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Abstract 

Manufacturers supplying products under warranty need a strategy to deal with failures during the warranty period: 

repair the product or replace it by a new one, depending on e.g. age and/or usage of the failed product. An 

(implicit) assumption in virtually all models is that new products to replace the failed ones are immediately 

available at given replacement costs. Because of the short life cycles of many products, manufacturing may be 

discontinued before the end of the warranty period. At that point in time, the supplier has to decide how many 

products to put on the shelf to replace failed products under warranty that will be returned from the field (the last 

time buy decision). This is a trade-off between product availability for replacement and costs of product 

obsolescence. In this paper, we consider the joint optimization of repair-replacement decisions and the last time 

buy quantity for products sold under warranty. We develop approximations to estimate the total relevant costs and 

service levels for this problem, and show that we can easily find near-optimal last time buy quantities using a 

numerical search. Comparison to discrete event simulation results shows an excellent performance of our methods.  

Key words: warranty, repair, spare parts, inventory, last time buy 

 

1. Introduction 
Many products in the consumer market are sold with a guarantee that the product will be operational during a 

certain warranty period (or an extended warranty period if the consumer pays for such an extension). A servicing 

strategy for these products usually consists of some decision rule when to replace and when to repair a failed 

product based on criteria like the age and usage of the product.  

Many models focus on the analysis of a single product and assume that a new product to replace a failed one is 

always available if needed and that replacement occurs in negligible time. However, new product versions appear 

quickly on the market, and therefore manufacturing of the previous version may be discontinued far before the end 

of the warranty period of the products in the market. To facilitate product replacement during the remaining 

warranty period, the supplier needs to procure a certain amount of spare products (or spare parts) at once to cover 

the demand during the remaining warranty period
3
. This is called the last time buy decision.  

The basic trade-off for the last time buy decision is between the costs of spare part unavailability versus the costs 

of obsolescence of spare parts that have not been used at the end of the warranty period. If the warranty strategy 

prescribes that a failed product should be replaced whereas no spare is available, the supplier is forced to repair the 

product at high costs or to replace the product by a different (usually more expensive) version. The last time but 

decision interacts with the warranty strategy: The decision rule when to repair or replace a product determines the 

demand for spare parts, whereas the availability of spare parts determines the possibility to replace a product.  

                                                           
1 Corresponding author; School of Management and Governance, P.O. Box 217, 7500 AE  Enschede, The Netherlands; email: 

m.c.vanderheijden@utwente.nl 
2 Department of Industrial Engineering, Jalan Ganesha 10, Bandung, Indonesia 40132; email: bermawi@mail.ti.itb.ac.id 
3 We will use the phrase “spare parts” throughout this paper, noting that this may be a complete product.   



2 
 

A complication is that spare parts are kept on stock for the complete set of products in the field, thereby taking 

advantage of the risk pooling effect. As a consequence, the problem is intrinsically a multi-product problem, 

whereas the analysis of a single product is typically sufficient to optimize the warranty strategy given unlimited 

supply of replacement parts. This complicates the analysis of the problem. As we will see in the next section, the 

joint problem of choosing the last time buy quantity and the repair/replacement decision of products sold under 

warranty has only been studied in the literature before as a deterministic optimization problem (Sayouni et al. 

[2010]).  

In this paper, we study stochastic models for the joint problem of finding the last time buy quantity and the 

warranty strategy. We develop approximations and optimization heuristics to solve this problem. We perform 

numerical experiments to get insight in the type of policies. Also, we check the accuracy of our approximations by 

comparison to results from discrete event simulation.  

In the next section, we discuss the related literature and define our contribution more detail. In Section 3, we give 

an overview of model assumptions and basic notation to be used throughout our paper. Next, we formulate a first 

simple model for a single product with dedicated spares and show that we can solve this using stochastic dynamic 

programming (Section 4). In Section 5, we develop a basic model for multiple products sharing a common pool of 

spare parts. Because of the dimension of the state space, we cannot solve this problem easily anymore using 

stochastic dynamic programming. Therefore, we use a decomposition in single-product models. Next, we derive 

demand characteristics to estimate the total relevant costs and service levels for a multi-product model under 

various stock levels. Also, we show the impact of an iterative heuristic in which we alternately optimize the repair / 

replacement decision and the last time buy quantity of spare parts. In Section 6, we extend our model to the 

situation where each product has a certain age and only a part of the initial warranty period is remaining when the 

last time buy decision has to be taken. In Section 7, we conduct a numerical experiment to study the interaction 

between the last time buy decision and the repair / replacement strategy. Finally, we give our conclusions and 

directions for further research in Section 8. 

2. Literature 
Related literature can be found in warranty strategies (repair/replacement decisions) and last time buy decisions for 

spare parts. We will discuss these two areas below. Next, we discuss the only paper that we found on the 

integration of last time buy and warranty strategy. Finally, we state our contribution to the literature. 

2.1. Repair / replacement decisions under warranty 

The literature on warranty strategies in general is rich, see e.g. Murhy et al. [2004], Murthy and Blischke [2005] 

and the references therein. Below, we give a sample of relevant papers to position our research.  

A part of the warranty literature deals with repair / replacement decisions: When should we repair a product upon 

failure within the warranty period and when should we replace the product by a new one? Such a decision depends 

on many factors, factors like the costs of repair and replacement, the product failure rate function, and the impact 

of repair. Regarding the latter, we will typically have imperfect repair that improves the failure rate to a state worse 

than as-good-as-new (Rao [2011]) with as special cases: (1) perfect repair that restores a product to the as-good-as-

new state (ii) minimal repair that restores the product to the same state as just before the failure (Jack and Van der 

Duyn Schouten [2000]). The level of repair may also be part of the warranty strategy, so that the level of 

improvement of the failure rate depends on the age of the product (Yun et al. [2008]). Another model assumes that 

the product’s failure rate that only depends on the number of repairs thus far and not on the age (Lugtigheid et al. 

[2008]).  



3 
 

Warranties can be either one-dimensional or multi-dimensional (usually two-dimensional). Under a one-

dimensional warranty, the warranty ends when a threshold of a single variable (age or usage) has been passed (see 

e.g. Jack and Van der Duyn Schouten [2000] and Iskandar et al [2011]). Under a two-dimensional warranty, the 

warranty depends on two variables (e.g. both usage and age), and the warranty expires if the first threshold has 

been passed (see e.g. Iskandar et al. [2005] and Jack et al. [2009]). For example, the warranty of a car may expire 

after 50.000 km. or 5 years, whatever comes first. Rules for repair/replacement decisions depend on the type of 

warranty: Under a two-dimensional warranty, the decision will generally also depend on both variables (e.g. age 

and usage).  

The decision rules for repair/replacement can be classified as dynamic and static rules. Dynamic rules depend on 

the remaining warranty period, whereas static rules do not. For example, consider a product with one dimensional 

warranty based on age and minimal repair. Jack and Van der Duyn Schouten [2000] developed a dynamic decision 

rule for this model in which a minimal repair is performed if the remaining warranty period is t and the product age 

is less than or equal to a control limit L(t). After discretization of time, they find the optimal control limits using 

stochastic dynamic programming on a two-dimensional state space. They conjecture that their rule is optimal, 

which has been proven later on by Jiang et al. [2006]. A much simpler static rule may prescribe minimal repair if 

the product age is less than some constant threshold value, or if the number of minimal repairs performed is less 

than some threshold value, see e.g. Iskandar et al. [2011]. These threshold values do not depend on the remaining 

warranty period. Samatlı-Paç and Taner [2009] show that dynamic policies are particularly better for highly 

reliable products. 

To the best of our knowledge, the basic assumption in all papers is that a replacement is always possible and not 

restricted by a limited inventory of spare parts.  

2.2. Last time buy decisions for spare parts 

A last time buy decision has to be taken when manufacturing of products or components needed to cover a 

warranty or service period is discontinued before the end of the period. Most literature on last time buy decisions 

focuses on a business-to-business environment, particularly components for (advanced) capital goods like 

computer systems, medical systems or manufacturing equipment. Therefore, the service period tends to be longer 

than most warranty periods, say 3-10 years. Note that the replacement level is usually a component within a 

product and not the product itself, as is the case in the warranty models as described above. 

The basis paper in this line of research is by Moore [1971] who uses time series analysis and curve fitting methods 

to estimate the so-called all-time requirement for spare parts in the car industry, as basis for the last time buy 

decision. Fortuin [1980] developed a model for the last time buy quantity of non-repairable parts based for a case 

study at Philips Electronics. Later refinements have a .o. been described in Teunter and Klein Haneveld [1998]. 

Teunter and Klein Haneveld [2002] allow for reordering of parts later in the service period, but at a higher price.  

Initially, most papers considered the last time buy as the only source of spare parts. More recent papers include the 

repair option as an additional source, as well as asset recovery (complete systems that are returned from the field 

and that are stripped for reusable spare parts). Asset recovery as source of spare parts has recently been addressed 

by Inderfurth and Mukherjee [2008], Kleber and Inderfurth [2009], Krikke and Van der Laan [2011], and 

Pourakbar et al. [2011]. Repair of failed parts that are returned from the field is considered as an alternative source 

of supply in Van Kooten and Tan [2009]. Using such alternative supply options, the last time buy quantity can be 

reduced and obsolescence risk at the end of the service period can be reduced.  

More closely related to our research, Pourakbar et al. [2009] focus on last time buy decisions for spare parts of 

consumer goods rather than spare parts of expensive capital goods. The last time buy decision refers to the spare 

parts. An alternative for repairing failed products is replacing the entire product by a new one, possible a new 
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(improved) product version. Because of significant price erosion in the market for consumer electronics, this may 

be a more profitable option from some point in time to the end of the service life cycle. They consider the last time 

buy quantity and the switching time from repair to replacement as key decision variables. 

A common assumption in the models for last time buy decisions is that demand for replacement parts arises from a 

(nonstationary) Poisson process. An explicit failure rate model is usually not taken into account, and therefore there 

is also no decision related to repair or replacement of parts depending on, for example, age of the product. 

2.3. Last time buy decisions for products sold under warranty 

To the best of our knowledge, Sahyouni et al. [2010] is the only paper that integrates last time buy and warranty 

repair operations. The authors develop a deterministic optimization model with as decision variables (i) the last 

time buy quantity, and (ii) the point in time after which failed products are not repaired anymore but replaced by 

new ones. Although the failure process in stochastic by nature, such a deterministic model may be suitable in very 

large scale operations where the risk pooling effect justifies an approximation by a deterministic model. The 

authors suggest as further research to develop a stochastic version of their basic model. 

2.4. Our contribution 

In this paper, we consider the interaction of the last time buy decision for products or parts replacing failed ones in 

relation to the repair/replacement policy. To the best of our knowledge, this problem has not been studied as a 

stochastic model in the literature before. The repair/replace policy determines the demand process for new products 

replacing the failed ones, which is input for the last time buy decision when manufacturing of products is 

discontinued. Reversely, the last time buy decision determines the availability of products to replace the failed 

ones, and so it influences the repair/replacement policy: The decision rule may tell that a failed product should be 

replaced, but an alternative solution (in our model repair) is still needed if a new product I not available anymore.  

We focus on one-dimensional polices based on the product age upon failure. We assume minimal repair: The 

failure rate just after repair is equal to the failure rate just before failure, so the effective product age remains the 

same. We first develop a model for a single product with dedicated spare parts and develop a simple dynamic 

heuristic rule to solve the problem. Because the standard repair/replacement decisions rule for a one-dimensional 

policy is a special case of our model with limited supply, we can analyze the quality of our heuristics by 

comparison to the optimal solution for problem instances for this special case. Next, consider a multi-product 

problem with a shared inventory of spares. The analysis of this model is considerably more complicated, because it 

is hard to identify clear and simple renewal point in the stochastic process. Therefore, we propose a simple 

heuristic based on decomposition by product to solve the problem. We test our heuristic in a numerical experiment 

and provide insights in the impact of the key parameters.  

3. General model outline and notation 
We consider a repairable product that is sold with a fixed warranty period W. Upon failure, the product can either 

be repaired or be replaced by a new one, provided that a new product is available. Any repair is a minimal repair, 

so the failure rate remains unchanged (or: the effective product age is unaltered). We assume that the product has in 

increasing failure rate function to avoid uninteresting problem instances: In general, replacement will be more 

expensive than repair, so the product will always be repaired if the failure rate function is non-increasing.  

For the repair / replacement decision, we use a simple time-based rule that is known to be efficient: We decide to 

perform a minimal repair if the product age upon failure is at most equal to some critical age , otherwise we 

replace the product by a new one. We use a dynamic rule, where the value of  depends on the remaining warranty 

period. We do this for two reasons: (i) dynamic rules tend to be better than static rules, see Samatlı-Paç and Taner 

[2009], and (ii) it is computationally more efficient, since we can apply stochastic dynamic programming after 
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discretization of time, whereas we repeatedly need to solve a renewal equation numerically, as we have to perform 

a numerical search over , see Iskandar et al. [2011]. 

We assume that the times for repair and replacement are negligible. At a certain point in time, manufacturing of 

products is discontinued, and the supplier can order a last time buy quantity to replace failed products during the 

remaining warranty period. Buying too many spare products leads to obsolescence costs if the products have not 

been used during the remaining warranty period. Buying insufficient spares means that replacement is not possible 

if it would have been economically better than repair. In the latter case, we assume that we perform a minimal 

repair as the only option left. This may be costly, particularly if we run out of stock a significant time before the 

end of the warranty period and if the failure rate is strongly increasing.  

In the next sections, we describe a sequence of models to deal with the joint problem of finding the last time buy 

quantity and the repair/replace policy during the warranty period: 

1. A single product with a dedicated stock of spares; the last time but decision has to be taken when the product is 

as good as new (Section 4) 

2. A set of multiple identical products with a shared stock of spares; the last time but decision has to be taken 

when all products are as good as new and so the entire warranty period W has to be covered for all products 

(Section 5). 

3. A set of multiple identical products with a shared stock of spares; at the time of the last time buy decision, the 

products have a certain age and only a part of the warranty period W is remaining; both age and remaining 

warranty period may vary over products (Section 6). 

For these models, we will use the following general notation: 

Input data: 

W = length of the warranty period 

f(t)  = Probability density function of the time to failure of the product that is as good as new; we denote the 

corresponding distribution function by F(t), the survival function by  ̅   , the hazard function by      

      ̅   , and the cumulative hazard function by H(t). 

Cm  = costs of a single minimal repair 

Cp  = procurement costs of a spare product at time 0 

Cs  = scrap costs of an operational spare product remaining at the end of the warranty period; in case  Cs<0, we 

have a salvage value 

Cd  = cost of replacement of a failed product by a new one (replacement costs, disposal costs of the failed part 

that is not repaired) 

Decision variables: 

 = critical age limit for minimal repair (which may depend on the remaining warranty period and the 

number of spare products available) 

s  = last buy quantity, i.e., the total number of spare products procured at t=0 to replace failed products 

throughout their remaining warranty period  

Auxiliary notation: 

We denote the hazard function of the time to failure by            ̅   , and the cumulative hazard function by 

H(t), the primitive of h(t). Further, we need the probability distribution function of the time until the first need of a 
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spare product, defined as Z=+Y, where Y is the time to failure of a product with age . The density function g(t; ) 

of Z is given by        
    

 ̅   
    . 

4. Single product model 
First, we consider a simple model for a single product subject to failure supported by s spare products procured at 

t=0 to support product replacements throughout warranty period W. At t=0, the product is as good as new. To 

facilitate the application of stochastic dynamic programming, we split the time in discrete intervals. Without loss of 

generality, we assume that each time interval has length 1 (normalization of time). We define the discrete form of 

the density function, distribution function and survival function of the time to first failure as: 

ft = probability that a failure occurs in time interval t.  

Ft = probability that a failure occurs in time interval t or earlier 

  = probability that a failure occurs after time interval t (so in interval t+1 or later) 

We analogously define the discretized characteristics of the conditional time to failure of a product with age  by 

density     , distribution      and survival function     , t ≥ .  

4.1. Basic repair/replacement decisions 

A dynamic repair/replacement policy implies that for each remaining time horizon w we decide to replace the 

product upon the next failure after time (w;s) if we still have s products on stock. Actually, this is a heuristic, 

because an optimal dynamic decision rule consists of a control limit L(t), indicating that minimal repair is 

performed if the remaining warranty period is t and the product age is less than or equal to L(t), see Jack and Van 

der Duyn Schouten [2000]. This yields a two-dimensional value function in both the age of the failing component 

and the remaining time horizon. Hence, it is rather complex and time consuming to find an optimal solution. We 

choose a simpler heuristic, because (i) we aim to further extend our model further to the multi-product case, and 

(ii) a static variant of this rule has shown to be effective in Iskandar et al. [2011]. 

Now we define the value function        as the minimum expected costs if the product has just been replaced, 

there are w periods to go until the end of the warranty period, and we have still s spare products on stock. We can 

state a recursive equation by minimizing the value function        over the critical age (w;s). For a given time 

horizon w, stock level s≥1, and critical age (w;s), we face the following costs: 

 The costs of minimal repair during (w;s), at costs Cm per event, where the number of minimal repairs in t 

periods is given by the cumulative hazard function H(t) 

 The costs of replacing a failed product by a spare one upon first failure after time (w;s)), if it occurs before the 

end of the planning horizon w. This happens with probability           and yields costs of initial procurement 

of the replacement product and the replacement costs itself,      .  

 If the failure occurs at some time t (<t<w), for which the density           applies, we face costs V       

   over the remaining time horizon w-t.  

 If no failure occur in the remaining planning horizon, we face the costs of initial procurement and scrapping 

the s products,      . 

For sake of simplicity, we assume that minimal repair or replacement occurs at the end of the time interval. As a 

consequence, discretization leads to a slight underestimation of the total costs that decreases with the number of 

time intervals in the planning horizon W. Now we find the following recursive expression for the value functions: 
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{   (      )  (     )          ∑                    

 

          

          (     ) }      

(1) 

with the initial conditions:  

               for all w: we only perform minimal repair if no spare products are available for 

replacement 

                 for all s: If we have s products left at the end of the life cycle, we face the costs of initial 

procurement and scrapping these products. 

 

This is easy to solve, since the number of spare parts will generally be small. We have all value functions for i=0 

spares. If we have all value functions        for all time intervals 0≤w≤W, then we can derive all value functions 

for          for all time intervals 0≤w≤W. Although we have not formally proven that        is convex in s 

for a fixed length of the warranty period W, this seems to be logical and also appeared to true in all our numerical 

experiments. This means that we can recursively calculate all value functions for s=1, 2, … until the value function 

       does not decrease anymore.  

 

We can gain efficiency because for each combination (w, s) the value function to be minimized is convex in (w;s). 

So, we can stop evaluating the cost function when the total expected costs as function of (w;s) starts to increase. 

Remark: 

We obtain a lower bound for the costs, since we assume that minimal repair or replacement occurs at the end of the 

time interval. If we move the costs to the start of the interval, we find an upper bound for the costs using the 

recursion. Then we replace            in (1) by             . However, the value function converges 

fastest if we take the average of the two value functions. That is, we replace            in (1) by (    

                   )  . In our numerical experiments, this appeared to be far the most efficient 

procedure, since we do not need many time intervals to get a very accurate cost estimate. As an example, we got 

accurate results (<0.01% cost deviation) with discretization of time in about 25 intervals, whereas we needed more 

than 1000 intervals to get a similar accuracy with recursion (1). 

4.2. Improvement of repair/replacement decisions 

Iskandar et al. [2011] show that a static version of the critical age rule has one drawback: It may prescribe an 

expensive replacement just before the end of the warranty period, whereas a cheaper repair is better given the short 

time remaining. They improve their static rule by adding a control variable a, indicating that a failed product is not 

replaced anymore if the remaining planning horizon upon failure is at most equal to a.  

In our dynamic rule with limited stock level s, we can apply the same logic. In addition to the critical age (w;s). 

When the remaining time horizon equals w and s products are still on stock for replacement, we decide to perform 

the next replacement if the failure occurs at an age exceeding (w;s) and the time until the end of the service period 

is more than a(w;s). Similar to line of reasoning used to find equation (1), we find the following stochastic 

dynamic programming recursion (s≥1):  
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} 

(2) 

The initial conditions remain the same as shown under equation (1). 

4.3. Numerical results 

4.3.1. Special case: no obsolescence costs 

In fact, the well-known problem of finding an optimal repair/replacement decision under one-dimensional warranty 

and minimal repair (Jack and Van der Duyn Schouten [2000]) is a special case of our model, namely if Cs = -Cp  

(we can sell the spare parts left bovver at the end of the warranty period back for the original price). Then, we can 

compare our method to known results in the literature.  First, we compare our rule to the optimal dynamic rule for 

the cases presented in Jack and Van der Duyn Schouten [2000].  We consider the following problem instance: α = 

1 (year), β = 2, W = 2 (years), Cm=1, Cd=0, and Cp is varied as Cp=1.01, 1.5, 2.0, 2.5 and 5.0. We discretize the 

warranty period in 100 time intervals. Table 1 compares the optimal total relevant costs found under the optimal 

dynamic policy, TRC(opt), to the minimum costs found under heuristic s(w), denoted by TRC(H1), and under 

heuristic (w;s), a(w;s), denoted by TRC(H2). 

 Cp=1.01 Cp=1.5 Cp=2.0 Cp=2.5 Cp=5.0 

TRC(opt) 1.913 2.694 3.228 3.668 4.000 

TRC(H1) 1.913 2.714 3.250 3.736 4.000 

TRC(H2) 1.913 2.695 3.228 3.668 4.000 

Table 1. Value function comparison of our heuristics to the optimal rules for the special case Cs = -Cp 

We see that the expected costs of heuristic 1 are only slightly higher than the optimal costs. The costs of heuristic 2 

are almost the same as for the optimal solution.  

Because the number of experiments is small, we also compare the performance of our dynamic rule to the best 

static heuristic for each problem instance as presented in Iskandar et al. [2011]. We denote these minimum costs by 

TRC(Isk), see Table 2. We consider the following problem instance: α = 1 (year), β = 2, W = 3 (years), Cm=1, Cd=0, 

and Cp is varied between 1.2 and 10.  

 Cp=1.2 Cp=1.4 Cp=1.6 Cp=1.8 Cp=2.0 Cp=3.0 Cp=4.0 Cp=5.0 Cp=6.0 

TRC(Isk) 3.6120 4.1759 4.6885 5.1522 5.5653 6.7713 7.7609 8.7204 9.0000 

TRC(H1) 3.6088 4.1405 4.6113 5.0267 5.3947 6.6654 7.6648 8.6643 9.0000 

TRC(H2) 3.6017 4.1241 4.5885 5.0010 5.3683 6.6628 7.6536 8.6129 9.0000 

Table 2. Value function comparison of our heuristics to Iskandar et al. [2011] for the special case Cs = -Cp 

In Table 3, we make a similar comparison where we vary the length of the warranty period W between 0.5 and 7.0. 

We observe that the dynamic rules are better than the best static rule for most problem instances, which 

corresponds to the findings of Samatlı-Paç and Taner [2009]. This only does not hold if the warranty period is short 

(W=1 year) and the cost ratio of product replacement to minimal repair is small. The cost difference between the 

two dynamic heuristics is always (very) small.  
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W  Cp=1.2 Cp=1.4 Cp=1.6 Cp=1.8 Cp=2.0 

1.0 TRC(Isk) 0.8790 0.9714 1.00 1.00 1.00 

TRC(H1) 0.8936 1.0000 1.00 1.00 1.00 

TRC(H2) 0.8843 0.9754 1.00 1.00 1.00 

2.0 TRC(Isk) 2.2562 2.5986 2.9005 3.1321 3.3152 

TRC(H1) 2.2574 2.5740 2.8420 3.0588 3.2503 

TRC(H2) 2.2503 2.5581 2.8204 3.0409 3.2285 

3.0 TRC(Isk) 3.6120 4.1759 4.6885 5.1522 5.5653 

TRC(H1) 3.6088 4.1405 4.6113 5.0267 5.3947 

TRC(H2) 3.6017 4.1241 4.5885 5.0010 5.3683 

5.0 TRC(Isk) 6.3207 7.3369 8.2678 9.1225 9.9089 

TRC(H1) 6.3130 7.2737 8.1483 8.9424 9.6657 

TRC(H2) 6.3059 7.2572 8.1254 8.9163 9.6392 

7.0 TRC(Isk) 9.0288 10.5092 11.8662 13.1187 14.2775 

TRC(H1) 9.0171 10.4068 11.6854 12.8579 13.9363 

TRC(H2) 9.0099 10.3906 11.6624 12.8315 13.9093 

Table 3. Value function comparison of our heuristics to Iskandar et al. [2011] for the special case Cs = -Cp 

Because of its simplicity and good performance, we select Heuristic 1 for further model development in Section 5 

and 6. In principle, the same line of reasoning can be followed and similar expressions can be derived for Heuristic 

2.  

4.3.2. Positive obsolescence costs 

As an illustration of the impact of positive obsolescence costs, we consider a similar example as in the previous 

subsection: α = 1 (year), β = 2, W = 3 (years), Cm=1, Cd=0, Cs=0, and Cp=2. We find for the value functions V(3;0) 

= 9.000, V(3;1) = 5.667, V(3;2) = 5.569, V(3;3) = 6.5210 using heuristic 1 (heuristic 2 yields the same values for 

this instance). We find the minimum expected costs for V(3;2), so it is optimal to buy 2 spares. Figure 1 displays 

both the value functions V(W;s) and the values of the critical age (W;s) as function of the number of spares s and 

the warranty period W.  

 

Figure 1a. Value functions V(W;s) as function of 

planning horizon W and stock level s for the example. 
Figure 2b. Critical age limits (W;s) as function of 

planning horizon W and stock level s for the example. 
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Regarding the replacement policy, we observe that the critical age decreases with the time horizon and the 

stock level. If we have plenty of spares (s=3), we do not perform any minimal repair anymore. However, 

this is not the minimum cost solution that prescribes some minimal repairs early in the warranty period, 

namely during the first half year: (3;2)=0.516. Our heuristic also yields the minimum cost solutions for all 

smaller warranty periods. We see from the Figure 1a that the optimal number of spares reduces from s=2 to 

s=1 spare if W≤2.92. For W≤1.66, we should not procure any spares and perform minimal repairs only. 

5. Basic multi-product model 
In practice, we will use a single pool of spare products to replace failed ones to take advantage of the risk 

pooling effect. A straightforward extension of our stochastic dynamic approach to a multi-product model is 

not possible unfortunately: When one product is replaced, we do not have a renewal point since the other 

products have some (unknown) age. Inclusion of the age of all products in the system state is far from 

practical since the state space explodes. Therefore, we have to rely upon heuristics.  

We propose a decomposition approach over products in which we derive the characteristics of the total 

demand for spares from the repair/replacement decisions for a single product. Based on the total demand 

characteristics, we can estimate the probability that a spare part will be available at a certain point in time 

and thus that replacement is still possible. If a spare is not available, we have to use another (more 

expensive) solution, such as additional minimal repairs. Next, it is an option to construct a feedback loop 

by including the spare part availability over time in the determination of near-optimal repair/replacement 

decisions for a single product. In this section, we show this principle for the simple case where we have 

N≥1 products that are as good as new at t=0 and we have to cover a warranty period W. In the next section, 

we extend our heuristic to a more realistic model where all products have a certain age and a limited 

remaining warranty period when the last time buy has to be taken.  

5.1. Decomposition approach 

We focus on a single tagged product and consider the total demand for spare parts, generated by 

replacements of all products, as an external process. In principle, the demand is not entirely an external 

process, since historic replacements of the tagged product itself is part of the total demand. We expect that 

this will have a minor impact if the total number of products is not very small.  

We model the impact of the external demand process by a probability pT(s) that a spare part is still 

available when we still have time T to go until the end of the warranty period of the tagged product and the 

initial stock level is s. Note that time W-T has passed since the start of the warranty period if we still have 

time T to go. We estimate these probabilities as follows: We compute the mean and standard deviation of 

demand for spares in [0, W-T] for an individual product from its optimal repair/replacement policy, 

assuming that we have infinite supply of spares. We aggregate these demand characteristics over all 

products, fit an appropriate distribution function, and estimate the probabilities pT(s) (Section 5.2). Next, 

we can use these probabilities to evaluate or even re-optimize the value functions under limited spare 

supply (Section 5.3). Finally, we can evaluate the system in terms of total relevant costs and/or service 

levels (Section 5.4). We summarize the algorithm in Section 5.5, and give results from numerical 

experiments in Section 5.6. 

5.2. Estimating the spare part availability probabilities pT(s) 

At first sight, we can estimate the demand characteristics using a similar recursion as (1). This will give us 

the demand for a single product when a warranty period T≤W is remaining and the product is as good as 
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new, so in the time interval [W-T, W]. However, we need the demand in the preceding period, so in the 

interval [0, W-T], to estimate the probability pT(s) that a spare part is available. To this end, we define: 

RT(w) = Number of replacements of a single product in the next T periods if the product is as good as new 

and w periods are remaining until the end of the warranty period, under the current policy {(w)} 

That is, for any w≤W and T≤w, we consider the number of product replacements in the interval [W-w, W-

w+T] (counting from the start of the warranty period). We define a recursion for the survival probabilities 

of RT(w) by discretizing time. Because the product is as good as new at the start of the interval, the first 

product replacement occurs at t((w), T] with density          . We have a renewal at time t, and thus 

we find:  

 {       }  ∑           {             }      
                  (3) 

In words, the probability of having at least n product replacements in [W-w, W-w+T] equals the probability 

of a product replacement in period t((w), T] multiplied by the probability of having at least (n-1) 

replacements from time t on, so in the interval [W-w+t, W-w+T]. We start the recursions with the values 

 {       }             . From these probabilities, we compute the first two moments using 

the standard expressions: 

 [     ]  ∑    {       } 
          (4) 

 [  
    ]  ∑           {       } 

         (5) 

We cut-off the summations at some value n when    {       } drops below some small number >0. 

As the number of replacements of a single product is typically very small, the number of terms in the sum 

is usually small as well. Next, we can easily compute the mean and standard deviation of the number of 

replacements of a single product. Because the failure behavior is independent between products, the mean 

and standard deviation of the total demand for spare parts in [W-T, W], denoted by DT(W), are given by  

 [     ]     [     ]         (6) 

 [     ]= √  [     ]        (7) 

Next, we use a two-moment approximation for DT(W) to compute the spare part availability probabilities: 

        {         }        (8) 

We propose to use a Normal distribution for DT(W) and to apply a continuity correction to estimate      . 

5.3. Value functions under limited spare part supply 

Under limited spare part supply, we have to modify recursion (1) since a spare part may be unavailable. 

We include the spare part availability probabilities and have to decide what happens if a spare part is not 

available. We can assign some fixed penalty costs for finding an alternative solution (e.g. replacing the 

product by another, more expensive product), which is easy to include in the recursion. However, we 

assume that we will continue performing minimal repairs when we are lout of stock. If the stock level is 

low, the number of additional repairs and thus the corresponding costs will increase strongly, which is a 

trigger to stock sufficient spares. Under this assumption, we find the recursion 
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{   (    )

 ∑        {         [              ]

 

        

                [           ]}} 

            (9) 

So, if a spare part is not available when a replacement is required upon failure at time t according to the 

current policy (w), we perform at least one minimal repair. We expect further additional minimal repairs 

during the remaining time warranty period, which number equals H(w)-H(t). 

Remarks: 

 In equation 6, we re-optimize the policy (w). Of course, we can also use the policy (w) that we 

already found for unrestricted spare part supply and use the recursion just to find the value functions 

V(W;s) for all relevant stock levels under limited spare part supply.  

 We can improve the value function recursion by replacing            in (16) by the average of 

two value functions as explained at the end of Section 4.1. 

 

5.4. Total relevant costs and service levels 

The total costs under stock level s and repair/replace policy (w) consist of the costs of (i) all minimal 

repairs, (ii) product replacements, (iii) spare part procurement, and (iv) scrap costs of spare parts remaining 

at the end of the warranty period (which may be negative if there is some positive salvage value). The 

value function (6) includes the cost components (i), (ii) and a part of (iii), namely all spare parts that have 

actually been used to replace failed products during the warranty period. This means that the total expected 

costs consists of          plus the procurement and scrap costs of spare parts remaining at the end of 

the warranty period. The latter number can easily be approximated from the demand characteristics as 

derived in Section 5.2. So we find for the total relevant costs TRC: 

                (     )   [          ]     (10) 

where we use the shorthand notation X
+
=Max{X, 0}. Under a Normal distribution for DT(W), it is 

straightforward to compute  [          ]. Let us write the stock level as    [     ]  

  [     ], where k denotes the safety factor. Then  [          ]   [     ]  {      }, where 

L(k) denotes the Normal loss function in k. 

We may also choose for a service level approach instead of a cost approach. In that case, we use a target 

service level such as the probability that we do not run out of stock in the warranty period, or the fill rate, 

i.e., the fraction of demand that is satisfied from stock on shelf. For both service levels, we can use 

standard formulas from inventory management to find the appropriate spare part stock level based on a 

Normal distribution for the total demand DT(W) (cf. Silver, Pyke and Peterson [1998]). 

5.5. Algorithm 

We can construct the following algorithm based on the results from the previous sections: 

1. Set pT(s)=1 T,s 
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2. Find the policy (W) and the corresponding value functions V(w; s) from (9) 

3. Find the first two moments of       from (3), (4) and (5) 

4. Find estimates of the spare part probabilities pT(s) from (8) using a Normal approximation of DT(W), 

based on (6) and (7)  

5. Find a near-optimal stock level: Evaluate the total relevant costs for s=0, 1, 2, 3, … from (10) until the 

costs increase. Denote by s
*
 the near-optimum value of s.  

6. Optional iteration: Repeat Step 2-5 until the value of s
*
 does not change anymore. 

This algorithm minimizes the total relevant costs. If we prefer a service level approach, we can compute 

the appropriate service level in Step 5 (see Section 5.4) and find the stock level s
*
 that satisfies the service 

level target. 

5.6. Numerical experiments 

We validated our method by comparison to results from discrete event simulation. As this is just a step 

towards the more realistic model that we discuss in Section 6, we skip details on the results and refer to 

Section 7.1 for comparison to simulation for the extended model. 

A relevant question at this point is to which extent the optional iteration (Step 6 in our algorithm) has 

added value. To this end, we optimized the repair/replacement policy {(w)} and the stock level s with and 

without iterations for the following parameter settings: 

 the time to failure has a Weibull distribution with mean 1 year and coefficient of variation 0.25, 0.5 or 

0.75 

 the costs of minimal repair equal Cm = 1  

 The procurement costs of a spare product equal Cp = 1.5, 2.5 or 3.5 

 The salvage value an operational spare product remaining at the end of the warranty period (Cs) equal 

0,  25% or 50% of the procurement costs (so Cs = 0, -0.25Cp or 0.5Cp) 

 The additional costs of replacing a failed product by a new one (Cd) equal 0 

 The length of the warranty period equals W = 3 or 5 

 The number of systems in the installed base equals N = 10 or 100 

So, we have 3
3
*2

2
=108 settings. We discretized time in 300 intervals. 

We found that the feedback loop to improve the repair replacement policy {(w)} based on the spare part 

availability pt(s) has little impact. Even though the iterations may yield a little higher replacement 

frequency higher stock level, the impact on the total relevant costs is low. On average, the improvement is 

0.06% only, with a maximum of 0.47%. In 33 out of the 108 cases we found no improvement at all. So we 

conclude that a single iteration is sufficient to find a near optimal repair/replacement policy and stock 

level. Therefore, we will only use a single iteration for our extended model in the next section. 

6. Extension: partial warranty periods left at last time buy 
In the previous section, we assumed that all products in the installed base are new and have a full warranty 

period with length W at the last time buy decision. Obviously, that will not be the case in practice: We shall 

have products in the installed base with each their own remaining warranty period wW and age a0 

(products will generally not be as good as new when the last time buy occurs). At best, a company has this 

information available at the location where the last time buy decision needs to be made (usually a central 

stockpoint in the service supply chain). Alternatively, central information may only consist of (estimates 

of) the size of the installed base and the distribution of the remaining warranty period over these items. For 
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example, a company may be able to give a frequency distribution of the remaining warranty period for the 

entire installed base. The presence of limited installed base information only is plausible given our 

observations in industry.  

In this section, we use the same decomposition approach as before to analyse the multi-product model. We 

assume that the repair/replacement policy (w) corresponding to the infinite spare part supply is used 

throughout the remaining warranty period for all items. This is a simple and reasonable approach, since the 

numerical results in Section 5.6 revealed that inclusion of limited spare part supply in the optimization of 

the policy (W) hardly influences the structure and costs of the near-optimal policy.  

We follow same optimization approach as in the previous section, but extend the formulas for the 

distribution of demand for spare parts as well as the value functions to the modified situation. We start 

with the mean and standard deviation of the number of product replacements for a single product with age 

a and remaining warranty period w in Section 6.1. Next, we derive the same characteristics for the case 

when we only know the probability distribution of the remaining warranty period, since we may be able to 

estimate a frequency distribution of the remaining warranty period over the entire installed base (Section 

6.2). In Section 6.3, we show how to evaluate the value function and the total relevant costs over the 

installed base given a frequency distribution for the remaining warranty period. Based on these 

characteristics, we can apply the algorithm from Section 5.5 with our modified formulas. We validate our 

method in Section 7 by comparison to results from discrete event simulation. 

6.1. Number of product replacements given age a and remaining warranty period w 

As before, we focus on a single product, this time with age a and remaining warranty period w, where 0 ≤ 

a ≤ W-w. As explained above, we may assume that the repair/replacement policy {(w)} is given. Let us 

define  ̂       as the number of product replacements in the first T periods of the remaining service 

period w for a product with age a. In general, the product will not be as good as new at the start of the 

period. We can relate  ̂       to the number of replacements when the product is as good as new,      . 

For this, we use the random variable Z(w,a), representing the time until the next replacement replenishment 

of a product with age a and remaining warranty period w. We derive an expression for Z(w,a) below. 

The previous product replacement (if any) occurred with time w+a to go, so the current critical limit for 

product replacement equals       . So no product replacements occur in the next          periods, 

insofar this number is positive. So replacement will occur in the next T periods if (i) our repair/replacement 

policy prescribes so (          ), or (ii) the first failure at which the product should be replaced 

occurs after T. Otherwise, we have at least one replacement after Z(w, a) periods plus the number of 

replacements from that time on given that the product is as good as new. So we find: 

 ̂       {
                       

                                      
  (11) 

We find an expression for the distribution of   {        } as follows: The product should fail at the 

age               conditional on the fact that it survived until age a and until       : 

  {        }            {               (12) 

We can derive the mean and variance of  ̂       from these two expressions by conditioning on       . 

We simply apply the two well-known rules for any correlated random variables X and Y: 

 [ ]   { [   ]}         (13) 
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   [ ]   {   [   ]}     { [   ]}      (14) 

A drawback of this model is the computational effort: We have to compute the mean and variance of 

 ̂       for all combinations (T, w, a). If we discretize the warranty period in many periods, the 

computational effort increases rapidly, namely with the order                     . A solution is to keep 

the number of discrete periods limited (say up to 100). Because we focus on the situation with limited 

installed base information (see next subsection), we skip the detailed derivations for this specific model. 

6.2. Number of product replacements for an arbitrary remaining warranty period 

Suppose that we do not know the age and remaining warranty period of each product in the installed base 

at the last time buy. We just have information on the distribution of the remaining warranty period over all 

products in the installed base, for example a frequency distribution. We can use the formulas from the 

previous subsection to find the distribution of the number of products replacements  ̂     if we only 

know that the remaining warranty period is w (and not the age a). We do this by defining age as a random 

variable A and finding the probability distribution of A given the remaining warranty period w. From 

 ̂    , we can find the probability distribution of the number of product replacements  ̂  by weighing 

with the frequency distribution of the remaining warranty period. In fact, we first uncondition over the 

distribution over the age a, and next over the remaining warranty period w. 

a) Distribution of the age given the remaining service period, A|w  

We define the age A(w; W) as he age of the product if there is still a period w to go until the end of a 

warranty period with length W (wW) and the product is as good as new at the start of the warranty period. 

We do not replace the product until time (W), so until the time that we still have W-(W) to go. So we find 

for wW-(W): 

  {        }  ,
      
          

                   (14) 

If w< W-(W), one or more product replacements may occur in ((W), W-w]. The age is W-w with the 

probability  ̅         that no product is replaced in the interval ((W), W-w]. With probability        , we 

replace the product at time t[(W), W-w]. Then the age of the product is W-w-t if there have not been any 

other replacements since then, otherwise the age can be less. So we find for w<W-(W): 

  {        }  {

 ̅             

∑          {          }   
                  

          

 (15) 

Using equations (14) and (15), we can recursively compute the discrete probability distributions of all 

product ages A(w; W). 

b) Distribution of the time until the next product replacement Z(w)  

Now it is straightforward to compute the probability distribution of the time until the next product 

replacement if the remaining warranty period is w, Z(w), by conditioning on the product age A(w; W): We 

numerically combine equation (12) for Z(w; a) with the equations (14) and (15) for A(w; W). 

c) Distribution of the number of product replacements in remaining warranty period w,  ̂     

Now we can the rules of the conditional expectation and conditional variance (13) and (14) to compute the 

mean and variance of  ̂    :  
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 [ ̂    ]  ∑   {      }  {   [         ]} 
       (16) 

   [ ̂    ]     { [ ̂      ]}   {   [ ̂      ]}     (17) 

To elaborate equation (17), we first note that it is straightforward to compute the last term: 

 {   [ ̂      ]}  ∑   {      }     [         ] 
       (18) 

where    [     ] is found by combining (4) and (5) with (3), see Section 5.2. 

To compute    { [ ̂      ]}, we note that the second moment of conditional expectation is given by: 

 { [ ̂      ] }  ∑   {      }  {   [         ]}  
      (19) 

Subtracting the square of  { [ ̂      ]}   [ ̂    ] gives us the variance of the conditional 

expectation. 

d) Distribution of the number of product replacements of an arbitrary product,  ̂  

Again, we can find the mean and variance of  ̂  using the conditioning rules (13) and (14). Let us define 

qw as the fraction of products that has remaining service period w. Noting that we do not observe 

replacements after the service period (T>w), we can compute the mean and variance of  ̂  as:  

 [ ̂ ]  ∑    [ ̂    {   }   ] 
          (20) 

   [ ̂ ]     { [ ̂    ]}   {   [ ̂    ]]}      (21) 

The last term in (21) is found from 

 {   [ ̂    ]}  ∑      [ ̂    {   }   ] 
         (22) 

To compute    { [ ̂    ]}, we again start with the second moment of conditional expectation: 

 { [ ̂    ] }  ∑   { [     {   }   ]}
  

         (23) 

Subtracting the square of  { [ ̂    ]}   [ ̂ ] yields the variance of the conditional expectation. 

We find the mean and standard deviation of the total demand for spare parts in any time period T similar to 

(6) and (7). This provides us sufficient information to cover the service level approaches. However, we 

cannot compute the expected costs yet, and we cannot perform any cost minimization. We address this 

remaining issue in the next subsection. 

6.3. Value function and total relevant costs 

As before, we use conditioning to derive the value functions, taking into account that a product is not as 

good as new at the start of the remaining warranty period. We define: 

 ̂        = Value function if w periods are remaining, the product age is a and we have s spares 

We can relate this value function to another value function where the product is as good as new at the start 

of the remaining warranty period w: 
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 ̃        = Value function if w periods are remaining of the warranty period for a single product that is 

as good as new, whereas the installed base still has a warranty period W to go and we have s spares. 

Regarding the latter definition, we have to take into account that other products than the tagged product 

have a warranty period different from the tagged product, because this influences the demand for spare 

parts and thus the spare part availability for the tagged product.  

We find the relation between  ̂        and  ̃        as follows. For a product having age a, the 

repair/replacement limit        applies. That is, we will have minimal repairs until        has been 

reached, insofar that has not happened yet. So the expected number of minimal repairs is  (      )  

     if          and zero otherwise. If         , the next product replacement occurs at time t 

with probability            . Then, a spare part is available with probability          . Note that we have 

to use the total warranty period W and not the remaining warranty period w. The other terms are the same 

as before, see equation (9). Putting it together, we find for         : 

 ̂          { (      )      }

 ∑            {         [       ̃           ]

 

            

                [               ]} 

            (24) 

If         , there are no minimal repairs before the next planned product replacement. Then we find: 

 ̂        ∑      {         [       ̃           ]

 

   

                [               ]} 

            (25) 

As before, we can find the value function that we need by unconditioning over the age A|w first and over 

the remaining service period w next. This gives us the unconditional value function  ̂   . The remaining 

issue is the calculation of  ̃       . This is very similar to equation (9), with the probability that a spare 

is available as only difference: We have to take into account the total warranty period W instead of the 

remaining warranty period w. For sake of completeness, we give the expression below: 

  ̃           (    )

 ∑        {         [       ̃           ]

 

        

                [           ]} 

            (26) 

Finally, the total relevant costs TRC(s) are similar to (10): 

          ̂    (     )   *(   ̂ )
 
+      (27) 
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Where  ̂  is the total demand in the first T periods after the last time buy decision under frequency 

distribution qw for the remaining warranty period in the installed base as discussed before. 

6.4. Algorithm 

The algorithm is the same as in Section 5.5 under replacement of the equations by the corresponding 

equations that we derived in this section. In our numerical experiments, we will omit the iteration step 6 

because it is more involved in this setting and we have seen before that there is hardly any impact on the 

repair/replacement policy (w). 

7. Numerical results for the multi-product model 
 

7.1. Validation by comparison to discrete event simulation 

We constructed a discrete event simulation model in Plant Simulation 8.2 to validate our approximations 

step by step. In this section, we show the overall results of the method that we constructed in Section 6. For 

sake of comparison, we do not optimize the stock level, but we compare the key performance 

characteristics from our approximation to the simulated values for a range of stock levels to show the 

validity of our model.  

We take the following input data. The time to failure has a Weibull distribution       
 (

 

 
)
 

 with scale 

parameter α=1 and shape parameter β=2 (so the mean is 0.8862 and the standard deviation is 0.4633). As 

cost factors, we take Cm = 1, Cp = 1.5, and Cs = Cd = 0. The warranty period is W=3, which we discretize in 

100 periods. The size of the installed base is N=10 or 100. We take a range of values for the spare part 

stock level around the optimal value. For N=10, we vary s between 0 and 20. For N=100, we vary s 

between 100 and 150. We assume a uniform distribution for the remaining warranty period, so qw=1/W. In 

the Tables 4 and 5, we show the total relevant costs TRC as well as the probability of not running out of 

stock for both our approximations and the simulation. For the simulation, we used a very high number of 

replications in order to obtain accurate results (100,000 replications for N=10 and 10,000 replications for 

N=100, so the total number of warranty periods simulated equals 1,000,000 in all instances). 

 

 

TRC Pr{No stockout} 

s sim appr sim appr 

0 44.11 44.42 0.000 0.000 

4 36.20 36.93 0.002 0.004 

8 29.15 29.91 0.094 0.096 

10 27.17 27.67 0.265 0.259 

11 26.73 27.11 0.384 0.376 

12 26.71 26.98 0.512 0.506 

13 27.08 27.26 0.640 0.636 

14 27.78 27.90 0.750 0.751 

16 29.93 30.00 0.906 0.910 

18 32.64 32.72 0.974 0.977 

20 35.56 35.65 0.996 0.996 

Table 4. Approximation versus simulation for installed base size N=10 
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TRC Pr{No stockout} 

s sim appr sim appr 

100 260.62 262.16 0.005 0.006 

105 255.60 256.86 0.022 0.023 

110 251.80 252.62 0.068 0.071 

118 248.19 249.12 0.267 0.264 

119 248.15 249.06 0.307 0.300 

120 248.32 249.08 0.335 0.337 

125 249.84 250.64 0.538 0.541 

130 253.70 254.47 0.727 0.734 

140 266.02 266.77 0.949 0.953 

150 280.64 281.43 0.996 0.997 

180 325.60 326.41 1.000 1.000 

Table 5. Approximation versus simulation for installed base size N=100 

From the two tables we observe that: 

1. The accuracy of the approximations is very good 

2. We find the same optimum values for the spare part stock level using simulation and approximation  

3. The approximations error decreases with the size of the installed base and the service level 

4. The minimum cost solution has a high probability that we run out of stock before the end of the 

warranty period. The reason is that the cost penalty of running out of stock remains within reasonable 

limits, because the size of the shortage is usually small. Then we can compensate by performing 

additional minimal repairs at reasonable costs. For the cost optimal solutions in Table 4 and 5, we find 

fill rates of 0.884 and 0.942, respectively.  

 

7.2. Impact of key parameters 

We conducted an experiment with the same 108 combinations of parameter setting as described in Section 

5.6. Again, we assumed a uniform distribution for the remaining service period. The optimum stock levels 

are on average 55% of the stock levels that we found for the theoretical instances in which all products are 

new when the last time buy decision has to be taken (excluding the cases with stock level 0). The 

percentages vary between 22% and 70%, where the highest percentages occur if the coefficient of variation 

of the time to failure is low. 

We studied the impact of the key parameter settings on the following performance indicators:  

 The expected total relevant costs per product per year remaining: TRC/(N*W/2). As we have uniform 

distribution of the remaining warranty period, the average number of years remaining is W/2 

 The service level, expressed as the fill rate P2 (this provides a better indicator than the probability P1 

that no stock-out occurs during the remaining warranty period as we include the size of the shortage) 

 The ratio of the expected number of product replacements to the expected number of minimal repairs 

We summarize the impact of the experimental factors of these performance indicators in Table 6-8. This 

yields the following main findings: 

1. The total relevant costs per product per year decrease in the coefficient of variation of the time to 

failure CV, the size of the installed base N and the salvage value Cs. The costs increase in the 

procurement costs Cp. Most impact has CV, followed by CP, see Table 6. The impact of CV can be 

explained by the fact that it is costly to cover stock-outs by additional minimal repairs if the failure rate 
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function is strongly increasing. We observe in Table 7 that the fill rate is also very high if the failure 

rate function is strongly increasing (low CV). 

2. The procurement costs of spares has a high impact on all performance indicators. The impact on the 

ratio of product replacements to minimal repairs is clearly nonlinear: Raising Cp from 1.5 to 2.5 

reduces the number of replacements considerable, and a further increase has little impact. For high 

values of Cp, there are quite some cases in which only minimal repairs are performed because product 

replacement is simply too expensive. 

3. The fill rate as well as the number of product replacements increases with the size of the installed base 

N and the length of the warranty period W. This is probably due to the risk-pooling effect which makes 

it somewhat more advantageous to stock additional spares. 

Factor        Level low medium high 

CV 2.57 2.13 1.54 

Cp 1.53 2.13 2.58 

- Cs/Cp 2.11 1.72 2.41 

W 2.00 

 

2.16 

N 2.16 

 

2.00 

Table 6. Average total relevant costs per product per year 

Factor        Level low medium high 

CV 0.99 0.93 0.38 

Cp 0.92 0.75 0.63 

- Cs/Cp 0.75 0.87 0.68 

W 0.72  0.81 

N 0.73  0.79 

Table 7. Average fill rate  

Factor        Level low medium high 

CV 2.99 0.87 0.14 

Cp 2.71 0.76 0.53 

- Cs/Cp 1.18 2.18 0.64 

W 1.03  1.63 

N 1.12  1.54 

Table 8. Average ratio product replacements : minimal repairs 

8. Conclusions and further research 
In this paper, we developed methods for the joint decision of repair/replacement of products sold under 

warranty and the procurement of products for replacement at a last time buy occasion. Our key results 

consists of approximations for the performance of a multi-product model in the variants (i) all products are 

as good as new at the last time buy, (ii) the age and the remaining warranty period of all products in the 

installed base are known (iii) we only know a frequency distribution for the remaining warranty period of 

all products in the installed base. The first model is purely theoretical. The third model is most useful for 

practical applications, since detailed installed base information is generally not available at the central 

location in the supply chain where the last time buy decision has to be taken.  

Comparison to simulation results revealed that our approximations are very accurate. A sensitivity study 

on the most important parameter settings revealed insights in the effects of the key parameters on the 

system performance in terms of costs, service levels and number of product replacement versus minimal 
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repairs. In particular, the coefficient of variation of the time t failure has a high impact. A low coefficient 

of variation (i.e., a strongly increasing failure rate function) yields high costs, the necessity of a high 

service level for spares and many product replacements, because the number of minimal repairs increases 

fast if a product is not replaced upon failure. 

As a line of further research, we believe that an interesting topic is the interaction between the last time 

buy decision and the repair/replacement decision for modules of advanced capital goods. Because these 

capital goods tend to be downtime critical, system repair is often performed by replacement of a failed 

module. Because the modules can be very expensive, they are repaired if it is economically and technically 

feasible. An issue is when repair is economically justified, based on e.g. the age of the module, and when 

replacement is a better option. Repair of a module usually consists of replacing a failed component by a 

new one. We can see this as a minimal repair of the module, because the status of all other components is 

unaltered. A Under degradation, a question is when the module should still be repaired and when it should 

it be discarded and replaced by a new one. After manufacturing has been discontinued, replacement is only 

possible if a new module is available on stock. A critical difference compared to our current model is that 

the time required for model repair is typically significant and may not be ignored. Also, because usually a 

repair-by-replacement policy is applied on a system level, the repaired module is added to spare part stock 

after repair and not immediately used in the field. This means that the spare part stock consists of a 

heterogeneous set of new and used parts with different ages. The analysis of this system is far from trivial 

and an interesting topic for further research. 
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