
137

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

Volume LIX 13 Number 7, 2011

DESIGN OF METHODOLOGY FOR
INCREMENTAL COMPILER CONSTRUCTION

P. Haluza, J. Rybička

Received: August 31, 2011

Abstract

HALUZA, P., RYBIČKA, J.: Design of methodology for incremental compiler construction. Acta univ. agric.
et silvic. Mendel. Brun., 2011, LIX, No. 7, pp. 137–146

The paper deals with possibilities of the incremental compiler construction. It represents the
compiler construction possibilities for languages with a fi xed set of lexical units and for languages
with a variable set of lexical units, too. The methodology design for the incremental compiler
construction is based on the known algorithms for standard compiler construction and derived for
both groups of languages. Under the group of languages with a fi xed set of lexical units there belong
languages, where each lexical unit has its constant meaning, e.g., common programming languages.
For this group of languages the paper tries to solve the problem of the incremental semantic analysis,
which is based on incremental parsing. In the group of languages with a variable set of lexical units
(e.g., professional typographic system TEX), it is possible to change arbitrarily the meaning of each
character on the input fi le at any time during processing. The change takes eff ect immediately and
its validity can be somehow limited or is given by the end of the input. For this group of languages
this paper tries to solve the problem case when we use macros temporarily changing the category of
arbitrary characters.

parser, incremental analysis, compiler, programming language, TEX

The analysis of text information belongs to the
everyday routine of a modern computer scientist.
Although today it is no longer a problem to work
with a powerful hardware equipment, there is
still room for improvement. A typical example of
the operation with high demands on the speed
of implementation needed is the source code
compilation in any programming language. The
only slight change in a high volume code can but
need not mean a complete change of program
activities. It depends on where it has been made.
For example, a text change in the notes does not
make any eff ect in the program activities and a new
compilation following this change is basically
useless. On the contrary, the variable name change
requires the compilation of almost the entire code
because it can cause a chain of error messages.

In most cases, adjustments are somewhere
between these extremes, and therefore it is not
always necessary to compile the entire source code,
which is o� en composed of thousands of lines,

again. The idea of the source code compilation in
an incremental manner is based on the fi ndings of
interdependencies between diff erent parts of the
code and the subsequent reprocessing of only those
parts that are directly aff ected by the performed
change. It is obvious that the effi ciency of the
compilation incremental method rises with the
increase in the code size.

The aim of this paper is to outline the possibilities
of incremental compiler implementation both for
common programming languages having constant
set of lexical symbols and also for specifi c types of
languages having variable set of lexical symbols.
The typical representative of the second group
of programming languages is for example the
professional typographic system TEX.

Although the problem of the incremental
compilation of common programming languages
(or at least an incremental approach to some phases
of the compilation) is resolved today, for the group
of languages with a variable set of lexical units

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357314605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

138 P. Haluza, J. Rybička

this problem has not been solved yet. This paper
therefore tries to discuss options and solutions in
this so far insuffi ciently explored area.

Overview of literature and the present state
The implementation of an incremental compiler

in the early phases is not diff erent from the common
one and is based on a sophisticated theory of
formal languages and compilers dating back to
the 1950s. For the study of formal languages one
can use a number of now almost historic and
predominantly foreign publications, which are
in Czech supplemented by college textbooks of
diff erent quality levels.

To understand the principles of the theory of
formal languages for the purpose of practical
implementation of the compiler, publications
from Hopcro� and Ullman (1978) and Molnár,
Češka and Melichar (1987) are fully suffi cient.
From more comprehensive resources the fi rst
volume of the three-part set of posts (Rozenberg
and Salomaa, 1997) can be recommended. In all
the above mentioned sources can be found basic
knowledge of the theory of formal languages and
at least a theoretical procedure of the compilers
construction of conventional programming
languages. From the publications of Czech authors
(though written in English) Meduna (2000) can be
recommended.

Incremental compilation is widely spread
in text editors with syntax highlighting and in
environments of incremental compilers and
interpreters. In fact, the term “incremental
compilation” mostly means only an incremental
approach to parsing, as one of the key stages of the
compilation itself. Such incremental parser solves
the problem of reconstruction of a parse tree, a� er
the string is changed from xyz to xỹz. If we have
parse tree T for the string xyz generated by context-
free grammar G and a string ỹ, incremental parser is
trying to create a new parse tree T̃ for the string xỹz
using the minimum number of steps.

To use incremental compilation, we have to
know the results from the previous compilation,
including information about the state of the stack at
each compilation step. Computational complexity
of the incremental compiler to a large extent
depends on the chosen implementation method of
the compilation and on data structure for storing
information necessary for the new run of the
compiler. There have been suggested many methods
for incremental analysis. Algorithms of incremental
compilation of context-free language class LL (Yang,
1993; Li, 1995; Li, 1996; Shilling, 1992; Murching,
Prasad and Srikant, 1990; Ferro and Dion, 1994) and
LR (Yang, 1994; Agrawal and Detrich, 1983; Tomita,
1987; Horspool, 1990; Wagner and Graham, 1997;
Wagner and Graham, 1998; Wagner, 1998) have been
published. Melichar and Vagner (2008) published an
elementary text about how to create an incremental
parser of LL(1) languages as a part of educational
materials in English, based on previous publications

of Li (1995), but suitably accompanied by examples
and illustrations. In the Czech language similar
publications are still missing.

All mentioned publications deal with incremental
parsing capabilities for current programming
languages, i.e. languages with a fi xed set of lexical
units. In the case of a group of languages with
a variable set of lexical units, the situation is in
some respect worse. For example from the above
mentioned representative of this group, the
typographic system TEX, it is to some extent due to
the fact that the process of compiling of the source
code in TEX is understood and implemented in
an entirely diff erent manner than in conventional
languages. The algorithms used by TEX are
described by Olšák (2001).

MATERIALS AND METHODS
As already noted, the problem of an incremental

compilation is to fi nd a tree node from which
there came to a change in comparison with the
previous run of the compiler, and the substitution
of a subtree by a new subtree based on the current
situation on the input. But the reconstruction of the
tree is only half of the fi nal solution.

Imagine the following situation. Consider the
source code in the following form:

var a: integer;
begin

read(a);
if a mod 2 = 0 then write(a,’ is even number’);

end.
Now we make a small change, and we get a slightly

changed code in the following form:

var a: char;
begin

read(a);
if a mod 2 = 0 then write(a,’ is even number’);

end.
It is obvious that the reconstruction of the tree is

no problem, because there was only an exchange
of the contents of one node. The problem occurs
when we try to compile, because the mistake will
be its result. This simple example clearly shows
that for a truly incremental compilation, including
incremental semantic analysis, we must solve two
problems:
1. to fi nd a node in the tree and replace the modifi ed

subtree;
2. to fi nd all places in the code that may be aff ected

by this change.
In other words, both syntactic and semantic

analysis must be incremental and both phases must
be interconnected mutually.

In our case there was a change in the declaration
of a variable caused by changing the data type
of a variable from integer to character. Along
with the verifi cation of the fact that the new code
is syntactically correct, there must follow the

 Design of methodology for incremental compiler construction 139

verifi cation that the new code is also semantically
correct. Examining this example we can see that it
is not correct, because the operation “modulo” with
this character is not defi ned.

Let us now focus on the incremental parsing
problems. Several times the languages with a fi xed
set of lexical units and languages with a variable set
of lexical units have been mentioned. Now we will
try to explain the used terminology.

Compilation of languages with a fi xed set of
lexical units

Under the group of languages with a fi xed set of
lexical units there belong languages, where each
lexical unit has its constant meaning. For example,
a sequence of characters “123” is always understood
as a number.

It is obvious that this group of languages containts
common programming and scripting languages that
can be described by the context-free grammar. The
standard approach to the compilers contruction of
these languages includes three basic modules:
1. Lexical analyzer—reads characters from the

input fi le and creates lexical units (tokens) from
them. It keeps its type and content for each
token, separators and comments are omitted. On
each call the lexical analyzer returns one token.

2. Syntactic analyzer (parser)—gets the input
sequence of tokens generated by the lexical
analyzer and verifi es the syntactic correctness
of the input. The output is information about
the syntactic structure (e.g. in the form of a parse
tree), or an error message.

3. Semantic processor—creates the input for
the output processing, performs controls of
declarations, type controls, correct operands
writing, etc., and generates an intermediate code.

The lexical analysis of common programming
languages is purely a matter of routine. Incremental
parsing uses the method described by Melichar
and Vagner (2008) and it is known as interpretative
recursive descent parsing (IRD). This method works
with a modifi ed FIRST and FOLLOW sets, which
defi nes as follows:

FIRST ’ () = {X (N ∑) | X} {ϵ | ϵ},

FOLLOW’ (A) = {X (N ∑) | S + AX} {ϵ | S A}.

The algorithm for the construction of parsing
table M’ containing nonterminals is similar to the
algorithm for construction of the standard parsing
table M.

For implementation purposes it is necessary
to modify the original LL(1) grammar G on an
augmented LL(1) grammar G’ as follows:G’ = (N
{S’}, ∑ {A, #}, P’, S’), where P’ = {S SA} {B
| B P}, S’ N is the new starting symbol, A,
∑.

The symbol A represents a symbol of acceptance,
the symbol # is used as a symbol marking the end of
the right side of grammar rule.

We assume at the same time, the right side of the
grammar G’ rule is stored in a data structure that has
the following features:
• the right side of the rule is stored as a string;
• is it possible to point at any element of the

structure.
IRD compiler uses a parsing table M’ defi ned as

a map M’ : N × (∑ {ϵ}) {X | X is a pointer at the
beginning of the right side of the rule} {error}.
The parsing table construction is the same as in the
standard case. IRD compiler uses the actual pointer
(AP), which indicates the specifi c symbol of the right
side of the grammar rule. The symbol, which the
pointer points to, is the actual pointer. For clarity, the
sign with dot notation is used because it can clearly
express the value of the actual pointer. If the actual
pointer points to the symbol X in the rule A X,
where X N ∑ {A, #}, its value is expressed as
A .X.

Then IRD compiler confi guration is defi ned as the
triad (x, , AP) where x ∑* is the still unread part of
the input string, is the contents of stack and AP is
the value of the actual pointer.

But there is another method of the syntactic
analysis, based on the storage of stack content
into the path from the actual symbol to root
symbol in the parsing tree. This modifi ed method
of incremental parsing using recursive descent
describes the following algorithm, the input of
which is a parsing table M’, augmented grammar G’
and the input string w. (Melichar and Vagner, 2008)
1. Set the actual pointer to point to the symbol S at

the right-hand side of the rule S’ SA.
2. Set s := FIRST (w).
3. Repeat steps 4, 5, 6, 7 until accept or error appears.
4. Comparison: If the actual symbol is a terminal

symbol and if it is the same symbol as the
symbol s, advance the actual pointer to the next
symbol, advance the input to the next symbol
and set s := FIRST (remainder_of_input). If the
actual symbol is not the same symbol as s, then
the result of the parsing is an error.

5. Expansion: If the actual symbol is a nonterminal
symbol, set r := M (actual_symbol, s). Push the actual
pointer into the pushdown store. If r = error then
the result of the parsing is an error, otherwise set
AP := r.

6. End of rule: If the actual pointer is the symbol #
(the end symbol of a rule), pop the actual pointer
from the pushdown store and advance it to the
next symbol.

7. Accept: If the actual symbol is A (accept)
terminate the parsing and the result of the
parsing is yes.

140 P. Haluza, J. Rybička

Compilation of languages with a variable set of
lexical units

Conventional programming languages can be
included into the group of languages with a fi xed
set of lexical units. Each input symbol is during the
lexical analysis correctly recognized and the output
from the lexical analyzer is information about the
lexical unit type. Signifi cant there is the fact that
each character is clearly assigned to a given lexical
unit type, and this assignment is constant.

In the group of languages with a variable set of
lexical units, it is possible to change arbitrarily the
meaning of each character on the input fi le at any
time during processing. The change takes eff ect
immediately and its validity can be somehow limited
or is given by the end of the input. An example
might be the instruction causing that the sequence
of characters “{abc}” and “1abc2” will have the same
meaning for a given time, as we mark “1” meaning
assigned to the le� brace and the character “2”
has assigned the meaning of the right brace. This
system can be achieved easily using the TEX macro
\catcode.

So under the term a variable set of lexical units we can
imagine a set of input symbols assigned to the type
of lexical units, but the assignment can be volatile
during the compilation.

One of the representatives of a group of languages
with a variable set of lexical units is the professional
typographic system TEX, which greatly diff ers
from conventional programming languages in its
methods for analysis of the input text. The TEX
activity is divided into individual processors, which
have their own functions—the input processor, the
token processor, the expand the processor and the
main processor.

The input processor reads the fi le lines
sequentially from the input lines of the text, adjusts

them and gives output lines ready for the token
processor. An output line of the text from the input
processor is an internal data structure of TEX and
this is the same in all implementations of TEX.

The token processor processes the input lines
prepared by the input processor and its output is
a sequence of lexical units—tokens. A token is either
an ordered pair (ASCII code, category), or a control
sequence. In all algorithms following a� er the token
processor there are the input text characters not
processed any more, but only tokens. A detailed
description of each state of the token processor is
described by Olšák (2001).

All implementations of TEX divide the input
characters into categories. At any given moment,
each character can be included in only one category
and only once (Matoušek, 2001; Olšák, 2001).
Categories are identifi ed by an integer from the
interval 0, 15. There is a total of 16 categories. Each
category has its own meaning and default assigned
characters. The categories of characters are shown
in Tab. I. If the category description includes a star
character, it means that this category has meaning
only in the algorithms of the token processor and
never appears in its output. If the category includes
the word (plain), then this category is not assigned
to the character set by default, but is set up in plain
format (Olšák, 2001).

The follow-up part of the compiler is the
expand processor. It provides macros expansion,
which means their use. It interchanges the control
sequence from the input, by which a macro is
identifi ed, with a sequence of tokens in the output.
This sequence of tokens is stored in the memory in
the macros learning phase, when the main processor
has saved the body of the macro defi nition. Once
all the tokens in the output queue processor are

I: List of characters categories in system TEX (Olšák, 2001)

category value default assignment

0* escape sequence at the beginning \

1 opening the group { (plain)

2 closing the group } (plain)

3 math mode switch $ (plain)

4 separator in the tables & (plain)

5* end of the line ^^M (ASCII 13)

6 macro parameters lable # (plain)

7 power constructor ^ (plain)

8 index constructor _ (plain)

9* ignored character ^^@ (ASCII 0, plain)

10 space

11 letter A to Z, a to z

12 other characters characters remaining

13 active characters ~, ^^L (plain)

14* bracketed comments at the beginning %

15* illegal character ^^? (ASCII 127)

 Design of methodology for incremental compiler construction 141

unexpandable, the expand processor passes the
output token sequence to the main processor.

The main processor controls the whole activity
of TEX. A� er the start it requests the fi rst token
from the expand processor and interprets it as the
command of the main processor. This activity is
repeated until the input end. By means of the main
procesor command various activities are realized
leading to the establishment of the fi nal print
material and its output to the desired fi le format.

The lexical analyzer in the system TEX is
a function that fi lls the input processor and the
token processor. The concrete form of the own
procedure depends on the selected programming
language and environment, so there can be created
diff erent variations of treatments that work in the
same manner in their fi nal form.

RESULTS

Incremental parsing: augmenting of existing
methodology for languages with a variable set

of lexical units
The basic problem of the group of languages with

a variable set of lexical units is the fact that the input
symbols can have diff erent (variable) signifi cance
during the compilation.

During the lexical analysis of the input text in TEX
it is necessary to assign a particular category to each
character. The problem occurs when the category
of the character has changed. This is in the system

TEX the role of macro \catcode, which allows to set
a diff erent category to each character. The change
takes eff ect immediately and is valid until the end of
the group or to the end of the fi le if the validity is not
defi ned with a group. If we want to compile a TEX
source text incrementally, we must keep this fact in
mind.

At fi rst glance it might seem that a change in the
character category should necessarily aff ect parsing
of the input to such an extent that it will be necessary
to re-compile the input text in the next step. But this
is not necessary. In fact, it is necessary to re-analyze
only the concerned group or if appropriate the rest
of the input fi le if the group is not bounded.

The parsing table remains even a� er such an
intervention in the input text—representing
a change in the character category—unchanged. This
is undoubtedly due to the fact that the form of the
parsing table is not dependent on the input text, but
on the allowed lexical units of the given language.
It is obvious that the set of permitted lexical units is
constant at any moment.

A fundamental change in the behavior of the
compiler in case of the incremental compilation of
TEX must therefore occur at the phase of lexical
analysis that aims to retrieve gradually characters
from the input and create lexical units from them—
i.e. at the phase of input processing. At this time there
must be a data structure containing information
about the current categories of characters. Once
the macro \catcode is processed it is needed to store
the new information about the category change of

INPUT

INPUT PROCESSOR

TOKEN PROCESSOR

EXPAND PROCESSOR

MAIN PROCESSOR

sequence of characters from
the input

sequence of characters with
associated category

sequence of lexical units
(tokens)

sequence of tokens with
expanded macros

OUTPUT

processed document

actual
characters
category

actual information
about characters
category after
processing by \catcode
macro

1: Incremental parsing in TEX—solution to the problem with \catcode macro

142 P. Haluza, J. Rybička

the given character. A� erwards the lexical analyzer
during character reading and category assignment
has to go from the current information, which can
include the temporarily changed category. The next
compilation phases may remain unchanged. The
entire process is illustrated in the Fig. 1.

Incremental semantics analysis
The methodology of the incremental parsing

analyzer using the recursive descent method
described by Vagner and Melichar (2008) is based
on the fact that the output of incremental parsing is
a parsing tree representing the last modifi cation of
the source code serving as the input to the semantic
analysis called therea� er.

If we want to link the semantic with syntactic
analysis and do semantic actions already at the
stage when we are building a new parsing tree, we
must necessarily have also information about the
interdependencies between parts of the source
code.

Semantic tree construction
Information on the interactions of semantic links

are linked with the grammar of the given language,
thus we can bind them with the rules and include
them to the implementation using the method of
recursive descent.

A good way to express semantic relations is the
semantic dependency tree. Tree nodes represent
the semantic actions performed during a call in
the appropriate place of the processed rule, then
the edges represent a possible modifi cation during
the change of the source text. The implementation,
however, is also a semantic operation and so it can
be implemented by inserting a link into a good place
of a corresponding grammar rule.

Let p1, p2 P are two rules from context-free
grammar G = (N, ∑, P, S). Furthemore, let X is a set of
semantic actions, X1 X a X2 X are two semantic
actions located in grammar rules p1, p2 so that p1 is
the shape N1 X1, p2 is the shape N2 X2, N1,
N2 N, , , , (N × ∑ × X).

Then bind X2 X1 we can represent by a new form
of the semantic action B(X1) located in grammar rule
p2, which then will have the form N2 X(X1).

During the incremental compilation the presence
of the semantic action B(X1) in the corresponding
rule will cause the need to re-compile the
construction described by the rule, which includes
the semantic action X1 on the right side.

Example of tree construction
Let us come back to the example with the change

of the variable data type. In general such a change
can have entirely fatal consequences:
1. By changing the variable type there may be

aff ected the whole declaration part of the
program.

2. By changing the declaration part of the program
there may be aff ected the value of all declared
variables.

3. By changing the value of all declared variables
there can be aff ected the value of all expressions
which the variables occur in.

4. By changing the values of expressions with
variables there can be influenced the result of
calling the functions with the expression in the
parameter.

5. By changing the values of expressions with
variables there can be aff ected also all conditional
statements, because the condition can be
evaluated diff erently.

6. A change in the evaluation of the condition there
may be aff ected all the cycle statements that are
controlled by this condition. One slight change
in a variable declaration can result in the need of
reprocessing of the most of the code. Individual
dependencies are clearly illustrated in the Fig. 2.

Let us show you now the construction of
a dependence tree in a concrete example. Consider
the following sequence of statements:

var a,b,c:integer;
begin

a:=10;
b:=5;
c:=a+b*3;
write (a, b, c);
b:=a+c;
write (b);

end.

data type

of variables

declaration

of variables

values

of variables

value of the

expressions

with variables

expressions

in the

parameters

of functions

conditional

statements

cycle

statements

2: Dependencies in the source code

 Design of methodology for incremental compiler construction 143

We build the dependence tree in the following
steps:
1. Declaration of variables. Consider rewriting

rules of context-free grammar in the usual form
(capitals represent the semantic action):

declaration INITLIST decitem ; decitem’
decitem var : id SAVETYPE

We create a bind between the variable data type
and variable declaration by inserting the binding
semantic action BIND(INITLIST):

decitem var : id SAVETYPE BIND(INITLIST)

Now let us show you how to capture this link in
a semantic tree. For each variable we create a node
and its predecessor for the data type of the variable
(see Fig. 3).
2. Assigning values to variables. Consider rewriting

rules of context-free grammar in the usual form
(capitals represent the semantic action):

assignment id LVALUE := expression
factor (expression) | id RVALUE | num

We create a bind by inserting the binding semantic
action BIND(LVALUE):

factor (expression)

factor id RVALUE BIND(LVALUE)
factor num BIND(LVALUE)

Again, let us show you how to capture this link in
a semantic tree. On the right side of an assignment
statement there is an expression in general.
Therefore, for each variable declaration node we
create an ancestor with operators and constants. If
the expression includes a variable, then the ancestor
is the variable declaration node. This step is not
necessary with compiling compilers which do not
monitor the actual value of the variable (see Fig. 4).
3. List of variables values. Consider rewriting

rules of context-free grammar in the usual form
(capitals represent the semantic action):

expression INITEXP term expression’

factor (expression) | id RVALUE | num

declar.

of a

declar.

of b

declar.

of c

integer integer integer

3: Example of tree construction, step 1

declar.

of a

declar.

of b

declar.

of c

integer integer integer10 5 + × 3

4: Example of tree construction, step 2

declar.

of a

declar.

of b

declar.

of c

integer integer integer10 5 + × 3

a

value
b

value c

value

5: Example of tree construction, step 3

144 P. Haluza, J. Rybička

We create a bind between the variable data type
and variable declaration by inserting the binding
semantic action BIND(INITEXP):

factor (expression)
factor id RVALUE BIND(INITEXP)
factor num BIND(INITEXP)

Again, let us show you how to capture this link in
a semantic tree. We create successors of the variables
declaration nodes with the current value of the
variable (see Fig. 5).
4. Assigning values to variable. Analogous to the

step 2 only with the diff erence that it is not the fi rst
assignment of value, therefore we must create
a new successor of the declaration node. Again,
this is not necessary for compiling compilers (see
Fig. 6).

5. Listing the value of variable. Analogous to the
step 3 (see Fig. 7).

Now let us show how the chart can identify which
parts of the program will be aff ected by the change
(see Fig. 8). Suppose code modifi cation in the form:

var a, b, c : integer;
begin

a:=4;
b:=5;

c:=a+b*3;
write (a, b, c);
b:=a+c;
write(b);

end.
There is a trivial modifi cation, when into the

variable a was instead of the value 10 stored the
value 4 at the beginning. All touched sections of the
code are marked by a hatched line in the chart.

As we can see, the new value in the variable a due
to the command line 3 will aff ect fi rstly the record of
a variable in the symbol table, where the new value
is stored. This change will aff ect the command to
extract the value of the variable on the line 6, but
also assign an expression to the variable c on the
line 5. This assignment to the variable c aff ects the
values of the variable c on the line 6 and also the
assignment to the variable b on the line 7, which is
also infl uenced by changing the value of a from the
line 3. Finally, the new value in the variable b will
cause a change during the processing of the line 8,
where the value of b is listed.

In a similar way we can solve even more complex
programming structures as loops or conditional
statements, because in both cases the essential

declar.

of a

declar.

of b

declar.

of c

integer integer integer10 5 + × 3

a

value
b

value c

value

assign.

to b
+

6: Example of tree construction, step 4

declar.

of a

declar.

of b

declar.

of c

integer integer integer10 5 + × 3

a

value
b

value c

value

assign.

to b
+

b

value

7: Example of tree construction, step 5

 Design of methodology for incremental compiler construction 145

element is the expression in the condition,
respectively the variables that occur in it.

To make the system truly functional it is needed
to mark particular nodes by a unique identifi er to
make it clear to which instruction in the source code
they apply. Next it will connect information from
the dependency graph (tree) with the information
obtained from the parsing tree. At the moment we
have information about the place in the program
in which a change has occured (from the parsing
tree) and we know which other parts of the program
are aff ected by this change (from the graph of
dependencies), nothing prevents the successful
implementation of the incremental compiler.

DISCUSSION AND CONCLUSION
The paper deals with problems in the

implementation of incremental compilers for
various types of programming languages. As for the
group of languages with a variable set of lexical units
there is proposed an extention of the incremental
design methodology for parsing.

Nevertheless, the change of the function of lexical
analyzer is substantial. During the compilation of
languages with a fi xed set of lexical units its only
function is that it creates the lexical units from
the input symbols, and by this verifi es if there are
any invalid characters on the input. During the
compilation of languages with a variable set of lexical
units is the lexical analyzer or a machine close to it
(as the input processor for TEX) basically the most
important part of the compiler, since its decision on
the current lexical unit type depends the success
and eff ectiveness of the repeated compilation of the
text in case of a small input change.

Following the incremental parsing there is then
outlined the construction of the incremental
semantic analyzer and thus the incremental
compiler for any group of programming languages.

The proposed procedure can be used for both
compilers and interpreters. The only diff erence
will be the access to the change of a variable value.
Whereas in case of the interpreter changing the value
of the variable, it is necessary to fi nd immediately
a new value in order to continue the compilation, in
the case of the compiler this requirement is waived,
since the actual value of the variable is determined
at the last stage, when you run the compiled code. To
some extent it can be stated that the construction of
the dependency graph for the semantic analysis will
be easier for compilers than for interpreters.

To illustrate better the individual operations in
the compiling process and also for teaching the
theory of formal languages a new web application
has been created at the Faculty of Economics at
Mendel University. The application can automate
the process of building a compiler using the
recursive descent method. Currently it allows
you to perform grammar transformations into
the desired shape, the calculation of FIRST and
FOLLOW sets, construction of the parsing table and
even testing if the specifed sentence belongs
to the language described with the language
grammar. All of it rendering the parse tree of the
tested sentence. Of course, there is the output
in the form of the compiler source code in the
programming language C. In the coming months the
implementation of an incremental compiler with
all the necessary components will be completed
making this application an invaluable tool of
exceptional quality.

declar.

of a

declar.

of b

declar.

of c

integer integer integer4 5 + × 3

a

value
b

value c

value

assign.

to b
+

b

value

8: Visualisation of touched sections of the source code

146 P. Haluza, J. Rybička

SUMMARY
The paper deals with the possibilities of the incremental compiler construction. It represents
possibilities of compilers constructions for the common programming languages and for languages
with variable set of lexical units, too. Based on the known algorithms for standard compiler
construction the metodology design for the construction of incremental compilers is derived. In the
case of the incremental compilation of common programming languages this paper is based on the
published methodology of incremental parser constructing, which extends as for the construction of
the incremental semantic analyzer and thus an incremental access to the whole compiling process.
The main change in the function of the incremental compiler for TEX source parsing must occur
at the level of the lexical analysis, which is represented by the input processor and token processor.
This lexical analysis has to read input characters and create the lexical units. At this time the data
structure containing necessary information about the current characters categories must exist.
While the parsing of \catcode macro is completed, it is necessary to save the new information about
changing the character category. At the end of the paper is presented a web application for visualizing
and automating the transformation of context-free grammars.

REFERENCES
AGRAWAL, R., DETRO, K. D., 1983: An Efficient

Incremental LR Parser for Grammars with Epsilon
Productions. Acta Inf., 19, pp. 369–376.

ALONSO, M. A., CABRERO, D., VILARES, M.,
1997: A New Approach to the Construction of
Generalized LR Parsing Algorithms.

FERRO, M. V., DION, B. A., 1994: Efficient
Incremental Parsing for Context-Free Languages.
Proceedings of the 5th IEEE International
Conference on Computer Languages, pp. 241–
252.

HOPCROFT, J. E., ULLMAN, J. D., 1978: Formalne
jazyky a automaty. Bratislava: Alfa, 343 pp.

HORSPOOL, R. N., 1990: Incremental Generation
of LR Parsers. Computer Languages, Vol. 15, issue
4, pp. 205–223. ISSN 0096-0551.

LI, W. X., 1995: A Simple and Efficient Incremental
LL(1) Parsing. Lecture Notes in Computer Science,
Vol. 1012. ISBN 987-3-540-60609-3.

LI, W. X., 1996: Building Efficient LL Incremental
Parsers by Augmenting LL Tables and Threading
Parse Trees. Computer Languages, Vol. 22, No. 4,
pp. 225–235.

MATOUŠEK, M., 2001: Transformace strukturně
značkovaných dokumentů. Diplomová práce.
Brno: MZLU v Brně. 76 pp.

MEDUNA, A., 2000: Automata and Languages:
Theory and Applications. London, Springer
Verlag, 921 pp.

MELICHAR, B., VAGNER, L., 2008. Compiler
Construction. 132 pp.

MOLNÁR, Ľ., ČEŠKA, M., MELICHAR, B., 1987:
Gramatiky a jazyky. Bratislava, Alfa, 192 pp.

MURCHING, A. M., PRASAD, Y. V., SRIKANT, Y.
N., 1990: Incremental Recursive Descent Parsing.
Computer Languages, 15 (4), pp. 193–204.

OLŠÁK, P., 2001: TEXbook naruby. Brno: Konvoj,
468 pp. ISBN 80-7302-007-6.

ROZENBERG, G., SALOMAA, A. (eds.), 1997:
Handbook of Formal Languages. Vol. 1: Word,
Language, Grammar. Berlin: Springer-Verlag, 873
pp. ISBN 3-540-60620-0.

SHILLING, J. J., 1992: Incremental LL(1) Parsing in
Language-Based Editors. IEEE Trans. So� w. Eng.,
19 (9), pp. 935–940.

TOMITA, M., 1987: An Efficient Augmented-
Context-Free Parsing Algorithm. Computational
Linguistics, Vol. 13, pp. 31–46.

WAGNER, T. A., 1998: Practical Algorithm
for Incremental So� ware Development
Environments. Dissertation Thesis. 148 pp.

WAGNER, T. A., GRAHAM, S. L., 1997: Incremental
Analysis of Real Programming Languages, 1997
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 31–43.

WAGNER, T. A., GRAHAM, S. L., 1998: Efficient and
Flexible Incremental Parsing. ACM Transactions
on Programming Languages and Systems. Vol. 20,
No. 2.

YANG, W., 1993: An Incremental LL(1) Parsing
Algorithm. Information Processing Letters, Vol.
48, Issue 2, pp. 67–72.

YANG, W., 1994: Incremental LR Parsing. 1994
International Computer Symposium Conference
Proceedings, vol. 1, pp. 577–583.

Address

Ing. Pavel Haluza, doc. Ing. Jiří Rybička, Dr., Ústav informatiky, Mendelova univerzita v Brně, Zemědělská 1,
613 00 Brno, Česká republika, e-mail: haluza@mendelu.cz, rybicka@mendelu.cz

