ χ= = = = =  

40, 000MPa, 130MPa, 1, 000p p pa b c= = − =

=

 

45, 000MPa, 300MPa, 1, 000n n na b c= =  

1 2 11, 3, 3, 50MPa, 1c yc b b Q r= = = = − =  

  
In Chen et al.’s model [5], the hardening rule exponent  is 
determined by the following evolution equation: 

im

 
( )i i ist idm m m dpβ= − ,   (8) 

 
where is the saturated value of , which controls 

ratcheting rates at a later stage, and the initial value of  is 

denoted by , which controls the ratcheting strain during 

istm im

im

0im
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initial cycles. iβ  is the evolution coefficient that determines 

the evolution rate of  from  to . These constants 
are determined from a uniaxial ratcheting experiment, and they 
are given in Table 3. 

im 0im istm

 
Isotropic hardening rule 
 The Tanaka [7] isotropic hardening rule employed here 
has been reported to model cyclic hardening and softening 
satisfactorily [6, 9, 11]. Tanaka uses a 5-dimensional plastic 
strain vector pE , the components of which are given by: 
 

1 11

p pE ε= , 2 112 / 3( / 2 )p pE 22

pε ε= + , 3 12 / 3 2

p pE ε= , 

4 232 / 3p pE ε= , 5 312 / 3p pE ε=

p

.                 (9) 
 
To describe the cross hardening behavior of austenitic stainless 
steel, he introduces a second-order tensor referred to as 
“structural tensor” ( ), the evolution of which defined by C
 
 ,             (10) ( )cd c d⊗= −C u u C
 
where /p p=u E E , implies a tensor product, and  
is a material constant. 

⊗ cc

The nonproportional loading parameter  is defined as A
 

 
( )

( )
tr

A
tr

−
=

t t

t

C C uC Cu
C C

      (11) 

 
The yield surface radius σ  is expressed as o Rσ σ= + , 

where oσ  is the initial yield stress, is the isotropic 
hardening variable. Here, the evolution of  is based on the 
approach Aubin et al. [9] used, which is somewhat different 
from Tanaka [7]. 

R
R

R  is decomposed into two parts: 
 
 .          (12) 1 2R R R= +

 
The evolution equations for  and  are given by 1R 2R
 

1 1 1 1( )dR b Q R dp= − ,  ,      (13) 2 2 2 2( )dR b Q R dp= −

 
where  is treated as a material constant in [9], is 
obtained from [7]: 

1Q 2Q

 
 2 (1 ) p nQ A Q A= − + Q ,       (14) 
 
where 
4
loaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
[1 exp( )]p p p pQ a q b c q= + − − , 
 

[1 exp( )]n n n nQ a q b c q= + − − ,      (15) 
  

and  is the radius of the limit surface in the plastic strain 

space. 

q

pQ  and  are the “target values” of proportional and 
nonproportional hardening, respectively. The material constants 

nQ

pa , pb , and pc  are determined from uniaxial cyclic tests 

under strain control, and , , and  are determined 
from circular path tests. Finally,  is determined from: 

na nb nc
q

 
 pq = −E Y ,              (16) 
 
 ,              (17) ( )p

yd r d−=Y Ε Y p
 
where  is a material constant, is the center of the plastic 
strain limit surface. 

yr Y

The material constants appearing in isotropic hardening rule for 
the test material used in this study are given in Table 2. 
 

RESULTS AND DISCUSSION 
FULLY REVERSED STRAIN CYCLING 
 The uniaxial tests under strain control conditions 
showed that the test material is cyclic softening at 

/ 2εΔ =0.4%, and at higher strain amplitudes (1.6%, 2.0%) the 
material undergoes cyclic hardening. For 90° out-of-phase 
(circular path) tests, the material hardened even at 0.4% 
equivalent strain amplitude due to nonproportional hardening. 
At higher amplitudes in circular path tests, substantially more 
hardening was observed compared with uniaxial tests. 
Torsional cycling at the equivalent strain amplitude of 0.8% 
yielded cyclic softening. Regardless of cyclic hardening or 
softening, the stress-strain hysteresis loops stabilized as the 
cycles accumulated. The cyclic change of the equivalent stress 
is given in Fig. 3 for proportional and nonproportional loading 
cases. The agreement between experiment and model 
prediction with the material constants in Table 2 appears 
reasonably good. The cyclic stress-strain responses were 
simulated well. As an example, the axial stress vs. shear stress 
response for the circular path of 0.8% is given in Fig. 4. 

RATCHETING UNDER UNIAXIAL LOADING AND 
TORSIONAL LOADING 
 The ratcheting strain, , from uniaxial 
tests is plotted in Fig. 5. The data of Test 1 and Test 2 were 
used to determine model constants , , 

min max(ε ε+ ) / 2

0im istm iβ  in Table 2 
by trial and error. 
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 The ratcheting strain under torsional loading with the 
same equivalent stress amplitude and mean stress as Test 1 of 
uniaxial ratcheting is also plotted in Fig. 5. Both predicted and 
experimental ratcheting strains were about the same as those of 
Test 1 of uniaxial ratcheting in the equivalent sense. 
 

 
(a) 

 
(b) 

 
FIG. 3 VARIATION OF EQUIVALENT STRESS AMPLITUDE 

WITH THE NUMBER OF CYCLES: (a) UNIAXIAL AND 
TORSIONAL STRAIN CYCLING, (b) CIRCULAR 
STRAIN CYCLING 

 
 
RATCHETING UNDER AXIAL-TORSIONAL LOADING 
 The exponent iχ  that controls the nonproportional 
loading effect was determined by trial and error such that the 
selected value provides a similar level of correlation for the 
cases considered. The experimental results and model 
predictions for ratcheting strain are reviewed in the following 
5
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(a) 

 
(b) 

 
FIG. 4 EQUIVALENT AXIAL STRESS-SHEAR STRESS 

RESPONSE IN CIRCULAR STRAIN CYCLING WITH 
AMPLITUDE OF 0.8%: (a) MODEL PREDICTION, (b) 
EXPERIMENT 

 

for each case. 

 The loading path for Case 1 is shear strain cycling with 
constant axial stress. This is a widely adopted loading path for 
studying multiaxial ratcheting. Two tests were conducted with 
axial stresses of 150MPa and 100MPa. The experimental and 
predicted ratcheting strains are compared in Fig. 6(a). The 
model prediction and experimental data are close for Test 2, but 
there were considerable differences in ratcheting rates for Test 
1 at larger cycles. 
Copyright © 2007 by ASME
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FIG. 5 RATCHETING STRAIN UNDER UNIAXIAL LOADING 

AND TORSIONAL LOADING 

 

 Case 2 is an inclined linear path of positive slope with a 
fully reversed torsional strain cycle and an axial stress cycle 
with mean stress. As seen in Fig. 6(b), the model predictions 
are larger than the experimental values, particularly for Test 1. 
The axial and torsional hysteresis loops were similar to those of 
a uniaxial ratcheting test and a fully reversed shear strain 
control test, respectively. 

 Case 3 is a circular path where the axial stress and 
torsional strain are 90°-out-of-phase. The ratcheting strain is 
plotted in Fig. 6(c). The model overpredicts ratcheting but the 
rate of ratcheting at larger cycles looks satisfactory. The 
maximum equivalent stress versus cycle is plotted in Fig. 7. It 
is found that the material softens significantly. This is due to 
the fact that the effect of softening at low strain amplitudes, 
both in the axial and shear directions, dictates the 
nonproportional hardening effect. In fact, similar cyclic 
softening behavior was observed in all axial-torsional 
ratcheting tests to different extents. The predicted curve also 
yields the cyclic softening behavior but at a somewhat lower 
stress level throughout. 

 Case 4 is a bowtie path which can be viewed as a 
combination of two inclined paths with increasing axial stress, 
each connected by a decreasing axial stress path with torsional 
strain kept constant. The axial stress is cycled twice for a 
torsion cycle, while each axial cycle corresponds to one torsion 
cycle in Case 2. Therefore it is reasonable to anticipate that the 
accumulation of plastic strain will be substantially larger than 
Case 2 (Corona et al. [10]). The ratcheting strain for Case 4 is 
actually found to be considerably larger as shown in Fig. 6(d). 
The simulated ratcheting strain was lower than the 
experimental, and it tends to lead to a shakedown state while 
the experimental data shows steady increase. The axial vs. 
torsional stress trajectory showed symmetry with respect to τ = 
0, which the model predicted adequately as shown in Fig 8(a), 
6
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(b). The axial vs. shear strain loops are also given in Fig 8(c), 
(d). The equivalent stress versus cycle plot shows cyclic 
hardening more than Case 3 in the first 50 cycles followed by 
slow softening; see Fig 7. This phenomenon was simulated in 
the analysis, though the initial stress at low cycles did not go up 
as much as the experimental stress. The less initial hardening 
may be related to the delayed initial hardening trend of the 
isotropic model found in Fig 3 at low strain amplitudes before 
the softening mechanism becomes more active. It is also noted 
that larger additional hardening in some bowtie paths than in 
circular paths is also found in Calloch and Marquis [11] for 
stainless steel 316. 

 Case 5 is a reverse bowtie path that was generated by 
reversing the direction of loading in Case 4.  Other than the 
direction, loading conditions are the same, and therefore these 
two cases will manifest the effect of direction of loading path 
on the ratcheting strain. As in Case 4, one shear strain cycle 
and two axial cycles are involved in this path. The ratcheting 
strain was much smaller compared with Case 4. The model 
predicted this phenomenon properly; see Fig. 6(e). The axial 
stress-shear stress trajectory was again symmetric with respect 
to τ = 0. These features were well duplicated in model results. 
The equivalent stress vs. cycle plot showed less initial 
hardening and slightly more follow-up softening compared 
with Case 4; see the experimental curves of Fig. 7. It may be 
expected that more ratcheting will occur in Case 5 than in Case 
4 in view of more cyclic softening. The reverse was true, 
however, in the present results. It is apparent that the loading 
path direction is much more influential on ratcheting than 
cyclic changes of the material. From the modeling perspective, 
the two paths give rise to different angles between the direction 
of the yield surface translation and the direction of deviatoric 
stress increment, thus giving rise to different degrees of 
kinematic hardening responsible for different ratcheting 
behavior. Similar observations of ratcheting for bow-tie paths 
can be found in literature for other materials [5, 10]. 

 Case 6 is different from other cases in that the axial 
cycle was a fully reversed strain cycle and the torsional stress 
was kept constant. The equivalent stress and strain levels were 
the same as Test 2 of Case 1. Ratcheting in this case occurs in 
shear strain. The equivalent ratcheting strain predicted by the 
model is compared with experimental results in Fig. 6(f). The 
prediction shows ratcheting strain develops early and then 
reaches a near-shakedown value, while the experiment shows 
continuous increase. An interesting point is that the ratcheting 
strain is close to that of Test 2 of Case 1. This is consistent with 
the similarity of uniaxial and torsional ratcheting data obtained 
under the same equivalent stress as shown in Fig. 5. 

 In summary of the results of the 6 cases, it may be said 
that the constitutive model has a potential to provide acceptable 
prediction of ratcheting strain under various loading conditions. 
The evolution of the exponent mi in the nonlinear kinematic 
hardening rule and the introduction of an additional  
Copyright © 2007 by ASME
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(d) 

(e) 

(f) 
 

FIG. 6 COMPARISON OF PREDICTED AND EXPERIMENTAL 
RATCHETING STRAINS FOR AXIAL-TORSIONAL 
CYCLES 
Copyright © 2007 by ASME
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nonproportionality parameter iχ appear to help resolve the 
persistent overestimation problem of ratcheting strain under 
multiaxial loading. However, in many of the loading cases 
considered in this study, the constitutive model with selected 
material constants tends to produce an overestimation of 
ratcheting strain in the early phase and a near-shakedown state 
in the later stage where experimental data show continued 
increases. This could lead to substantial underestimation of the 
ratcheting strain over a longer period unless the actual 
ratcheting rates decrease fast enough. Thus, the values of iχ  

and im  will have to be changed for better agreement in the 
longer range of cycles. In fact, many trial runs indicated that 
reducing the values of  along with increasing the constant im

iβ  makes the ratcheting rate to increase in larger cycles. In the 
meantime, this also causes considerable overestimation of 
uniaxial ratcheting and multiaxial ratcheting for some loading 
paths in the range of 400 cycles. 

  

CONCLUSIONS 
 The ratcheting behavior at relatively low cycles is 
thought to be influenced by isotropic hardening behavior of the 
material. Consequently, the Ohno-Wang kinematic hardening 
rule modified by Chen et al. [5] was extended to include 
Tanaka’s isotropic hardening model. The constitutive theory 
was then applied to simulate the ratcheting behavior of stainless 
steel 304 tested under uniaxial, torsional and nonproportional 
axial-torsional loading. The results show that the constitutive 
model can curb the overestimation problem of multiaxial 
ratcheting. However, the model still needs further improvement 
in controlling the rate of ratcheting over an extended number of 
cycles. 

 
 
FIG. 7 VARIATION OF MAXIMUM EQUIVALENT STRESS 

WITH CYCLES FOR CASE 3, CASE 4 AND CASE 5 
8
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(a) 

(b) 

(c) 
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(d) 

 

FIG. 8 COMPARISON OF CASE 4 STRESS AND STRAIN 
RESPONSES BETWEEN MODEL PREDICTION AND 
EXPERIMENT: (a),(b) AXIAL STRESS-SHEAR STRESS 
RESPONSE; (c),(d) AXIAL STRAIN-SHEAR STRAIN 
RESPONSE 
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