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Abstract: The subdifferential characteristic of quasiinvex and pseudoinvex functions are vital role in con-
vex optimization literature. Inmonicity and cyclic inmonicity properties are equally on the same line. In
this paper, we studied the relation among subdifferential characteristics, inmonicity, and cyclic inmonicity of
quasiinvex and pseudoinvex functions.
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1 Introduction

Let X be a Banach space f : X → R ∪ {+∞} and a lower semi continuous (lsc) function. Recently Correa, Joffre and
Thibault (1992), recently showed that { Correa et al. (1992) for reflexive and Correa et al. (1994) for arbitrary banach
spaces.}, the function f is convex if and only if its Clarke-Rockafeller sub differential ∂f is monotone. Much work has
been done to characterize the generalized convexity of lsc functions by a corresponding monotonicity of the subdifferen-
tial.
Luc (1993) and Anssel, Corvellec and Lassonde (1994), showed thatf is quasiconvex if and only if ∂f is quasimonotone.
Penot and Quang (1997) showed that if the functionf is also radially continuous, thenf is pseudo convex iff ∂f is pseu-
domonotone (in view of Karamardian and Schaible (1990), as generalized for multivalued operators by Yao (1994).
The concept of invexity is introduced by Hanson (1981), and showed that the Kuhn-Tucker conditions are sufficient for
(global) optimality of non-linear programming problems under invexity conditions. Kaul and Kaur (1982) discussed
strictly pseudo invex, quasi invex and their applications in nonlinear programming Weir and Mond (1988) introduced the
concept of preinvex functions and its application and established the sufficient optimality conditions and duality in non-
linear programming. Pini (1991) introduced prepsuedoinvex and prequasiinvex functions with the relationship between
invexity and generalized convexity. Mohan and Neogy (1995) showed that under certain condition an invex function is
preinvex and a quasiinvex function is prequasiinvex. Mukherjee and Mishra [13], Mishra and Rueda (2002) have studied
the different aspects of invex functions.
It is well known that the convexity of real valued function is equivalent to the monotonicity of corresponding gradient
function. So, one can say monotonicity has played a very key role for existence and solution methods of variation inequal-
ity problems. Different aspects has been dealt by various authors, for more detail readers may consult some references,
Noor (2003) ,Zeidler,E. (1990,1985) Zalmai, G.J.(1995) Smart and Mond (1990) .
Recently, X.M.Yang , X.Q.Yang and K.L.Teo(2003) used the word inmon for invariant monotone(pointed out that orig-
inally used by Prof B.D.Craven, like invex for invariant-convex), and introduced the various properties like generalized
quasi , pseudo and strict inmonicity of invex function and its differentials. Several examples have been shown and estab-
lished that these generalized inmonicities are proper generalization of the corresponding generalized monotonicities.
Since the Clarke-Rockefallar subdifferential of a convex function coincides with the classical Fenchel-Moreau subdif-
ferencial (Rockafellar,1980),it is not only monotone, but also cyclically monotone (R.Phelps,1991),cyclic(generalized)
monotonicity describes the behaviour of an operator around a cycle consisting of a finite number of points. V.L.Levin
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(1995) established the relation among quasi-convex function, quasi-monotone operator and their cyclic quasi monotonic-
ity of their Gateaux differentials . Daniilidis and Hadjisavvas (1999), reviewed the previous results and showed that in the
most cases the radial continuity assumption is not necessary . They define analogues notions of cyclic quasimonotonicity
and cyclic pseudomonotonicity and showed that the subdifferential of quasimonotone and psendomonotone function have
cyclical properties, respectively. Cyclic monotonicity is not only stronger property than the corresponding generalized
monotonicity but it reveals specific property .In particular ,an operator can even be strongly monotone without being
cyclically quasimonotone .They also considered the convex hull of such a cycle and showed successfully that the defini-
tions of monotone and pseudomonotone operators can be equivalently staled in terms of this convex hull. It is not so far
quasimontone operator, hence introduced properly quasimonotone operator and showed that it is often easier to handle
while retaining the important characteristics of quasimonotonicity ( In particular, f is quasi convex if and only if ∂f is
properly quasimonotone). They stated that it is closely related to the KKM property of multivalued maps and showed
by an application to variational inequalities. Also stated that the quasimonotonicity and proper quasimonotonicity are
identical on one-dimensional spaces ,which is probably the reason due to which it has escaped attention.

In this paper, the total attention has been paid to study the relation among the invex functions and their inmonicity
and also cyclic inmonicity. In section 2, we review these relations, together with some notions and definitions between
generalized invexity and generalized inmonicity .In section 3, we define analogues notions of cyclic quasinmonicity
and cyclic pseudoinmonicity and showed that the subdifferential of quasinmon and pseudoinmon function have these
properties, respectively. Cyclic generalized inmonicity is not just a stronger property than the corresponding generalized
inmonicity but it expresses a behavior of a specific kind. In section 4, we showed that the definitions of inmon and
psundoinmon operators can be equivalently stated in terms of convex hull.

2 Relations between Generalized Invexity and Generalized Inmonicity
Denote X∗ the dual of X and by (f(x), x) , the value of f(x) ∈ X∗ at x ∈ X . For x, y ∈ X ,set [x, y] = {{y+λη(x, y)} :
0 ≤ λ ≤ 1} and define (x, y], [x, y) and (x, y) analogously. Given a lsc function f : X → R ∪ {+∞} with domain
domf = x ∈ X : f(x) < +∞ ≠ ϕ, the Clarke-Rockafellar generated derivative off at x0 ∈ dom(f) in the direction of
t ∈ X is given(see[21]).

f ↑ (x0, t) = sup
∈>0

lim
x→x0

f′
λ↘0

sup inf
t′∈B∈(t)

f(x+ λt′)− f(x)

λ
(2.1)

where B∈(t) = {t′ ∈ X :∥ t′ − t ∥<∈}, λ ↘ 0 indicates the fact that λ > 0) and λ → 0 and x → x0 means that both
x → x0 and → f(x0).
The Clarke-Rockafellar subdifferential of at is defined by

∂f(x0) = {z ∈ X : (z, t) ≤ f∧(x0, t)∀t ∈ X} (2.2)

We recall that a function f is called pre quasiinvex, if for anyx, y ∈ X ⊆ Rn be an invex set with respect to η : Rn×Rn →
Rn and f : X → R and λ ∈ [0, 1].

f(y + λη(x, y)) ≤ max{f(x), f(y) (2.3)

A lsc functionf is called pseudoinvex , if for everyx, y ∈ w ⊆ Rn (X is an invex set), the following implication holds.
There exits

z ∈ ∂f(x) : (z, η(x, y)) ≥ 0 ⇒ f(x) ≤ f(y) (2.4)

It is known , Penot and Quang (1997) that a lsc pseudoconvex function which is also radially continuous (i.e. its restriction
to line segments is continuous) is quasiconvex. Both prequasiinvexity and pseudoinvexity of functions are often used in
optimization and other areas of applied mathematics when an invexity assumption would be too restrictive. For convexity
see Penot and Quang (1997) .
Let f : X → 2X

∗
be a multivalued operator with domain D(f) an invex set. D(f) = {x ∈ X : f(x) ̸= ϕ}, the operator

f is called
(1)Inmon, if for any x, y ∈ X (an invex set)

η(x, y)T f(y) + η(y, x)T f(x) ≤ 0 (2.5)
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(2) Pseudoinmon, if for any x, y ∈ X the following implication holds:

η(y, x)T f(x) ≥ 0 ⇒ η(x, y)T f(y) ≤ 0 (2.6a)

η(y, x)T f(x) > 0 ⇒ η(x, y)T f(y) < 0 (2.6b)

(3) Quasiinmon, if for any x, y ∈ X the following implication holds:

η(y, x)T f(x) > 0 ⇒ η(x, y)T f(y) ≤ 0 (2.7)

we recall, the known results connecting generalized convexity with generalized monotonicity.

Theorem 1 Let f : X → R ∪ {+∞}be a lower semi-continuous function. Then
(1) f is convex if and only if ∂f is monotone in this case of is also cyclically monotone (R.Phelps,1991).
(2) f is quasiconvex if and only if ∂f is quasimonotone [Luc(1993),Anssel et al. (1994)].
(3) Let f be also radically continuous, then f is pseudoconvex if and only if ∂f is pseudomonotone [Penot and Quang
(1997),Anssel (1998)].
On the some how same line [Yang et al.(2003)] showed some facts for a real-valued function.

Theorem 2 Let W be an invex set with respect to η : X × X → Rn , be a vector-valued function .Let f and η satisfy
assumption A and C, respectively and f is differentiable on W .
(i) Then f is preinvex function with respect to the same η on W , if and only if ▽f is inmon with respect to η on W .
(ii) Then f is prequasiinvex with respect the to same η on W if and only if ▽f is quasiinmon with respect to same η on
W .
(iii) Then f is pseudoinvex with respect to η on W if and only if ▽f is pseudoinmon with respect to η on W .

Assumption A: Let W be an invex set with respect to η and let f : W → R then

f(y + λη(x, y)) ≤ f(x)for any x, y ∈ W

Assumption C : [6] . Let η : X ×X → Rn. Then for any x, y ∈ Rn and for any λ ∈ [0, 1].

η(y, y + λη(x, y)) = −λη(x, y)

η(x, y + λη(x, y)) = (1− λ)η(x, y)

[Yang et al.(2003)] proves a lemma , by which

Lemma 3 Let f and η satisfy assumptions A and C, respectively . If the differentiable function f is pseudoinvex with
respect to η on an invex set Wof Rn , then f is prequasiinvex with respect to the same η on W .
We now show that pseudoinvexity of a function f implies quasiinvexity of f and pseudoinmonicity of ∂f .

Proposition 4 Let f : X → R ∪ {+∞} be a lsc , pseudoinvex function with invex domain . Then
I. f is quasiinvex.
II. ∂f is pseudoinmon.

Proof. (i) Suppose that for some x, y ∈ dom(f) and some z ∈ (x, y). We havef(z) > max{f(x), f(y)} . Set
m = max{f(x), f(y)}. Since f is lower semi continuous, there exist some ε > 0 such that f(z

′
) > m for all z

′ ∈ Bε(z).
From(2.4) it follows that the sets of local and global minimizers of the function fcoincide; so the point z can not be a local
minimizer, so there exist z1 ∈ Bε(z) such that f(z1) < f(z) . Applying Zagrodnys Mean Value Theorem to the segment
[z1, z], we obtain u ∈ [(z1, z] ,a sequence un → u and un ∈ ∂f(un), such that (u∗

n, z − un) > 0. Since z ∈ c0{x, y}, it
follows that (u∗

n, xi − un) > 0 for some i ∈ {1, 2}[x1 = x, x2 = y]. Using relation (2.4) we get m ≥ f(xi) ≥ f(un)
and, since f is lower semi continuous, m ≥ f(u) . This clearly contradicts the fact that u ∈ Bε(z).
(ii) Let x ∈ ∂f(x) be such that (x∗, η(y, x)) > 0. By part (i), f is prequasiinvex, so applying Theorem (2)(ii). We
conclude that ∂f is quasiinmon. Hence (z∗, η(z, x)) ≥ 0, for all z∗ ∈ ∂f(z).Supposetothecontrarythatforsomez∗ ∈
∂f(z). We have (z∗, η(z, x)) = 0, from relation (2.4), we obtain f(x) ≥ f(z). On the other hand, since f↑(x; η(z, x)) >
0, there exists ε1 > 0, such that for some xn → x, tn ↘ 0 and for all z

′ ∈ Bε1(z). We have, quasiinvexity of f implies
f(z

′
) > f(xn), for every z

′ ∈ Bε1(z). In particular f(z
′
) > f(x) (Since f is lsc), hence f(z

′
) > f(z) . The latter shows

that z is a local minimizer, hence a global one. This is a contradiction, since we have at least f(z) > f(xn).
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Proposition 5 Let f be a lsc function such that ∂f is pseudoinmon . Then f has the following properties :
(i) If 0 ∈ ∂f(x) then x is a global minimizer.
(ii) There exist x∗ ∈ ∂f(x) : (x∗, η(y, x)) > 0 ⇒ f(y) > f(x).

Proof. (i) Suppose that f(y) < f(x). Then using Zagrodny’s Mean Value Theorem, we can find zn → z ∈ [y, x)and
z∗ ∈ ∂f(zn), such that (z∗n, η(x, zn)) > 0. By pseudoinmonicity, (x∗, η(x, zn)) > 0 for all x∗ ∈ ∂f(x) i.e. 0 /∈ ∂f(x).
(ii) Let us assume that for some x∗ ∈ ∂f(x). We have x∗, η(y, x)) > 0. We may choose ε > 0; such that (x∗, η(y′, x)) >
0, for all y′ ∈ Bε(y). Since ∂f is obviously quasiinmon , from theorem 2(ii), we conclude that f is prequasiinvex ; it
then follows that f(y) ≥ f(x). Suppose to the contrary that f(x) = f(y) then f(y′) ≥ f(x) = f(y), so f has a local
minimum at y, It follows that 0 ∈ ∂f(x). However ∂f is pseudoinmon, hence we should have (y∗, η(y, x)) > 0 for all
y∗ ∈ ∂f(y) a contradiction.

3 Generalized cyclic inmonicity
We first introduce cyclic quasiinmonicity.

Definition 1 An operator T : X → 2X
∗
is called cyclically quasiinmon, if for every xi ∈ X there exist an i ∈ {1, 2, ., ., n}

such that

T (x∗
i ), η(xi+1, xi)) ≤ 0∀x∗

i ∈ T (xi) (3.1)

(Where xn+1 = x1).

It is easy to see that a cyclically inmon operator is cyclically quasiinmon,while a cyclically quasiinmon operator is quasi-
inmon.

Theorem 6 Let f : X → R∪{+∞} be a lower semicontinuous function, then f is prequasiinvex if and only if cyclically
quasiinmon.

Proof. In view of theorem (2)(ii),we have only to prove that if f is prequasiinvex then ∂f is cyclically quasiinmon.
Assume to the contrary that there exist xi ∈ X ∀ i ∈ {1, 2, ., ., n}, and xi ∈ ∂f(xi) such that (x∗

i , η(xi+1, xi)) > 0 for
i = 1, 2, ., .., n (Wherexn+1 = x1). If follows that f↑(x∗

i , η(xi+1, xi)) > 0. In particular, for every i there exists εi > 0,
such that

lim
x
′
i↘0→

xi
f

sup inf
a∈ Bεi

(η(xi+1,xi))
f(x

′
i
+λa)−f(x

′
i
)

λ >δi

> 0 (3.2)

We set ε = mini=1,2,.,..,nεi and δ = mini=1,2,.,..,nδi, for any y ∈ B ε
2
(xi) and xi

i+1 ∈ B ε
2
(xi+1), and we have

η(y, x
′

i+1) ∈ Bε(η(x
′

i+1, xi)) hence we can choose x̄i+1 ∈ B ε
2
(xi) and λ ∈ (0, 1) such that

inf
x
′
i+1∈ B ε

2
(xi+1,xi)

f(x̄
′

i + λiη(x
′

i+1, x̄i)− f(x̄i)

λ
> δ > 0 (3.3)

Equivalently,
f(x̄

′

i + λiη(x
′

i+1, x̄i) > f(x̄i) + λiδ,∀ x
′

i+1 ∈ B ε
2
(xi+1) (3.4)

for i = 1, 2, ., .., n. Now for every i, we choose , x
′

i+1 = x̄i+1, hence (3.4) will become,

(f(x̄
′

i + λiη(x̄i+1, x̄i) > f(x̄i) + λiδ (3.5)

for i = 1, 2, ., .., n. Since f is prequasiinvex (3.5) implies that

f(x̄i) > f(x̄
′

i + λiη(x
′

i+1, x̄i) (3.6)

for i = 1, 2, ., .., n, combining with (3.5) and adding for i = 1, 2, ..n. We get 0 > δ(
∑n

i=1 λi) a contradiction.

Proposition 7 Every quasiinmon operator T : R → 2R is cyclically quasiinmon.
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Proof. We assume to the contrary that the operator T is quasiinmon and there exist x1, x2, ., ..xn ∈ R, x∗
i ∈ T (xi),

such that

(x∗
i , η(xi+1, xi) (3.7)

For i = 1, 2, ., ..., n, (where xn+1 = x1). Set xN = maxi=1,2,.,..,n xi,then relation (3.7) implies that x∗
N < 0 on

the other hand since x∗
N−1 < xN ,we conclude from (3.7) that x∗

N−1 > 0. Thus (x∗
N−1, η(xN , xN−1)) > 0, while

(x∗
N , η(xN , xN−1)) < 0, which contradicts the definition of quasiimonicity.

We now introduce cyclic pseudoinmonicity.

Definition 2 An operator T : X → 2R
∗

is called cyclic pseudoinmon if for every x1, x2, ., ..., xn the following implication
holds :

∃i ∈ {1, 2, ..., n}, ∃x∗
i ∈ T (xi) : (x

∗
i , η(xi+1, xi)) ≥ 0 ⇒ ∃j ∈ {1, 2, ..., n}∀x∗

j ∈ T (xj) : (x
∗
j , η(xj+1, xj)) < 0

(3.8)
where xn+1 = x1.

One can check that every cyclically inmon operator is cyclically pseudoinmon, while every cyclically pseudoinmon oper-
ator is pseudoinmon and cyclically quasiinmon and every pseudoinmon is inmon and quasiinmon.

Theorem 8 Let f : X → R∪ {+∞}be a lsc function. If f is pseudoinvex then ∂f cyclically pseudoinmon.Conversely, if
∂f is pseudoinmon and f is radially continuous, then f is pseudoinvex.

Proof.
Again we have only to show that f is pseudoinvex then ∂f is cyclically pseudoinmon. Assume to the contrary that there
exist x1, x2, ., ..., xn ∈ D(∂f) and x∗

i ∈ ∂f(xi) such that (x∗
i , η(xi+1, xi)) ≥ 0 for i = 1, 2, ., .., n,where xn+1 = x1

while for some j and (x∗
j ∈ ∂f(xj)) > 0 we have,

(x∗
j , η(xj+1, xj)) > 0 (3.9)

By the definition of pseudoinvexity (relation (2.4)). We have f(xi+1) > f(xi), for i = 1, 2, ., .., n hence all f(xi) are
equal. In particular,f(xj+1) = f(xj), which contradicts (3.9 ) in view of proposition 5.

4 Proper Quasiinmonicity
The definition of inmonicity and pseudoinmonicity have an equivalent formulation , which involves a finite cycle of points
and its convex null when η(x, y) = x− y.

Proposition 9 (i) An operator T is inmon if and only if for any x1, x2, ., .., xn ∈ X and every zk = xk−1 + η(xk, xk−1)
then Z =

∑n
k=1 λkZk with

∑n
k=1 λk = 1 and λk > 0, one has

n∑
k=1

λk sup
x∗
k∈T (xk)

(x∗
k, η(z, xk) ≤ 0 (4.1)

(ii) an operator T with invex domain D(T ) is pseudoinmon if and only if for any x1, x2, ., .., xn ∈ X and every∑n
k=1 λk(xk−1 + η(xk, xk−1)), with

∑n
k=1 λk = 1 and λk > 0 the following implication holds

∃k ∈ {1, 2, ..., n},∃x∗
k ∈ T (xk) : (x

∗
k, η(z, xi)) > 0 ⇒ ∃j ∈ {1, 2, ..., n}∀x∗

j ∈ T (xj) : (x
∗
j , η(z, xj)) < 0 (4.2)

Proof.
If the operator T satisfies condition (4.1) resp. (4.2) then by choosing z = x2 +

1
2η(x1, x2), we conclude that it is inmon

(resp. pseudoinmon). Hence it remains to show the two opposite direction. Let us first suppose that T is inmon then for
any x1, x2, ., .., xn ∈ X , any x∗

k ∈ T (xk)(for k = 1, 2, 3, ..n) and any
∑n

k=1 λkzk with
∑n

k=1 λk = 1 and λk > 0, we
have

∑n
k=1 λk(x

∗
k, η(z, xk) =

∑n
k=1

∑n
j=1 λkλj(x

∗
k, η(xj , xk)) ⇒

∑
k>1 λkλj [(x

∗
k, η(xj , xk)) + (x∗

k, η(xk, xj)) ≤ 0.
Where the last inequality is a consequences of the inmonicity of T . Hence T satisfied ( 4.1).
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We now suppose that the operator T is pseudoinmon if relation (4.2) does not hold, then there exist x1, x2, ., .., xn ∈ X ,
any x∗

k ∈ T (xk)(for k = 1, 2, 3, ..n) and some z =
∑n

k=1 λkzk =
∑n

k=1 λk(xk−1 + η(xk, xk−1)) with
∑n

k=1 λk = 1
and λk > 0,such that

(x∗
k, η(z, xk) ≥ 0 (4.3)

While for at least one k say(k = 1)

x∗
1, η(z, x1) > 0 (4.4)

In particular, we have x1, x2, ., .., xn ∈ D(T ), hence T (z) ̸= ϕ, choose any z∗ ∈ T (z) relation (2.6 a and 4.3) show that

z∗, η(z, xk) ≥ 0 (4.5)

Now,for all z∗ ∈ T (z) and all k
′
s, since

∑
k λk(z

∗, η(z, xk) = 0, the relation (4.5) shows that for all k
′
s (z∗, η(z, xk) = 0.

On the other hand, relation(4.4) together with relation(2.6 b) imply that (z∗, η(z, xk) > 0, a contradiction .

In view of proposition (9), one could speak an equivalent formulation for the definition of quasiinmonicity which would
involve again the convex hull of a finite cycle, however in contrast to inmon and pseudoinmon operator leads to a different
more restrictive definition.

Definition 3 An operator T : X → 2X
∗
is called properly quasiinmon if for every x1, x2, ., .., xn ∈ X , and every

z =
∑n

k=1 λkzk,where zk = (xk−1 + η(xk, xk−1)) with
∑n

k=1 λk = 1 and λk > 0. Then there exists j such that

∀x∗
j ∈ T (x∗

j ) : (x
∗
j , η(z, xj) ≤ 0 (4.6)

Choosing z = (x1 + 1
2η(x2, x1)), we see that a properly quasiinmon operator is quasiinmon as in proposition(7), it is

easy to show that the converse is true whenever X = R, however it is not true in general,as the following example shows

Example 1

Let λ = k2, x1 = (0, 1), x2 = (0, 0), x3 = (1, 0), we define T : R2 → R2 by T (x1) = (−1,−1), T (x2) =
(1, 0), T (x3) = (0, 1) and T (x) = 0 properly quasiinmon. It satisfies to consider z =

∑
1
3z3, z3 = x2+

1
3η(x3, x2), z2 =

x1 +
1
3η(x2, x1), z1 = x3 +

1
3η(x1, x3).Not mention as 1

3 (
1
3x3 +

2
3x2 +

1
3x2 +

2
3x1 +

1
3x1 +

2
3x3)as zn = z1.

The class of properly quasiinmon operators though strictly smaller than the class of quasiinmon operators is in a sense not
much smaller this is shown in the next proposition.

Proposition 10 (i) Every pseudoinmon operator with invex domain is properly quasiinmon.
(ii) Every cyclically quasiinmon operator is properly quasiinmon.

Proof.
(i) This is a consequence of proposition 9(ii).
(ii)Suppose that the operator T is not properly quasiinmon then there would exist x1, x2, ., .., xn ∈ D(T ), x∗

i ∈ T (xi)
and z =

∑n
k=1 λkzk with λk > 0 such that

(z∗, η(z, zk)) > 0 (4.7)

fori = 1, 2, ., .., n set zi(1) = z1 relation (4.7) implies that
∑

j λj(z
∗
i(1), η(zj , zi(1))) > 0,it follows that for some zj ̸=

z1.We have,(z∗i(1), η(zj , zi(1)) > 0, we let zi(2) = zj and apply relation (4.7) again continuing in this way we define a
sequence zi(1), zi(2), zi(3), ., ..such that

(z∗i(k), η(zk+1, zi(k))) > 0 (4.8)

for all k ∈ N .Since the set z1, z2, ., .., zn is finite, so there exist m, k ∈ N,m < k such that zi(k+1) = zi(m) thus for the
finite sequence of points zi(m), zi(m+1), ., .., zi(k)(4.8)holds.This means that T is not cyclic quasiinmon.

Combining proposition (10) and theorem(6), we get the following corollary.
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Corollary 11 A lower semi continuous function f is quasiinvex if and only if ∂f is properly quasiinmon.
The converse of proposition(10) does not hold for instance the operatorT is defined in example(1) is properly quasiin-
mon (since it is inmon, hence pseudoinmon).But not cyclic quasiinmon on the other hand any differential of a continu-
ous,quasiinvex function f is properly quasiinmon but not pseudoinmon unless f is also pseudoinvex, thus between the
various generalized inmonicity properties,we consider the following strict implication hold and none other,
Cyclicinmon→Inmon

↓CyclicPseudoinmon→Pseudoinmon

↓CyclicQuasiinmon
→ProperlyQuasiinmon
↓Quasiinmon

5 Conclusion

The subdifferentials of quasiinvex and pseudoinvex functions in the view of inmonicity and cyclic inmonicity is better
tool to understand the most theoretical and practical applications of convex optimization area.
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