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Abstract—Smart card transactions capture rich information of
human mobility and urban dynamics, therefore are of particular
interest to urban planners and location-based service providers.
However, since most transaction systems are only designated for
billing purpose, typically, fine-grained location information, such
as the exact boarding and alighting stops of a bus trip, is only
partially or not available at all, which blocks deep exploitation
of this rich and valuable data at individual level.

This paper presents a “space alignment” framework to recon-
struct individual mobility history from a large-scale smart card
transaction dataset pertaining to a metropolitan city. Specifically,
we show that by delicately aligning the monetary space and
geospatial space with the temporal space, we are able to extrap-
olate a series of critical domain specific constraints. Later, these
constraints are naturally incorporated into a semi-supervised
conditional random field to infer the exact boarding and alighting
stops of all transit routes with a surprisingly high accuracy, e.g.,
given only 10% trips with known alighting/boarding stops, we
successfully inferred more than 78% alighting and boarding stops
from all unlabeled trips. In addition, we demonstrated that the
smart card data enriched by the proposed approach dramatically
improved the performance of a conventional method for identi-
fying users’ home and work places (with 88% improvement on
home detection and 35% improvement on work place detection).

The proposed method offers the possibility to mine individual
mobility from common public transit transactions, and showcases
how uncertain data can be leveraged with domain knowledge and
constraints, to support cross-application data mining tasks.

I. INTRODUCTION

Many data mining tasks benefit from cross-application
datasets. Such cases often follow a simple paradigm as illus-
trated in Figure 1: The source application generates enormous
data, which intend to serve its own needs, but might also
be significantly valuable to another target application, where
data are limited or not easy to obtain. To name a few, taxi
trajectories collected for security management can be leveraged
to probe traffic flows [1]. Yet users’ search queries can be
employed to accurately detect pandemic influenza trends [2].

Mining smart card transactions gives another example that
fall in this scope. Smart cards (such as credit cards, fuel cards1,
campus cards, and public transit cards) facilitate millions of
people for digital payment and public transport ticketing in
many metropolises. Examples include London’s Oyster Card2,

1https://en.wikipedia.org/wiki/Smart card
2https://oyster.tfl.gov.uk/oyster/entry.do
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Fig. 1. The paradigm of mining cross-application data

San Fransisco’s Clipper Card3, and Beijing’s BMAC Card4.
Overwhelming amounts of transaction data are cumulated in
the fare systems every day. Such data are of particular interest
to urban planners and location-based service providers, since it
reveals urban dynamics and human mobility patterns. Several
attempts have been made in mining smart card transactions,
and show promising prospects in various applications such as
mobility modeling [3] and personalized recommendations [4,
5].

However, most existing approaches in mining transactions
of public transit smart cards suffer from the data uncertainty
and incompleteness problems. This is also a challenge to a
broad range of compelling applications dealing with cross-
application datasets: Data generated from the source appli-
cation often lacks information that is necessary to the target
application, e.g., the public transit transactions sometimes do
not include the information of trip destinations (the fare does
not depend on the destinations thus there is no intention
to record such data [5]), but knowing both the origin and
destination of a trip is crucial for mining mobility patterns. As
a consequence, a considerable amount of work either excludes
these uncertain bus trips [4] or focuses on mining aggregated
level instead of individual level patterns for uncertain bus
trips [3]. A few existing methods have been proposed to
recover public transit trips [6, 7, 8], but most of them assume
that at least the origin or the destination is given for each trip,
which is sometimes not the case.

To address this challenge, this paper provides a system-
atic solution to reconstruct fine-grained mobility history at
individual level from common smart card transactions, which
exemplifies how the data coming from the source application
can be enriched in terms of granularity and availability to
facilitate the target application. Typically, the data coming from

3https://www.clippercard.com
4http://www.bmac.com.cn
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TABLE I. EXPENSE RECORDS AND CHARGING RECORDS

(a) Expense Records

CardID Bus Boarding Alighting Time Expense Balance

1 N2 – – 2013-03-14 09:02 0.8 12.3

2 L3 31 19 2013-03-14 17:45 0.4 32.2

3 N1 – – 2013-03-15 08:45 0.4 10.6

3 L1 04 22 2013-03-16 18:20 0.8 49.8

(b) Charging Records

CardID Time Amount Balance

3 2013-03-15 18:05 50.0 50.6

4 2013-03-15 18:05 20.0 21.6

5 2013-03-15 18:07 20.0 20.4

6 2013-03-15 18:08 30.0 40.8

the source application is uncertain yet constrained—-take as
an example the smart card transactions–such constraints are
not only related to the geospatial space (e.g., the distance
that a passenger walks when transferring bus lines), and may
also be implied in the monetary space (e.g., the balance of a
card), or the temporal space (e.g., the time interval between
two transits). As shown in Figure 1, the proposed solution
reduces the uncertainty of the data generated from the source
application (here, smart card transactions), by incorporating
constraints implied in the source application as well as domain
knowledge in the target application (mobility mining).

To the best of our knowledge, this is the first solution that
can recover individual bus trips from course-grained smart card
data, where the information of both the boarding and alighting
stops may be unavailable. In summary, this paper mainly offers
the following contributions:

• We have derived a space alignment framework that coalesces
the monetary, temporal, and geospatial spaces, to segment
all the trips and extract domain specific constraints, which
significantly reduce the number of candidate bus stops, even
without the information of the boarding or alighting stops.
• We have constructed a conditional random field based
sequential model to infer the actual alighting and boarding
stops for each trip, where the extracted constraints are naturally
incorporated, and the known bus stops for some trips are
leveraged for training the model in a semi-supervised way.
• We conducted extensive experiments to validate the pro-
posed method with a large scale human labeled dataset as
ground truth. The experimental results as well as the demon-
strations validate the effectiveness of our method.

II. DATA

This section explicitly describes the smart card transaction
dataset we used in this study, which consists of two tables:
the expense records and the charging records, as illustrated
in Table I(a) and Table I(b) respectively. The dataset covers
a population of 701,250 card holders. We note that the smart
card is not limited to the payment for bus transit, but can also
be used for other types of payments in this city, such as taxis,
subways, and shopping. However, the dataset we obtained only
covers bus related expense records (but the charging records
are fully available).

A. The Expense Records

This table contains in total 22.03 million bus-trip records,
during the period from Aug. 2012 to May. 2013. Each trip
is shown as a row in Table I(a), containing the following
columns:

• CardID: the ID of a smart card, where each card has a
unique ID, and typically an individual has only one smart card.

Note that in this work, all CardIDs are anonymized and are
not associated with any personally identifiable information or
profiles, for protecting users’ privacy.

• Bus: the line number (encoded by us from the original
names) of a bus, where there are two types of bus lines as
shown in Table I(a): non-ladder-fare lines (beginning with
“N”) such as N2 and N1, and ladder-fare lines (beginning
with “L”) such as L1 and L3. If you take a non-ladder-fare
bus, the fare is identical for the whole line regardless of where
you get on or get off the bus, thus you are only required to
swipe the smart card once you get on the bus. Yet for ladder-
fare bus lines, since the fare is calculated according to the
distance between the boarding and alighting stops, you have
to swipe the card twice: one swipe at the boarding stop, and
the other at the alighting stop.

• Boarding and Alighting: the codes of the boarding and
alighting stops. This information is only available for ladder-
fare lines, since the fare of the non-ladder-fare lines is fixed
as mentioned above, thus the public transport authority does
not record the boarding nor alighting stops in the billing
system. We note that even for ladder-fare lines, the recorded
information is only a code of the bus stop, which identifies
how long (in kilometers) the bus stop is apart from the bus
stop with the code 0, where the 0-coded stop is unknown to
us. That means, the direction of a bus line is not observable,
since either the departure stop or the terminal stop of a bus
line can be coded with 0.

• Time: the exact time that the fee of a bus trip is deducted
from the smart card, which also depends on whether it is a
ladder-fare line: For non-ladder-fare lines, the recorded time
is the moment that you swipe the smart card when you get on
the bus at the boarding stop, while for ladder-fare lines, it is
the moment before you get off the bus at the alighting stop.

• Expense: the expense of a trip. For non-ladder-fare lines, it
is a fixed amount, but for ladder-fare lines, it varies according
to the distance between the boarding stop and the alighting
stop, which can be calculated directly from the boarding
column and the alighting column in the table, e.g.,

e = a+ b ·max(|boarding − alighting| − c, 0), (1)

where e is the expense, and a, b, c are system parameters
varied for different bus lines. It follows that if the distance
between boarding and alighting stops is less than or equal
to c kilometers, you should pay a, otherwise, you should pay
additional b for every extra kilometer. In such a way, the whole
fare system considering all possible boarding/alighting stops
looks like a “ladder” (that’s the reason it is called ladder fare).

• Balance: the remaining balance of the smart card after a
trip.
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B. The Charging Records

To maintain the usage of a smart card, people typically
recharge it when necessary. The charging record, as exem-
plified in Table I(b), has a simple schema and is easy to
understand. Our dataset contains 5.93 million charging records,
each of which includes the columns of CardID, Time (the
time you charge your smart card), Amount (how much you
charge this time), and Balance (how much you have in the
smart card after this charging).

C. Road Network

The road network G is a directed graph G = (V,E), where
V is a set of nodes, representing the terminal points of road
segments, and E is a set of road segments. Each road segment
e ∈ E contains the information of limit (maximum) driving
speed. The road network we used contains 148,110 nodes and
196,307 road segments.

D. Data Denoising and Data Labeling

Through a public map API5, we can search for the geo-
coordinates of the bus stops of each bus line in this city, as
well as its pricing information (i.e., we obtain the parameters
in Eq. (1) for the bus line), by providing the original bus line
names in the expense record. Nevertheless, there are still some
bus lines which we failed to find pricing information (95 lines)
or the bus stop geo-coordinates (488 lines), since sometimes
the name is not complete or ambiguous. Fortunately, these bus
lines only account for a small part of all the expense records
(about 20%) in the transaction data, as shown in the statistics
of Table II. Therefore, we removed the records associated with
these “unknown” bus lines in our study.

In addition, we conducted a data labeling program re-
cruiting 102 selected participants to label the specified most
frequent ladder-fare lines. In this 4-months program (from
Dec. 2012 to Mar. 2013), each participant was provided with
a free smart card, and her expense of daily bus transit was
reimbursed for labeling the data. Specifically, after signing
a consent form regarding the privacy and legal issues, each
participant was required to manually record her every trip
paid by the smart card during the 4 months, and label the
corresponding expense records (as shown in Table I(a)) in
the transaction data, indicating the names of the boarding and
alighting stops, as well as the boarding and alighting time.

TABLE II. STATISTICS OF BUS LINES AND EXPENSE RECORDS

line type #lines ratio of records

lines without coordinates 95 4.16%

lines without price info 488 16.84%

non-ladder-fare 270 36.62%

labeled ladder-fare 124 26.54%

unlabeled ladder-fare 288 15.85%

As described in Section II-A, knowing the direction of a
ladder-fare line is equivalent to knowing the mapping between
codes and the real names (thus the locations) of the stops.
We term these ladder-fare lines as labeled lines. If a trip
recorded in the expense record belongs to a labeled line,

5http://api.amap.com

Fig. 2. Labeled ladder-fare bus lines

the alighting/boarding stops are called labeled stops of this
labeled trip. As a result, we find out the directions of 124
most frequent ladder-fare bus lines, as shown in Table II. The
labeled lines cover more than 26% of all trips recorded in the
expense records, and accounted for more than 62% ladder-
fare trips (recall that alighting and boarding stops for non-
ladder-fare lines are not even recorded in the raw transaction
data). Figure 2 plots all the labeled bus lines (colored blue),
where the underlying road networks (colored gray) delineate
the urban area of this city. Clearly, the labeled lines cover a
majority of the urban area. However, our main challenge is
how to leverage these partially labeled trips to recover the rest
(and much more) unlabeled trips.

III. METHODOLOGY

There are three parallel spaces in the transaction data:
the monetary space M, the temporal space T , and the
geospatial space S .

The balance, charging amount, and expense of a trip are
associated with the monetary space, for a given smart card. As
shown in the above line of Figure 3, the balance of a user’s
smart card rises after the user charges the card, and declines
after a trip, where the timestamps of expense and charging
are points in the temporal space (shown in the middle line
of Figure 3). As described in Section II-A, for non-ladder-
fare trips, the timestamps reflect the boarding time while for
ladder-fare trips, they represent the alighting time.

For a certain trip (the timeslot of each trip is denoted as a
colored solid line in the middle of Figure 3), each intermediate
point in the temporal space is aligned with a spatial point
located in the geospatial space, restricted by the bus line of
this trip. In particular, the boarding and alighting timestamps
can be mapped to the boarding and alighting stops respectively.
Note that the doted lines in the temporal space denote that the
time flows but no bus trips are recorded, e.g., when the users
stay at home during night or work at office during daytime.

By superimposing the three spaces, the goal of recovering
individual bus trips can be generally described as: To identify
the mapping from the temporal space T to the geospatial space
G for each trip recorded in the expense records E, given the
charging records C in the monetary space M and a specified
CardID.

A. Preliminary

If the smart cards can only be used for bus trips, then
we can continuously track a user’s balance without any dis-
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Algorithm 1: Segmentation

Input: CardId d, expense records E, and charging records C

Output: Segments S

1 I ← {1}; /* I = {Ii}
|I|
i=1

is the index of split points */

2 E ← select * from E where CardID=d order by time; /* E = {Ei}
|E|
i=1 */

3 C ← select * from C where CardID=d order by time; /* C = {Cj}
|C|
j=1 */

4 ci ← 0, i = 1, 2, . . . , |E|;
5 i ← 1, j ← 1;

6 while i ≤ |E| − 1 do

7 if j ≤ |C| and t1 < ξj < ti then

8 ci ← ci + c(ξj);

/* c(ξj) can be directly read from Cj */

9 j ← j + 1;

10 else

11 i ← i + 1;

12 if bi + ei �= bi−1 + ci−1 then /* bi and ei can be

directly read from Ei */

13 I ← I.add(i);

14 return S = {Sk}
|S|
k=1

, where Sk = {Eik
}
Ik+1−1

ik=Ik

continuous points. However, it is not the case for our data.
In fact, the card holders can use their smart cards for other
payments, such as taking a taxi or a private car, or even
shopping. Though we have the full information of the charging
records, the expense records only include bus related expense.
Meanwhile, the “dirty” bus lines (without information of price
or coordinates) are removed from our data as described in
Section II-D. In order to make sure that the consecutive
records are really two consecutive bus trips with known price
information and coordinates (see Section II-D), we partition an
individual’s expense records into segments (which is essential
for our modeling later), defined as below.

Definition 1 (Segment): Let R = {r1, r2, . . . , rn} denote
the expense records for a given smart card, with timestamps
t1, t2, . . . , tn ∈ T sorted in the chronological order, and
expense e1, e2, . . . , en ∈ M (as recorded in the expense
records). Let ξ1, ξ2 . . . , ξm be the timestamps when the smart
card is charged with amount c(ξ1), c(ξ2), . . . , c(ξm) ∈ M. Let
b(t) be the balance of the smart card at time t ∈ T . R is called
a segment if the following condition holds for 1 ≤ i ≤ n− 1:

bi+1 + ei+1 = bi + ci, (2)

where bi is the balance of the smart card right after the ith
trip6, i.e., bi = limt→t

+

i
b(t) , and

ci =
∑

ti<ξj<ti+1

j=1,2,...,m

c(ξj), (3)

which denotes the total charges between the ith and the (i +
1)th trip.

Intuitively, a segment is a sequence of expense records
where the balance of the card can be continuously tracked
without any missing expense records. Note that we do not
explicitly segment the records to days as done in many existing
approaches [6, 7], instead, a segment can contain many days
and nights as long as no missing points are found. Based on
Definition 1, we propose an algorithm to perform the segmen-
tation for a certain smart card with CardID d, as presented
in Algorithm 1. This algorithm incrementally calculates ci

6We take the right limit here since b(t) is a step function as depicted on
the top part of Figure 3.

t1 t2 t3 t4 t5ξ1 ξ2

Monetary

Temporal

Geospatial

Fig. 3. Space alignment

defined in Eq. (3) for each record of d, and checks whether
condition (2) holds in place. Given the expense records E and
charging records C of a certain card in the chronological order,
the segmentation is obtained in O(|E|+ |C|) time.

B. Constraints for Transitions

Recall that in our data, there are non-ladder-fare trips and
ladder-fare trips, where the directions are known only to part of
the ladder-fare trips (by labeling, as described in Section II-D).
Let S = {l1, l2, . . . , lm} denote a segment with m trips in
chronological order, where li = (oi, di) is the origin (i.e.,
boarding stop) and destination (i.e., alighting stop) of the
ith trip. Assume all the trips in S are not labeled (without
any information of the directions), and li has ni bus stops.
Assuming the alighting stop is different from the boarding stop
for a trip, it follows that in the worst case, there are in total
ni(ni−1) possible trips (pairs of boarding-alighting stops) for
li. Thus we have

m∏
i=1

ni(ni − 1) (4)

candidates for S.

However, by considering several constraints in the mon-
etary space, temporal space, and geospatial space, we can
exert several constraints to dramatically reduce the number of
candidate trips, even if all the trips are not labeled. In fact, there
are two types of transitions (displacements in the geospatial
space) in a segment, defined as follows:

Definition 2 (Inner-Transition and Outer-Transition):
Given a segment S = {l1, l2, . . . , lm} where li is a bus trip
from boarding stop oi to alighting stop di, we call each
transition oi → di an inner-transition, where the movement
of a user is strictly restricted by the bus (along the bus line).
We call each transition between two consecutive trips, i.e.,
di → oi+1, an outer-transition.

We introduce the constraints for both of the two transitions.

• Proximity Constraints [for Outer-Transitions].

Given the limits of walking speed and walking duration,
as well as the highly developed transportation systems in
metropolises, a citizen’s walking scope is usually limited. This
is also well supported by results in existing literatures, for
example, Bassett Jr et al. [9] reported that nowadays American
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Fig. 4. Proximity constraints and fare constraints

adults walk on average 5119 steps (about 2.5 miles) per day.
Another recent study showed that more than 97.6% walking
trips of Sydney citizens are less than 2km [10], using 3
years data of Sydney Household Travel Survey with 24,806
respondents.

As shown in Figure 4 (a), l1 and l2 are two consecutive bus
trips of user u. Since u’s total walking distance and walking
duration are often limited in a day. If u only walk on feet
during the time between l1 and l2, we can assume that a user
u’s walking scope is bounded in a circle of radius r centered
on the alighting bus stop A, and also within a circle of radius
r centered on the next boarding stop B. This is because people
typically chooses to alight at the closest bus stop to her real
destination, and board at the closest bus stop to her origin (of
walking). Note that during the time between A and B, u may
either stay at some places (e.g., staying at home during night
or working in the office), or walk around (e.g, walking along
a shopping street), but still, the walking scope is bounded and
the above assumption holds.

By the triangle inequality, it is straightforward to show that
the distance between A and B is less than 2r, as illustrated in
Figure 4 (a). In other words, if a user only travel on feet during
an outer-transition, the distance between the alighting stop of
the first trip and the boarding stop of the next trip should
be less than 2r, where the number of such possible outer-
transition pairs is denoted as k1. Using the labeled data, we
found that the distance of outer-transitions are less than 3.2km
for all the participants. In our experiments, we set r = 2km.

Note that k1 is possible to be 0 for certain consecutive trips
in a segment (obtained through Algorithm 1), which indicates
that the user takes other vehicles such as private cars or taxis,
instead of walking during the intermediate time between l1
and l2 (although the segmentation procedure eliminates non-
bus outer-transitions that users pay by smart cards, people still
can pay for the taxis by cash). We term such outer-transition
as a drifting point. In this case, we snip the segment at the
drifting point to two pieces, and consider each of them as a
segment.

As illustrated in Figure 4 (b), without loss of generality,
we assume the number of outer-transitions of l1 → l2, l2 →
l3, . . . , lm−1 → lm to be k1, k2, . . . , km−1 and lji is the jth
bus stop of bus line li, thus the total number of candidates for
S should be at most

(n1 − 1)(nm − 1)
m−1∏
i=1

ki. (5)

Note that for any two bus lines li and li+1, ki is typically much
smaller than ni(ni−1). Even if li and li+1 are the same bus
line (with different directions), ki should be less than nir/Li,
where Li is the total length of the bus line that trip li belongs
to, given the bus stops are uniformly distributed along the bus
line. In most cases, ki equals to the number of “transfer stops”
between li and li+1 for i = 1, 2, . . . ,m− 1, which makes the
candidates significantly less than Eq. (4).

In practice, we indexed the bus lines using an R-tree, and
calculated the ki pairs for the outer-transition between li and
li+1 using a range query. After each calculation, we stored
the results in a hash table with key (li, li+1), thus next time
we can directly retrieve the result from the hash table if we
encounter this outer-transition later in the expense records.

• Fare Constraints [for Inner-Transitions].

Since we have crawled the fare system (price information)
of all the trips that we deal with, we can further reduce the
number of inner-transitions by considering the actual expense
deducted from the smart card for each trip, after exerting the
proximity transition. For example, if the expense calculated by
Eq. (1) (using parameters obtained by the method described at
Section II-D) for a candidate inner-transition (oi, di) is larger
than the actual expense recorded, we prune this candidate.
Here, the distance between two bus stops is calculated in
advance using the road network distance for all the bus lines
(actually, for each stop, we only need to calculate the distance
to the first stop of this bus line, and the other mutual distances
are easy to obtain) to avoid replicated computation.

Note that the fare constraints not only work for the first
and last inner-transition of a segment as shown in Figure 4
(b), but also help reduce the inner-transitions in between of
two outer-transitions. For example, as illustrated in Figure 4
(c), suppose (l11, l

1
2), (l

2
1, l

2
2) are 2 candidate outer-transitions

from trip l1 to trip l2, and (l32, l
1
3), (l42, l

2
3) are 2 candidate

outer-transitions from trip l2 to trip l3. Before exerting the fare
constraints, there are 4 possible inner transitions in l2: l12 → l32,
l12 → l42, l22 → l32, and l22 → l42, however, by checking the
price information shown in the ladder fare table, we find that
the fare from l2 to l3 is less than the actual expense recorded.
Therefore, l22 → l32 is not a possible inner-transition for l2, thus
the total number of candidate transitions from the alighting
stop of l1 to the boarding stop of l3 is decreased from 4 to 3.

• Temporal Constraints [for Inner and Outer Transitions].

Although we have only one timestamp for a trip, we can
leverage it to further weed out unreasonable candidates. Let
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�t1 �t2 �t3

t1 t2 t3

o1 o2 o3d1 d2 d3

Fig. 5. Temporal constraints

x1 = (l1, l2), x2 = (l2, l3),

o1 d1 o2 d2 o3 d3 o4

y1 = (o1, d1, o2),y2 = (o2, d2, o3),

x3 = (l3, l4),

y3 = (o3, d3, o4), ...

...
l1 l2 l3 l4

observation sequence:

hidden sequence:

Fig. 6. Constructed observation sequence and hidden sequence in the linear-chain CRF

t1, t2, t3 be the timestamps of three trips li = (oi, di), for i =
1, 2, 3. Recall that for ladder-fare trips, the timestamps are the
alighting time, and for non-ladder-fare trips, the timestamps are
boarding time. As shown in Figure 5, l1 and l2 are non-ladder-
fare trips, and l3 is a ladder-fare trip. The minimum travel time
between oi and di, denoted as �ti can be calculated using the
road network, where the travel speed is substituted with the
limit driving speed (refer to Section II-C). Consequently, the
following conditions should hold for this example:⎧⎨

⎩
�t1 ≤ t2 − t1, (6)

�t2 +�t3 ≤ t3 − t2. (7)

. . .

Thus the candidates which violate the above conditions are
removed.

Similar to the fare constraints, temporal constraints take
effect with both the beginning (ending) inner-transitions and
the inner-transitions in between of two outer-transitions. To
avoid duplicate calculations, we also pre-compute all the
minimum travel time between a given bus stop to the 0-coded
bus stop of each bus line (thus we have the minimum travel
time between any pair of bus stops), and store the results using
a hash table.

Note that the temporal constraint in Eq. (6) differs from
that of Eq. (7) and all previous types of constraints in terms
of the number of transitions (either inner-transition or outer-
transition) involved. Actually, the proximity constraints are
associated with 1-step outer-transition; the fare constraints are
associated with 1-step inner-transition, which is also true for
temporal constraints with the form of Eq. (6). The constraints
with the form as Eq. (7), however, are described using 2-
step inner-transitions and 1-step outer-transition. Next, we
introduce a unified model to deal with all the above constraints,
and incorporate the labeled trips (note that until now we do not
rely on any labeled data) to infer the most possible candidate
for a segment.

C. Semi-supervised CRF with Constraints

1) Model: Conditional Random Fields (CRFs) [11] have
been successfully applied to many sequential labeling ap-
plications in data mining and machine learning, where the
most widely used one is the linear-chain CRF. A linear-
chain CRF is an undirected graphical model, which de-
fines a conditional probability over a hidden label sequence
y = {y1, y2 . . . , ym} conditioned on an observation sequence
x = {x1, x2, . . . , xm}, with the form

pλ(y|x) =
1

Z(λ)
exp

(
m−1∑
i=1

K∑
k=1

λkfk(yi, yi+1,x)

)
, (8)

where {fk(·)}
K
k=1 are real valued feature functions (which are

typically binary functions), {λk}
K
k=1 are parameters, and Z(λ)

is a normalization function (also called partition function)

Z(λ) =
∑
y

exp

(
m−1∑
i=1

K∑
k=1

λkfk(yi, yi+1,x)

)
. (9)

Actually, given the candidates generated for a segment, our
problem can be formulated as a sequential labeling problem.
Specifically, we construct a linear chain CRF as follows. Given
a segment S = {l1, l2, . . . , lm}, let x = {x1, x2, . . . , xm−1}
be the observation sequence, where xi = (li, li+1) for
i = 1, 2, . . . ,m − 1. That is, the outer-transition between
consecutive lines is regarded as a node in the CRF chain (note
that here each node is a pair of trips, as shown in Figure 6).
Later, let yi = (y1i , y

2
i , y

3
i ) denote the triple (oi, di, oi+1) for

i = 1, 2, . . . ,m − 1, which is an inner-transition coalesced
with an outer-transition (we will crystallize the reason for this
later). The sequence y = {y1, y2, . . . , ym−1} is thus the label
sequence.

With fully labeled sequences, CRF is typically trained by
maximizing the penalized conditional log-likelihood on the
training sequences D with length N

L(λ,D) =
N∑
i=1

log p(y(i)|x(i))−

∑
k λ

2
k

2σ2
, (10)

which can be optimized using the gradient-based method or
Expectation Maximization (EM) [12]. Here, to avoid over-
fitting, we include a Gaussian prior with zero-mean and
variance σ2=10.

However, in our dataset, a significant number of segments
are partially labeled (for certain bus lines), a semi-supervised
training approach that can take the full use of available labels
is more preferred. More importantly, rich prior knowledge and
constraints we derived are not thoroughly leveraged. Therefore,
we employ the Generalized Expectation Criterion [13] as
an objective function, which enables semi-supervised CRF
training with constraints as side information. Given a real-
valued constraint function G(y,x) and unlabeled data U , the
Generalized Expectation Criterion is given by

O(λ,D,U) = L(λ,D)−S(Ep̃(x)

[
Epλ(y|x) [G(y,x)]

]
), (11)

where p̃(x) is the empirical distribution over unlabeled data
U , E[·] stands for the expectation, and S is a score function7

expressing the distance between the model expectation and

7We employed the square distance as the score function in our implemen-
tation, following [14].
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a targeted expectation. The optimization of Eq. (11) can be
performed using gradient-based methods [14].

2) Features: Compared with other sequential models such
as Hidden Markov Model (HMM), CRF is more flexible in
incorporating features, e.g., the transition from one label to
another can also depend on the whole observation sequence. As
such, designing features is the most critical part for applying
CRF to various applications.

We use both uni-gram features and bi-gram features. For
each uni-gram label yi, the features we used for training
include:

• the indicator function of li and xi;
• timestamp ti, which is discretized to the following time
slots: 12am-6am, 6am-9am, 9am-12pm, 12pm-5pm, 5pm-8pm,
8pm-12am (considering typical commute patterns in the stud-
ied city);
• the trip type (non-ladder or ladder);
• time interval �t = ti+1 − ti, which is discretized to hours;
• expense of trip li, which is integer multiples of the unit
price.

The bi-gram features include:

• the indicator functions of (yi, yi+1), (xi, yi+1), and
(xi, yi, yi+1);
• time interval �ti+2 − ti, which is discretized to hours;
• whether y3i = y1i+1;
• whether li and li+2 are the same bus line.

3) Constraints: Our constraints are categorized into two
types: one-label constraints and two-label constraints. one-
label constraints, which restrict the candidates of yi, are asso-
ciated with both inner-transitions and outer-transitions, such as
proximity constraints, fare constraints and temporal constraints
with the form of Eq. 6. One-label constraints eliminate certain
states given a specified observation, e.g., outer-transitions with
a distance larger than 2r. Two-label constraints include the
temporal constraint with the form of Eq. (7), and

y3i = y1i+1, ∀i = 1, 2 . . . ,m− 1, (12)

where yi = (y1i , y
2
i , y

3
i ). This is to ensure the chain is

connected as shown in Figure 6. For one-label constraints,
we assign a high probability to the labels which satisfy the
one-label constraints, following the method described in [15];
and for two-label constraints, a probability transition matrix
[14] is built for calculating the target expectation, based on
the Kirchoff matrix (refer to [14] for details) and whether the
two-label constraints are satisfied.

As a result, all the constraints we derived before are
incorporated into this framework succinctly and consistently,
which is the reason that we model a triple as a node in a linear
chain CRF. Regarding each boarding or alighting stop of a bus
trip as a hidden state could yet be an alternative way to model
a segment, which forms a high-order CRF, however, additional
computation cost is exponential to the order of the CRF [16]
(in our scenario, the order should be 3 due to the distinct
properties of inner and outer transitions). On the contrary, by
connecting the inner and outer transitions with a triple, we
can naturally restrict the candidates to a relatively small set
and thus considerably accelerate the inference. In addition,

our model does not need to separately tackle different higher-
order constraints and features with various forms, which might
clutter the model, yet some intrinsic prior knowledge and strict
conditions, such as fare constraints between inner-transitions,
are naturally leveraged to pre-exclude irrelevant labels and
redundant features.

IV. EVALUATION

A. Settings

The dataset we used is described in Section II. Here we
introduce 1) which baseline methods were compared with, and
2) how we evaluated these methods.

1) Baselines: We compared our method (semi-supervised
CRF with constraints generated using space alignment, short-
ened as “CRF+C”), with the following baselines.

• CRF without constraints (“CRF” for short). This algorithm
uses the same setting as CRF+C, except that it does not
incorporate constraints. This is for evaluating whether the
constraints are useful to detect the bus stops in a trip.
• Trip-Chaining with maximum frequency (“TC+MF” for
short). The Trip-Chaining (TC) algorithm is adopted by
most existing approaches [6, 8, 17, 18] for inferring origin-
destination pairs. TC is based on several explicit assumptions
such as the proximity between consecutive trips, and “the first
trip of a day starts from the alighting station of last night” [6].
Since TC requires at least one stop is known for all trips, in
case TC fails to find the stop of some trip in a segment, we
assigned it with the most frequent label in the labeled test data.
• Trip-Chaining with maximum similarity (“TC+MS” for
short), which is a state-of-the-art variation of the trip-chaining
method [7]. A major difference between TC+MS and TC is
that TC+MS assigns similar destinations (origins) to trips that
have similar origins (destinations) when other rules in TC fail.

2) Criteria: We measured the performance of each algo-
rithm using accuracy, calculated by

Accuracy =
correctedly identified unlabeled bus stops

unlabeled bus stops
.

(13)
For each individual, we calculate the accuracy after running a
test for each method. The overall accuracy is calculated by an
average of 10-fold cross-validation.

B. Evaluation on All Card Holders’ Data

We first evaluated our method on all card holders’ data
using labeled trips as the testing set (otherwise, the ground
truth is not known). Specifically, we first selected fully-labeled
segments (of which we removed 8.5% segments with length
less than 3) after performing Algorithm 1. In order to reveal the
performance of these methods on both labeled and unlabeled
trips, we randomly removed labels for 70%–90% trips, which
resulted in the remaining 10%–30% labeled trips to fit the same
scale of labels as the whole dataset (note that in the entire
dataset 26.54% trips are labeled). Next, we further randomly
removed a bus stop (either boarding or alighting) for each trip,
so as to compare our methods against TC-based approaches
(where they require at least one bus stop is known for each
trip). Then, we conducted 10-fold cross-validation to calculate
the accuracy of each method.
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Fig. 7. Overall accuracy, probability density function, and cumulative distribution function of all users’ results
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Fig. 8. Overall accuracy, probability density function, and cumulative distribution function of participants’ results

Figure 7(a) plots the overall accuracy, where the x-axis is
the proportion of labeled bus stops. It is clear that our method
significantly outperforms the competitors. For example, even
with only 10% labeled bus stops, CRF+C achieves a high
accuracy at 0.78, while the performance of other methods,
especially the TC+MF method, rely much more on the labeled
data. Note that the result of TC+MS is in good agreement with
the reported (66%) performance mentioned in [7].

Next, we investigated the distribution of accuracy among
all users. Figure 7(b) and Figure 7(c) respectively show the
probability distribution function (pdf) (fitted from the his-
togram) and the cumulative distribution function (cdf) of the
accuracy among all users. The results validate the advantage
of our method, e.g., Figure 7(b) shows that the accuracy of our
method still has a high probability density within the interval
[0.8, 0.9].

C. Evaluation on Completely Labeled Participants’ Data

As mentioned in Section II-D, the 102 participants manu-
ally labeled all their bus trips, including non-ladder-fare and
ladder-fare trips. Basic demographic information of their age
and gender is presented in Table III. Thus we have both
non-ladder-fare trips and ladder-fare trips in the testing set,
which is exactly the situation in the real data. Similarly, as
the above experiment, we constantly fed 10%-30% (randomly
chosen) trips with the boarding or alighting stops as labels,
then compare all methods using 10-fold cross validation.

As shown in Figure 8, the accuracy, pdf and cdf exhibit
consistent trend with the previous results in Figure 7. We found
that the accuracy for all the methods are actually a little lower
than the previous experiment, however, our method still shows
clear advantage compared with other methods. In particular,

TABLE III. DEMOGRAPHICS OF THE PARTICIPANTS

gender age

male female 19-24 25-30 31-36 37-47

57.6% 42.4% 39.4% 45.5% 10.6% 4.5%

the overall accuracy of our method still exceeds 0.75 when we
have 25% labeled stops.

D. Detection of Important Places

As a demonstration, we show how the enriched smart card
transactions can be utilized to mine important locations such
as home and work places of users. As shown in Figure 7, the
overall accuracy of our method is higher than 0.78 given the
25% labeled stops. Hence, we applied the proposed method
to the entire dataset, and reconstructed mobility history for
each individual. We employed the clustering-based method
proposed in [19] to identify home and work places. Later,
we performed a 2D Kernel Density Estimation (KDE) given
the detected home and work places, as shown in Figure 9(a)
and Figure 9(b) respectively. The identified hot spots for
both home and work places coincide well with the local
household surveys. For the 102 participants, we compared the
identified home and work places with the real ones provided by
themselves, where we successfully identified 96 home places
and 92 work places8. However, if we directly use the smart
card data without applying our space alignment approach, only
51 home places and 68 work places are successfully identified,
i.e., the space alignment approach increases the performance
by 88% for home identification and 35% for work place

8According to our privacy agreement with the participants, we cannot show
the density distribution of their home and work places (as Figure 9) here.
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(a) home (b) work

Fig. 9. Identified distribution of home and working places of all card users
using 2D Kernel Density Estimation

identification. The reason behind is that many bus stops that
are close to the real home or work places, are actually derived
from the non-ladder-fare trips, which are implicitly learned by
the proposed method.

V. RELATED WORK

A. Human Mobility Analytics

Human mobility is attracting more researchers’ attentions
thanks to the increasing availability of mobility data. Recent
studies converge to suggest that human mobility is highly
regular, predictable, and unique. Ground-breaking work on
studying human mobility patterns from large scale mobile
phone traces is established in [20]. In a series of work, they
reported that human mobility patterns show high degree of
spatial and temporal regularity, and each individual has a
significant probability to return to a few highly frequented
locations. Based on a 3-month mobile records captured from
50,000 individuals, Song et al. [21] suggested that human
mobility has a predictability of 93%. More recently, de Mon-
tjoye et al. [22] mathematically formulated the uniqueness
of mobility, and showed that four spatial-temporal points are
enough to uniquely identify 95% of the individuals, based on
an investigation of a 15 months mobility data covering 1.5
million individuals.

Mining human mobility data has also enabled a variety of
emerging applications. For example, Yuan et al. [1] introduced
a driving direction system with the intelligence mined from
local taxi drivers. Ge et al. [23] presented a recommendation
system in order to maximize the profit of a taxi driver, based on
taxi trajectories. Hoh et al. [24] designed a time-to-confusion
metric and a cloaking algorithm to help users avoid privacy
risks based on vehicle GPS trajectories. Meanwhile, mobility
data have been utilized for studying several research topics
in social science such as friendships and social ties [25]. For
example, Cranshaw et al. [26] showed that human mobility
patterns have strong connections with the structure of their
underlying social network.

In this paper, motived by the above work, we restrict
ourselves to the problem of recovering human mobility data
from transaction data associated with bus trips. Compared with
other kinds of human mobility data such as mobile phone
traces or check-ins, public transit data characteristically reveal
individual’s daily transits between important locations such
as home and work places, which may complement existing
approaches and findings founded on other types of mobility
data. Additionally, the methods provided in this paper might

help identify new opportunities in human mobility analytics
dealing with cross-application data.

B. Mining Smart Card Transactions

Smart cards and integrated ticketing are supported by pub-
lic transit operators in many cities, which provides convenience
to both citizens and governments for public transit ticketing.
The overwhelming usage of smart card makes the transaction
data invaluable resources for understanding urban commute
patterns and human dynamics.

In transportation research area, numerous studies have
attempted to mine users’ travel behaviors from smart card
transactions [27], For example, Utsunomiya et al. [28] reported
several findings on walking access distance, frequency and
consistency of daily travel patterns, and variability of smart
card customer behaviors by residential area, based on smart
card transaction data in combine with card holders’ personal
information, and proposed to improve user trust in transit
service, and adjust fare according to users’ needs. Recently,
[29] investigated the crowdedness of London Underground by
mining the spatial-temporal patterns from the Oyster Card
Data. Their results indicate that the crowdedness is highly
regular and predicable, and suggest users slightly adjust their
travel time to avoid congestion peak. Pelletier et al. [30]
provided a comprehensive review of recent literatures on the
usage of smart card data in public transit planning.

Existing work on mining smart card transactions, especially
bus trip transactions, often encounters the problem of data in-
completeness. This is because most Automatic Fare Collection
(AFC) systems record the bus trip boarding location coarsely
at the bus-route level (without the information of specific
boarding and alighting stops). For example, as mentioned in
[5] and [8], the London Oyster Card data only contain the
information of origin and start time for bus trips, since the
pricing of a bus trip does not depend on the destination (but
for rail/tube trips, the destination is also recorded). Similarly,
in the dataset used by [3] to mine collective mobility patterns,
the bus trips only have information of boarding time and travel
fare.

Several approaches have been proposed to infer the board-
ing stops [6] or alighting stops [7] of a bus trip. Nevertheless,
these approaches still require that at least one location (either
the boarding or alighting stop) is available. For example,
Trépanier et al. [7] addressed the problem of inferring trip
destinations with smart card transactions where the boarding
stop is recorded. Most of these approaches employ the Trip-
Chaining method or its variations[6, 7, 8, 17, 18], which is
based on several assumptions, such as the users return to
the first boarding station at the end of a day [7]. Cui [6]
suggested that side information such as the Automatic Vehicle
Location (AVL) data could be leveraged to infer the origin and
destinations when location information is not available in the
smart card transactions.

Our work is different from the above methods in the follow-
ing aspects: First, we provided a space-alignment framework
to coalesce the information in the monetary space (rarely con-
sidered before), temporal space (with a historical view instead
of separated days adopted by many existing approaches), and
geospatial space, which is flexible enough to be applied to
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different datasets with various types of missing information,
e.g., even for trips that neither alighting nor boarding stops
are available, our approach can still infer the origins and
destinations with a high accuracy (75%), which improves the
state-of-the-art with 10% when labels are rare (less than 25%).
Second, instead of using hard-coded inference rules and as-
sumptions, we employed a probabilistic model, which naturally
incorporates domain constraints, and inherits the advantage of
statistical modeling to achieve a global optimization. Finally,
due to the lack of large-scale ground truth data for testing the
accuracy of a model, few existing approaches have evaluated
the rate of correctly inferred bus stops. In contrast, we directly
validated the proposed method using a large scale human-
labeled data, where every trip that appeared in the transactions
during the 4 months is labeled by the participant herself.

Nevertheless, our method is motivated by existing ap-
proaches, and we believe the proposed method as well as
the reconstructed data would be beneficial for urban planners,
transportation engineers, and researchers in related fields.

VI. CONCLUSION

We have provided a systematic way to recover individual
mobility history from urban scale smart card transactions. By
aligning data in different dimensions, we formulated several
underlying constraints from the transaction data, and incor-
porated these constraints into a semi-supervised probabilistic
model. Extensive experiments validated that the proposed
method has a considerably high accuracy given very limited
number of known alighting or boarding stops.

Although the work reported in this paper is based on a pub-
lic transit transaction dataset, we believe the proposed space
alignment framework can be easily adapted to other location-
related transaction data, and may also provide implications to
data miners who deal with cross-application datasets.
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