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A Quantitative Evaluation of the Frequency- ; 
Response Characteristics of Active Human 
Skeletal Muscle In Vivo 
This paper describes an investigation of the frequency-response characteristics of active 
human skeletal muscle in vivo over the frequency range 1 Hz to 15 Hz. The applied 
force, forearm position, and surface electromyograms (from biceps, triceps, and bra-
chioradialis) were recorded simultaneously in four normal adult male subjects for 
small oscillations of the forearm about a mean position of 90 deg flexion. Two modes of 
oscillatory behavior are discussed: externally forced oscillations under constant muscle 
force and voluntary oscillations against an elastic resistance. The observed amplitude 
and phase relations are presented herein and are compared to the response predicted 
by a simple model for neuromuscular dynamics. It appears that the small amplitude 
frequency response of normal skeletal muscle in vivo can be represented by a second 
order model. The main muscle parameters of this model are a muscular stiffness K, 
two time constants n and r2 associated with contraction dynamics, and a time delay T: 
typical values of these parameters at moderate contraction levels (approximately 20 
percent of maximum voluntary effort) are K = 100 N -m/rad, TI and r2 = 50 ms, 
and T = 10 ms. Reflex feedback under forced-oscillation conditions was also examined 
and may be characterized by a gain parameter (AE/Ad), the ratio of the surface EMG 
amplitude to the angular displacement of the forearm, and the phase by which the EMG 
leads muscle stretch. The reflex EMG is observed to lead muscle stretch at all frequencies 
between 1 Hz and 15 Hz. The muscle stiffness K and the reflex gain parameter 
(AE/Ad) are approximately proportional to the average force of contraction. 

Introduction 
The mechanical behavior of skeletal muscle in the body is 

of great interest not only from the fundamental viewpoint of 
physiology and anatomy: it is also of major importance in 
many biomechanical and clinical applications. Thus quantita
tive information on the dynamics of th'j integrated neuro-
musculo-skeletal system is vital for the design and evaluation 
of sophisticated modern limb prostheses [1, 2]. Efforts are 
also underway to develop measurements of mechanical response 
into useful quantitative tools for the diagnosis of neuro-muscular 
disorders and the evaluation of therapy [3, 4]. From a funda
mental point of view, measurements of in-vivo musculo-skeletal 
dynamics provide quantitative indications of how the various 
isolated elements of the neuro-muscular system — the motor 
units, spindles, tendon organs, reflex circuits, and other struc
tures which have been studied intensely by biologists in recent 
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years — are integrated to serve their function of producing 
force and motion. 

In spite of the great advances made recently by physiologists 
in identifying the mechanisms of contraction at the microscopic 
level, useful phenomenological descriptions of muscle mechanics 
are still based largely on A. V. Hill's [5] conceptual model of 
muscle as consisting of an elastic element and a contractile 
element. While Hill's original schema was based on very re
stricted experimental conditions (constant maximal activation, 
and constant shortening velocities) these restrictions have been 
removed in more recent experiments on isolated muscle which 
employ submaximal, time-varying activation more represent
ative of the actual operating conditions of muscle in vivo [6, 7, 8]. 

As the mechanical properties of muscle depend on its level 
of neural activation, any investigation of in-vivo muscle me
chanics must seek quantitative relations between mechanical 
response and some appropriate measure of neural activation. 
The only readily available measure of activation is the surface 
electromyogram (EMG). In previous work [9, 10, 11, 12] the 
quantitative relations between EMG and mechanical param
eters have been examined under static and isotonic conditions. 
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Tn order to examine the mechanics of skeletal muscle under 
more general conditions we studied the mechanical and elec
trical response associated with small-amplitude oscillations of 
the forearm in four adult, normal male subjects unde • a vary
ing oscillatory conditions. For each subject two distinct modes 
of oscillatory behavior were examined: forced oscillations and 
voluntary oscillations. The extensive data obtained in these 
experiments exhibit the neuromuscular response of each subject 
under quite different but related experimental conditions and 
provide important information for characterizing muscle me
chanics qualitatively and quantitatively. Preliminary reports 
of this work are available in [13, 14]; the purpose of this paper 
is to present a summary of the experimental results, to analyze 
these results in terms of a quantitative model for muscle dy
namics, to provide numerical estimates for the values of the 
system parameters, and to relate these findings to other work 
on isolated and in-vivo muscle. The Appendix provides a formal 
derivation of the second-order muscle model used in this paper 
from a generalization of the Hill model, and furnishes a rationale 
for interpreting the frequency-response data. 

Frequency-response measurements are a standard tool of en
gineering analysis and have been applied by many investigators 
to elucidate the dynamics of muscle. Partridge [6, 15] studied 
the mechanical response of isolated cat triceps surae to sinus-
oidally modulated stimulating pulse trains. Hack [16] and 
Rack and Westbury [17] applied sinusoidal displacement in
puts to passive and tetanized cat muscle and measured the 
force response, and Jansen and Rack [IS], again using sinus
oidal displacement inputs, measured both force and EMG out
puts in decerebrate cat preparations. Rosenthal, et al. [19] 
have performed a very comprehensive frequency-response anal
ysis of the various components contributing to the stretch re
flex in cat triceps surae. Using random nerve stimulation 
Mannard and Stein [8] have investigated the transfer function 
between stimulation and force for isometric cat. soleus. In-vivo 
studies employing frequency-response techniques have also been 
extensive. In addition to their obvious applications to pros
thetics experiments involving external electrical stimulation of 
human muscle, either through surface electrodes (Crochetiere, 
et al. [20], Trnkoczy, et al. [21]) or through stimulation of the 
motor nerve fibers (Aaron and Stein [2]), provide useful in
formation about the normal function of muscle in the body. 
Frequency-response studies of normally activated human skel
etal muscle have included voluntary oscillations of isometric 
muscle (Soechting and Roberts [22]) and forced oscillations of 
steadily contracting muscle (Berthoz and Metral [23], Nielson 
[24], Joyce, et al. [25], Agarwal and Gottlieb [26, 27]). In this 
paper we will describe the force-position-activation frequency 
response of the forearm flexors and extensors in two different 
modes of oscillation for each of four subjects, show that the 
observed frequency response can be represented reasonably well 
by a second-order model for muscle (which leads to a fourth-
order model for the limb), and provide numerical estimates 
for the neuromuscular parameters appearing in the model. 

Apparatus and Procedure 

The apparatus used in this experiment is basically similar 
to that described in previous publications [12, 28] and only a 
brief account will be given here; a schematic diagram of the 
experimental arrangement is shown in Fig. 1. The subjects 
were comfortably seated in specially designed subject chairs, 
which were adjusted to their body dimensions, with their upper 
arms horizontal and their forearms clamped in a "clam-shell" 
fixture consisting of a molded fiberglass sheath and an aluminum 
surgical splint. This fixture permitted the forearm to rotate 
about the elbow joint in a sagittal plane. Oscillatory pertur
bations were applied to the wrist by an electro-mechanical os
cillator which permitted a continuous variation of frequency 

between 1 and 15 Hz: two driving displacement amplitudes 
were employed: 0.15 cm and 0.32 cm. Four channels of in
formation were acquired during each test run: force at the 
wrist (measured by a load cell mounting four semi-conductor 
strain gages), angular position of the forearm (measured by a 
capacitive angular displacement transducer), one channel of 
raw extensor EMG, and one channel of raw flexor EMG (biceps 
and brachioradialis on alternate runs under identical conditions). 
The raw EMG's were the instantaneous potential differences 
between pairs of paste-filled silver surface electrodes placed 
approximately 3 cm apart over the belly of each muscle. These 
EMG's were amplified by Grass wide-band differential ampli
fiers which have a flat response from approximately 10 Hz to 10 
KHz; amplification is the only analog processing to which the 
EMG's were subjected. These four signals were digitized and 
stored in a Biomation 1015 Waveform Recorder; this unit ac-
qu'red 1028 samples per channel during each wm, at sampling 
intervals of 0.5, 1.0, or 2.0 ms. The stored information was 
subsequently recorded on magnetic tape and passed to a com
puter for digital processing and analysis. A graphical display 
of typical digitized data acquired during a single experimental 
run is shown in Fig. 2. 

Four normal, adult, male subjects (20 - 36 yr old) partici
pated in this experiment: their heights, weights and forearm 
properties are listed in Table 1. Each subject underwent a 
training session plus two full days of testing: the object of the 
training session was to familiarize the subject with the appara
tus and to train him to oscillate his forearm against a fixed 
elastic resistance with prescribed frequencies, average loads, 
and load amplitudes. The load (that is, the force at the wrist) 
was measured by the load cell described in the foregoing and 
was displayed on an oscilloscope screen. The subject used this 
display to adjust his performance in a Voluntary Oscillation 
Test (VOT) in accordance with the experimenter's instructions. 
These VOT's were conducted on the first day of testing. The 
elastic resistance consisted of a steel coil spring at the wrist: 
the effective stiffness of this spring and supporting structures 
was 103 N-cirT"1. Each subject was instructed to oscillate his 
forearm at frequencies of 2, 4, 6 and 8 Hz, with average ex
ternal loads of 0, ± 2 2 , and ± 4 4 N (positive loads are those 
tending to flex the forearm, while negative loads are those 
tending to extend), and with load amplitudes of 22, 44, and 
66 N. On his second day of testing each subject underwent a 
Forced Oscillation Test (FOT) in which he was asked to main
tain a constant level of average force at the wrist (the nominal 
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Fig. 1 Schematic diagram of experimental arrangement 
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Fig. 2 Typical record from a voluntary oscillation test. Heavy lines: 
measured force, angle, and standard deviation of EMG (based on 
16-ms samples). Channel 3 - triceps, Channel 4 = biceps. Thin 
tines: least-squares optimum sinusoidal approximations at the driv
ing frequency. Average external moment = 0 N-m. 

Table 1 Characteristics of subjects 

Moment Moment of Moment of 
Subject Height Weight arm M inertia w inertia w 

(m) (Kg) (cm) ( j ( g m ! ) (Kgm 2 ) 

A 

B 

C 

D 

1.78 

1.78 

1.91 

1.76 

79.5 

75.0 

88.5 

77.2 

27.0 

26.0 

30.5 

27.3 

0.113 

0.121 

0.172 

0.116 

0.120 

0.103 

0.165 

0.112 

<o) From elbow joint to wrist 
(6> From measured volume distribution of forearm 
tc) From high-frequency amplitude response in a FOT 

goals were 0, ± 3 5 , and ± 7 0 N) while small oscillatory pertur
bations were applied to the wrist by the oscillator. The sub
jects experienced no difficulty in maintaining a constant average 
force at frequencies above 2 Hz when the oscilloscope display 
become a blurred band with a width proportional to the drivin g 
force amplitude: the subject simply centered this band on the 
appropriate average force level. At the end of second day of 
testing each subject underwent a Tremor Test in which con
stant loads were applied to the forearm and the involuntary 
tremor responses were recorded (the results of these tremor 
tests and their analysis will be reserved for a separate report, 
and will not be discussed further here). At the beginning and 
end of each day of testing the static force-EMG relations were 
recorded over a range of 0 to 110 N at the wrist. 

The data acquired during each experimental run were proc

essed as follows. A measure of overall muscular activation 
was first extracted from the raw EMG signal by computing 
the standard deviation of this signal based on successive 16-ms 
samples: this produced an essentially positive measure of ac
tivation, which in most cases showed reasonably clear periodic
ity at the driving frequency (the exception occurred in the 
FOT's at frequencies below 4 Hz). The mean value of the 
signal in each channel was then computed (the raw EMG's 
having been replaced by the processed) and was subtracted 
from the signal itself, yielding the perturbation signal. A least-
squares optimum sinusoid at the driving frequency was then 
fitted to the perturbation signal. The processing program also 
computed a measure e; of how closely a pure sinusoid at the 
driving frequency approximated the signal in the i th channel. 

= Jo r fcni — »oi]2d(/Jor xaiHi, where and xai are the 
measured value and sinusoidal approximation, respectively, and 
T is the duration of (he run. A sample of the processed EMG's 
and the sinusoidal approximations to the signals in each channel 
is shown in Fig. 2. 

The frequency response was analyzed in terms of a specific 
mathematical model for forearm dynamics which is derived in 
the Appendix. This model relates the perturbations of forearm 
position about a steady state to those of applied external mo- . 
ment and the flexor and extensor (processed) EMG's . The 
model is based on a second order model for individual muscle 
dynamics, so that the system equation becomes fourth order 
when the forearm inertia is taken into account: the system 
equation (equation 11) is presented in the following in terms 
of its Laplace transform in order to facilitate a control systems 
interpretation. 

P(s)Jd = Q(s)5M + R(s)8Ef - T(s)5Ee (1) 

where 

P(s) = [s2 + (re1 + r f 1 ^ + Tr1^] (/s2) + Ks(s + r r 1 ) 

Q(S) = [«» + (Ti-l + IT 1 )* + T^T,-1] 

R(s) = Tl-iT,-iTt e-»T and T(s) = TC^T^T, e~»T 

In the foregoing equation s denotes the Laplace transform . 
variable, 5 denotes a perturbation about a state of steady 
contraction, and the horizontal bar above a variable denotes 
its Laplace transform. The variables d, M, and E represent, re
spectively, forearm position, external moment and EMG, and 
subscripts / and e denote flexors and extensors, respectively. 
Seven neuro-muscular parameters appear in equation (1) which 
must be evaluated from experimental measurements: forearm in
ertia (I), muscle stiffness (K), two time constants associated with . 
contraction dynamics (TI and Ti), a transport time delay T, 
and the two T's which represent the contractile moment gen
erated per unit EMG under static conditions. As the system 
being investigated is nonlinear these parameters can depend 
on mean activation level. Dimensionless damping ratios are • 
defined as ft = n y/K/T/T and ft = r2 VKTTJZ. This model 
can be specialized for specific experimental situations such as -
the FOT and the VOT. For example in a FOT where only 
one of the muscle groups is significantly active (either flexors 
or extensors) and the EMG fluctuation can be attributed to 

Subject 

Table 2 Model parameters characterizing frequency response in forced and voluntary oscillation tests 

K„ 
(N-m) 

To = (Co/Xo) 
(ms) 

Ti 
(ms) 

Ti 
(ms) 

r 
(ms) 

T i l BC BR T R BC BR T R BC BR 

(,-1 ejdyn 

/ N - m \ 
(re)stat 
/ N - m \ 

A 

B 

C 

D 

23 

14 

22 

10 

77 

79 

51 

62 

59 

48 

40 

141 

64 

78 

101 

73 

106 

60 

56 

115 

60 

48 

41 

15 

53 

44 

54 

75 

49 

31 

57 

18 

12 

12 

24 

25* 

7 

6 

7 

6 

8 

9 

0* 

14 

0.18 

0.14 

0.14 

0.51 

0.10 

0.10 

0.12 

0.33 
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reflex origin, the frequency response is given by equation (14); 
this equation also contains the feedback parameter p = T\8E/S6\ 
IJC which is a measure of the reflex contractile moment gen
erated per unit forearm rotation. The Appendix should be 
consulted for details. 

All amplitude and phase comparisons employed in analyzing 
the frequency response were based on th? amplitudes and 
phases of the approximating sinusoids. The several parameters 
of the above model were determined by comparing various 
aspects of the model response to the corresponding measured 
response, using a nonlinear least-squares algorithm. The pro
gram (BMDX 85) used for parameter identification was taken 
from the University of California Biomedical Computer Pro
grams library. This algorithm employs a gradient method to 
search for a minimum of the cost function and requires starting 
guesses and bounds on the parameter values. I t is not possible, 
or indeed very informative, to document fully the constraints 
which were imposed in running this program, but if a parameter 
was identified to be equal to one of the imposed bounds on that 
parameter then this fact is noted by an asterisk next to its 
value listed in Table 2. Identification procedures for individual 
parameters are discussed in the following sections. 

Results 
(a) Forced Oscillation Tests (FOT's). The major results of the 

FOT's are summarized in Figs. 3 and 4. Fig. 3 shows a Bode 
plot of angular position output versus external moment in
put at three different levels of average load. These data are 
quite representative of both the flexors and the extensors of 
all four subjects. The high-frequency amplitude response is 
linear with, a slope of - 2 , indicating that the response is dom
inated by forearm inertia at the higher frequencies. A linear 
regressions analysis of the unloaded amplitude response above 
4 Hz provides an estimate of the forearm moment of inertia I 
which compares quite well with the values of / calculated from 
a direct measurement of forearm volume distribution by a 
water-immersion technique [28]. In the latter case the moment 
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angle behind appl ied m o m e n t in a forced oscillation test (Subject A ) , 
symbols indicate di f ferent values of average external m oment : 
crosses = 0.1 N-m ( re laxed) . Filled circles = - 1 0 . 6 N-m. Open tr i 
angles = —19.1 N-m. Curves represent model response according to 
equation (14) (see text for parameter values) . 
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Fig. 4 Angular stiffness of flexors and extensors based on resonant 
frequency in the forced oscillation tests, as a function of appl ied 
moment . Circles = Subject A. Tr iangles = Subject B. Squares = 
Subject C. D iamonds = Subject D. 

of inertia was computed using 1.13 Kg 1_1 as an average value 
of forearm density, and this value is compared to that deter
mined from frequency response in columns 5 and 6 of Table 1. 
The zero-load (relaxed) response resembles that of an over-
damped oscillator and the passive stiffness and damping, K„ 
and C„, parameters were evaluated by fitting equation (15) to 
the observed data as described in the previous section. I t 
should be emphasized that under zero-load, relaxed conditions 
there was no measurable EMG (in contrast to the electrical 
activity which was clearly evident under even light loads), so 
that purely passive properties of the muscle and loading appa
ratus were being measured. The values of these parameters 
are listed for each subject in columns 2 and 3 of Table 2 and 
the corresponding response curves are shown in Fig. 3. (The 
values listed are the averages of these parameters determined 
from the amplitude and phase response separately.) 

The remaining curves showing the response of actively con
tracting muscle exhibit clear resonance characteristics, showing 
both an amplitude peak and a phase inversion. The most 
striking feature of this response is that the resonant frequency 
increases with the average contractile force, indicating an in
crease in muscle stiffness. The values of the resonant frequency 
were determined by fitting equation (14), with p set equal to 
zero, to the phase data: this amounts to ignoring feedback at 
this stage of analysis. The passive parameters K0 and C0 were 
set at the values listed in Table 2 and the identification pro
cedure yielded the resonant frequency /„ and the damping 
ratio fi. Parameter sensitivity studies of our model under 
FOT conditions, equation (14), show that the magnitude of 
the resonant frequency /„ (the frequency at the amplitude 
peak on the associated phase inflection) is determined primarily 
by the muscle stiffness K for fixed inertia I. For example, a 
change of 40 percent in the value of K will result in a change 
of approximately 100 percent in the value of the resonant 
frequency, whereas a change of 100 percent in any of the other 
parameters rarely produces a change as large as 10 percent in 
the resonant frequency. On the other hand the shape of the 
response curves is strongly influenced by the values of f i, Xi, 
and p and the effect of each of these parameters is comparable 
to that of the others. The curves shown in Fig. 3 display the 
theoretical model response in a FOT with some feedback (p p* 0) 
equation (14). As these curves were constructed using some 
parameter values identified from voluntary oscillation test data, 
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Fig. 5 Phase lead of EMG on muscle stretch for loaded muscles in 
the forced oscillation tests. Pooled data for all four subjects with 
£a,t <2.5. 

they will be discussed after the latter identification has been 
described. Values of muscular stiffness were calculated from 
K = <kr2I fn

2: these are displayed in Fig. 4 as a function of 
the average muscle moment for both flexors (negative moments) 
and extensors (positive moments). I t can be seen clearly tha t 
this stiffness increases with the contraction level of the muscle. 
A graph of the total stiffness, including the effects of passive 
tissues and the loading fixture, is obtained by displacing up
ward the curve for each subject by the appropriate K0 listed 
in Table 2. 

The FOT's also provided information about the phase and 
amplitude of the reflex E M G feedback response to sinusoidal 
forcing. Periodic fluctuations in the surface EMG's become 
clearly evident only at frequencies above 4 Hz; at lower fre
quencies the small amplitude E M G perturbations were hard 
to distinguish from the large amplitude steady background sig
nal. Thus the EMG error measures e3,4 were high, and the 
amplitudes and phases exhibited considerable scatter at low 
frequencies. However, the following trends were reasonably 
clear. Fig. 5 shows the phase lead of E M G on muscle stretch 
for loaded muscles in a FOT: the figure shows pooled data for 
all four subjects and all three muscles as no clear differences 
between these were evident. To reduce the scatter only data 
points with small error measures, e3 ,4<2.5, are shown. Few 
measurements below 4 Hz, but almost all above 4 Hz, satisfied 
this criterion. This figure shows that the peak in the reflex 
EMG leads muscle stretch by a phase angle that seems to 
increase from 0 at low frequencies, but clearly decreases again 
at frequencies above 4 Hz. The phase variation from 6 - 13 Hz 
is reasonably well represented by a straight line through ir 
on the phase axis with a slope corresponding to a pure time 
delay of 30 ms, which is approximately equal to the conduction 
time delay of neural signals in the spinal reflex loop (as meas
ured, for example, by the time to the onset of the "silent period" 
in a quick-release test). 

The strength of the reflex feedback in the FOT's was meas
ured by the ratio of EMG amplitude of forearm angle ampli
tude (AE/A6) for each muscle. As noted in the foregoing the 
values of this ratio exhibited considerable scatter and a linear 
regression analysis did not reveal any consistent variation with 
frequency. However, an examination of the feedback strength 
did exhibit one feature rather clearly, the average value of ( A S / 
Ad) over the frequency range 4 - 1 5 Hz (the frequencies range 
where E M G fluctuations were clearly evident) increases with the 
contractile force in a muscle. This is shown in Fig. 6 for both the 
flexors and extensors. 

(b) Voluntary Oscillation Tests (VOT's). All the variables meas
ured in the VOT's, including the EMG's showed very clear 
periodic fluctuations 'and low error measures, as shown in the 
typical data of Fig. 2. The results of these tests provided in
formation about the relations between contractile force and 

m 
(m.V./rad.) 

-20 -10 0 10 zo 
M ( N - m ) 

Fig. 6 Mean value of the (EMG/angle) amplitude ratio (over the fre
quency range 4 Hz to 14 Hz) for loaded muscles in forced oscillation 
tests, as a function of applied moment. Circles = Subject A. Tri
angles = Subject B. Squares = Subject C. Inverted triangles = Sub
ject D. Symbols alone indicate the triceps, (*• ) indicates the biceps, 
and (~ ) indicates the brachioradialis. 

activation under dynamic conditions. An examination of the 
data from the biceps and brachioradialis showed that on the 
average both the mean values and oscillation amplitudes of 
the EMG's were positively correlated under the conditions of 
our experiment (fixed degree of supination-pronation, small dis
placements about the vertical position): This tends to support 
the assumption of proportional activation in synergistic muscles, 
which was made in developing the model of the Appendix. 
In these VOT's the subjects oscillated their forearms against 
a fixed undamped elastic resistance so that the maximum mo
ment generated by the muscles coincided with the maximum 
angular displacement. Fig. 7 shows the phase lag of extension 
(that is, maximal extensor contraction) behind extensor EMG 
for all four subjects: these data are pooled for all values of the 
mean external load as there was no clearly discernible influence 
of the load on the phase response. The phase tends toward 
zero at low frequencies (EMG in phase with muscle force) 
and increases to more than 180 deg at 10 Hz. The phase re
sponse of the flexors was similar except that the phase was 
observed to exceed 180 deg at the higher frequencies only 
rarely. The phase of the biceps and brachioradialis coincided 
in three subjects, and showed a small displacement in the 
fourth. Using the phase response for flexors and extensors of 
each subject together with the values of /„, K0, and C„ which 
had already been identified from the FOT's, the identification 
algorithm with equation (13) was applied to estimate fi, f2, and 
T: the values of /„ used in this procedure were the averages of 
the values identified at nominal loads of 35 and 70 N. A second-
order linear model alone is incapable of producing phase lags 
greater than 180 deg, so that the time delay r is needed to match 
the observed phase response. In this stage of identification an 
upper limit of 25 ms was set on the parameter r, based on an 
estimate for an upper limit for the time delay which could be 
associated with muscle action potential conduction from the 
motor end plate to the end of the muscle. The identification 
scheme went to this limit in only one case (Subject D, triceps). 
The identified values fi and f2 were converted to the asso
ciated values of the time constant Ti and r2 and these are listed, 
together with the time delay T, in Table 2. The curve included 
in Fig. 7 shows the theoretical model response according to 
equation (13) for the average parameter values listed. 

At this stage in the data analysis all the muscle parameters . 
had been determined except the T's (the ratio of "isometric" 
moment to EMG) of equation (13) which affect the amplitude, 
but not the phase response in a VOT. Equation (13) with all 
parameters except the T's fixed at their previously identified 
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f (Hz) KHz) 

•e-' 

Fig. 7 Phase lag of muscle moment with respect to tr iceps EMG in 
the voluntary oscillation tests. Squares = Subject A, pluses = Sub
ject V, tr iangles = Subject C, circles = Subject D. Pooled data for 
all values of non-negat ive mean external load. The dashed curve 
represents the model response, equat ion (13) with the fol lowing 
representative parameter values: ( f„ , ft, ft, r*, 7 , ft,, ft) = (4.0 Hz , 
0.65, 0.65, 0.4, 3.0, 0.4, 0.2). 

- frt 
f-.% 

DA 

+ 
A 

J- + 

°A* D 

° MR 
+++ 

? S + \ 
+ AO 

o * 

8oDAiA 
O \ A 

Fig. 8 Ampl i tude ratio of muscle m o m e n t to tr iceps EMG in the vol
untary oscillation tests. Squares - Subject A, pulses = Subject B, 
tr iangles = Subject C, circles = Subject D. For each subject the data 
are normal ized with respect to the average value of the ampl i tude 
ratio at 2 Hz, A,, in two external load ranges: (—17, 17) (nomina l ly 
" z e r o " external load) , and ( > 1 7 ) N at the wrist. The dashed curve 
represents the model response equat ion (13), with the same repre
sentative parameter values as are used in Fig. 7. 

values was compared to the measured ratio of muscle moment 
to EMG in order to identify these parameters. The average 
values of the V 's are listed for the extensors in Table 2 together 
with corresponding values of the average (muscle moment / 
EMG) ratio determined from static tests over the load range 
0 to 25 N-m; values for the flexors are similar and are omitted. 
Fig. 8 shows the normalized (muscle moment /EMG) amplitude 
response in a VOT. The muscle moment is computed as the 
measured external moment minus the inertial moment of the 
forearm. Pooled data for the extensors of all four subjects 
are shown together with the theoretical response predicted by 
equation (13) for the typical parameter values listed. 

Discussion 

The frequency-response characteristics which were measured 
in these experiments have been interpreted in terms of a second-
order mod 1 for muscle dynamics, and the results have been 
reported by evaluating the parameters of this model. While 
many features of the response could be adequately represented 
by a first-order model (equivalent to setting T2 = 0) for ex
ample [29], this model is not appropriate for our present re
sults. The major shortcomings of a first-order model are, first, 
that it requires lather large values for the time constants 
(TI = 150 ms and T = 35 ms) in order to match the phase 
response in a VOT and, second, tha t a first-order model pro
duces an amplitude decrease with a slope of —1 in a log-log 
representation of the VOT amplitude response (see Fig. 8) at 
the higher frequencies, rather than the consistently observed 
slope of approximately —2 associated with a second-order model 
with Ti and r2 of the same order of magnitude (these slopes 
characterize the model response until v becomes nearly equal 
to 7 : see equation (13)). Further there is a growing body of evi
dence, both from in-vivo [2, 22] and isolated muscle experi
ments [8], tha t the small-amplitude frequency-response of skel
etal muscle is represented very well by a second-order model 
with parameters which are functions of contractile state. Such 
a model can be derived from a generalization of Hill's model 
(see Appendix). 

Fig. 4 confirms tha t human muscle in-vivo has a stiffness 
which increases with level of contraction. This property is 
well established in isolated muscle preparations, where some 

experiments [7] show that the stiffness is almost proportional 
to muscle force from zero force to tetanus. This "hard spring" 
behavior seems to be characteristic of most biological materials 
[30], passive as well as active. However, it must be emphasized 
that the parameter K measures the force-dependent stiffness 
of active muscle; the combined stiffness of relaxed muscles and 
surrounding tissues is very small by comparison [31], certainly 
less than 4 N-m/rad . To the extent that comparison is possible 
the stiffness values which we have measured here by frequency-
response techniques agree reasonably well with values reported 
in the literature [28, 32, 33] measured by different experimental 
methods. 

In spite of the high degree of variability in the reflex EMG's 
measured during the FOT's, Figs. 5 and 6 indicate some reason
ably clear trends. The phase lead of EMG on muscle stretch 
(Fig. 5) appears to increase from 0 a t the low frequencies: 
this is what one would expect if the E M G were generated by 
stretch receptors sensitive to stretch and rate of stretch. From 
4 Hz on the E M G phase decreases approximately linearly with 
frequency: this is the phase variation which would result if 
an excitatory signal were generated at the muscle in phase with 
stretch acceleration (derivative of stretch velocity) and returned 
to the muscle, amplified, after a transport time delay in the 
spinal reflex loop. As indicated on Fig. 5 a straight line through 
(0, IT) with a slope corresponding to a time delay of 30 ms, 
which is approximately the value of the reflex time delay, 
fits the data above 6 Hz reasonably well. Although it is attract
ively simple to attribute the higher-frequency phase variation 
to a time delay in the reflex loop, an indication tha t this may 
not be the underlying mechanism is provided by the results 
of Jansen and Rack [18], who found a phase variation essen
tially identical to that shown in Fig. 5 in the soleus of a decere
brate cat preparation, where transport time delays should be 
much shorter. The high scatter in the (EMG/angle) ratios 
masked any variation of reflex gain with frequency at constant 
load. Nevertheless, Fig. 6 clearly shows tha t on the average 
reflex gain as measured by (AE/Ad) increased with load. One 
could speculate that this is simply a gross manifestation of 
the principle of a-y co-activation [34]; with the higher or 
motoneuron activity required to generate higher contractile 
forces, the concurrent increase in 7-motoneuron activity makes 
the spindles more sensitive. 
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I t is difficult to interpret the results of the FOT's in purely 
mechanistic terms at low frequencies because in this case the 
subjects could intervene voluntarily and the response depended 
to some extent on their subjective interpretation of the instruc
tion to "maintain a constant average force level," While some 
level of reflex feedback and/or periodic voluntary inputs very 
probably did exist, as stated previously the manifestation of 
these inputs as fluctuations in the sm'face E M G was not clearly 
measurable by the techniques used in this experiment at fre
quencies below 4 Hz. The theoretical curves for the two loaded 
cases shown in Fig. 3 were constructed using equation (14) 
with p 7^ 0 — that is, allowing for some feedback. In par
ticular these curves were constructed using the parameters (fi, 
fs, T*, Ko, Co) = (1.2, 0.8, 0.2, 30 N-m, 1.5 N-m-s), and the 
values of the resonant frequency /„ were taken as 2.8 Hz and 3.5 
Hz for the —10.6 N-m and —19.1 N-m curves, respectively: 
these numbers are typical of the parameter values identified 
for Subject A and listed in Table 2. The pjiase of the EMG 
\p was represented by the empirical equation ip = arc tan[/ / (1 .0 
— 0.30/2)] —0.175/, as an approximation to the phase variation 
shown in Fig. 5. Constant values of the feedback parameter 
p were chosen to produce a good fit of both amplitude and 
phase response for frequencies higher than 2 Hz: the values 
chosen were p = 3.5 at —10.6 N - m and p = 5.5 at —19.1 N - m . 
The shape of the response curves in the FOT, but not the lo
cation of the resonance peak, is quite sensitive to the values of 
the system parameters other than K and I. The theoretical 
curves in Fig. 3 are included to show that the response in the 
FOT's can be reproduced using parameters identified from the 
VOT response if moderate levels of feedback are admitted. 
However a more precise resolution of the effects of reflex feed
back at low frequencies will require improvements in our cur
rent methods of EMG processing. At frequencies below 2 Hz 
in the FOT's the subject's voluntary inputs may be more im
portant than any involuntary reflex contribution. 

The two time constants, n and T2 were identified from the 
VOT's to have values of approximately 50 ms (see Table 2). 
This is consistent with the results obtained for human forearm 
flexors and extensors in vivo by Soechting and Roberts [22] 
(voluntary oscillation tests) and Aaron and Stein [2] (direct 
electrical stimulation of the musculo-cutaneous nerve supply
ing the biceps). Coggshall and Bekey [35] identified the time 
constants of a second-order muscle model for two subjects per
forming voluntary isometric contractions of the triceps: the 
values were 11 and 189 ms for one subject and 22 and 167 
ms for the other. Our time constants are considerably smaller 
than Coggshall and Bekey's dominant (larger) time constant, 
and they are also smaller than the value of 105 ms used by 
Gottlieb and Agarwal [36] for both time constants of a second 
order model of the ankle flexors. In studies of isolated, iso
metric cat soleus Mannard and Stein found tha t the frequency 
response over the range 0 - 3 0 Hz was very well represented 
by a second-order model with parameters depending on level 
of activation. The results reported by these investigators in
dicate that one of the time constants had a value of 10-30 ms 
and was relatively insensitive to activation level while the other 
increased from 30-40 ms at low activation to 200-300 ms at 
tetanus. Our experiments were conducted at low loads (up to 
about 30 percent maximal voluntary effort) and our results 
did not permit us to detect the influence of activation level on 
the time constants. While one could speculate about the micro
scopic physical and chemical events which are the source of 
these time constants (Mannard and Stein conjecture tha t they 
ai'e connected with rate-limiting processes which govern the 
generation and decay of contractile force, respectively), for our 
present purposes we will simply regard them as parameters 
which characterize the macroscopic behavior of muscle: on 
the basis of the development in the Appendix we could refer 
to Ti as the "vi^eoelastic" time constant and T2 as the "con

traction" time constant. 
Soechting, et al. [28] reported typical values of 100 ms for 

the single time constant of a first-order muscle model, based 
on the measured response of six normal male subjects in quick-
release tests. These values are approximately equal to the 
sum of the two time constants, Ti, and T%, our second-order 
model. Another comparison is possible, between the values of 
our "viscoelastic" time constant ri and values for the ratio of 
apparent internal friction moment to the angular velocity of 
the forearm measured in a constant-velocity test, as reported 
in [12] : this ratio was found to have a typical value of 4.4 
N-m-s for the flexors of six male athlete subjects at low levels, 
of activation. If one assumes 75 N - m as a representative value 
of muscle stiffness in the VOT's, then the foregoing apparent 
internal friction corresponds to a time constant of 59 ms, which 
agrees reasonably well with the values of T\ listed in Table 2, 

The time delay T was introduced to provide an adequate fit' 
to the VOT phase data, and such a small time delay has been 
introduced by other investigators for similar reasons [2, 8], 
This time delay can probably be associated to some extent 
with the spread of electrical excitation prior to the mobilization 
of the muscle's contractile machinery, and as such it would be 
expected to vary with the placement of the recording elec
trodes with respect to the innervation zone, and could vary 
from one muscle to another. If one takes 4 m / s as a typical 
muscle action-potential propagation velocity, then values of 
T above 25 ms are implausible. 

The values of the parameters Y/ and Te of equation (13) 
which measure the ratio of "isometric" moment to activation, 
of course depend strongly on the details of the procedures used 
to measure and process the EMG, and in principle these should 
be determined anew for each re-application of the electrodes. 
Average values of the I V s for the extensors of our four subejcts-
are listed in the next-to-last column of Table 2: these values 
were determined by fitting equation (13) to the observed ampli
tude response in the VOT's (see Fig. 8). For comparison values 
of the average (moment/EMG) ratio measured in static tests 
at the beginning and end of the first day of testing are listed 
in the last column of Table 2. I t is seen that the static values 
are somewhat lower than the dynamic values. The variation 
of the force-activation relation of skeletal muscle during the 
transition from a truly isometric state to states of motion, 
albeit at low velocities, requires further investigation, as both 
in-vivo [12] and isolated-muscle [7] experiments indicate that 
rather abrupt changes in behavior may occur in passing be
tween these states. 

Conclusions 

The frequency-response technique seems well suited to the 
investigation of human skeletal muscle in vivo. By measuring 
frequency-response in several modes of oscillation quantitative 
information can be obtained about limb inertia, muscle stiff
ness, apparent internal friction, time constants characterizing 
contraction dynamics, and reflex feedback: when coupled with 
appropriate modeling and data-analysis procedures, the ob
served response characteristics yield numerical measures of these 
various aspects of muscular behavior. Specific conclusions which 
can be drawn from this study involving four normal adult 
male subjects, frequencies between 1 and 15 Hz and loads up 
to approximately 30 percent of maximum voluntary effort are: 

1 Under external forcing of the forearm the response is 
dominated by inertia at frequencies above 6 Hz. Further the 
motion of the forearm shows resonance characteristics. The 
muscle stiffness may be calculated from measurements of the 
resonant frequency: this stiffness increases with average ac
tivation and attains a value on the order of 100 N-m at a muscle 
moment of 20 N-m for both the flexors and extensors. 
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2 In response to external forcing of the forearm, the re
flex activation (EMG) leads the stretch in a loaded muscle 
at all frequencies between 2 and 15 Hz by a phase angle that 
varies between approximately 0 and T / 2 (attaining a maximum 
at a frequency of approximately 4 Hz). The strength of the 
reflex feedback as measured by the (EMG/angle) perturbation 
amplitude ratio increases with the activation. 

3 The phase lead of activation on muscle force in a vol
untary oscillation increases from 0 to 7r (more than TT for the 
extensors) as the frequency increased from zero to 9 Hz. The 
amplitude ratio of muscle moment to E M G decreases con
tinuously as the frequency increases. Thus in the Voluntary 
Oscillation Tests skeletal muscle exhibits the response char
acteristics of a low-pass filter, or alternately, it exhibits the 
behavior which would result from the presence of an apparent 
internal friction. 

4 The frequency-response observed in these tests can be 
represented reasonably well by a second-order quasi-linear model 
for muscle, containing a small time delay, with parameters 
that depend on activation level. The two time constants of 
this model are each of the order of 50 ms, and t h ; time delay 
is of the order of 10 ms. 
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A P P E N D I X 

Formal Derivation of a Model for Forearm Dy
namics From a Generalized Hill Equation 

In this Appendix we develop a mathematical model to rep-
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resent the response of the forearm, in our frequency-response 
experiments, starting with a generalization of A. V. Hill's classic 
description of whole-muscle mechanics. While a model could 
be postulated directly, it is instructive to show how the one 
adopted can be derived from Hill's paradigm, thus providing a 
connection to the physiological work on isolated muscle. 

In his well-known 1939 paper [5] Hill proposed that from a 
phenomenological point of view, skeletal muscle could be re
garded as a series combination of an undamped elastic element, 
the "Series Elastic Element," (the SE) and a "Contractile 
Element" (the CE) which represented the active force-gener
ating properties of the muscle. This schema was based largely 
on the results of isotonic quick-release experiments with tet-
anized frog muscle which was allowed to shorten (but not 
lengthen). Further Hill proposed that the relation between 
the force across the hypothetical CE and its rate of shortening, 
V, be taken as the experimentally observed isotonic force-ve
locity relation. These assumptions lead directly to the follow
ing equation relating the muscle length x, and the force across 
the muscle P 

x = C(P)P - V(P) (2) 

where the (") denotes differentiation with respect to time, V{P) 
is the aforementioned isotonic shortening velocity as a function 
of muscle force, and C(P) is the compliance of the SE which 
is measured in quick-release tests. Based on an analysis of 
heat and work relations in the isotonic tests, Hill proposed his 
well-known equation for V 

V(P, P„) = 6(P„ - P)/{a + P) (3) 

The constants P„, a, and b are assumed to characterize the 
mechanics of muscle in a given state. Under isometric con
ditions when x = P = 0, the force P = P„ which satisfies the 
equation V(P„, Po) = 0 is called the "isometric force" and 
may be taken as a measure of the contractile state of the mus
cle. This model may be generalized to include time-varying, 
submaximal activation and lengthening as well as shortening 
muscle by postulating 

x = C(P,P0)P - V(P,P„) and P„ + $[P„, E(t-r)] = 0 

(4) 

The generalization consists of the following: 

(a) Both C and V are now assumed to depend on the level of 
activation as measured by the isometric force P0, 
(b) P0 itself is assumed to depend on a measurable index of 
activation level E. 

For example in an experiment on isolated muscle, E can be 
chosen as the stimulus rate, whereas in an experiment on in-
vivo muscle, E can be chosen as the rms value of the E M G 
measured with a given recording configuration. To account 
for the fact that excitation-contraction coupling involves 
electrical and chemical processes which proceed at a finite 
rate, the relation between P„ and E is postulated in the form 
of a differential equation (assumed first-order as an initial 
approximation); this equation contains a time delay T to 
represent the spread of neural excitation with a definite prop
agation velocity. Under isotonic conditions x, E, P, and P0 

are constant and one recovers the usual relation x — —V(P, P„), 
with the Isometric Force given as a function of activation by 
<f>(P„, E) = 0; thus V(P, P0) can be determined from the re
sults of isotonic experiments carried out at constant, submaxi
mal activation, for example [7]. In the generalized Hill model 
equations (4), the isometric force P<> plays a role analogous to 
that of an "internal" thermodynamic variable. Note that 
V(P0, Po) = 0 for any P„, from the definition of isometric force. 

With Hill's model thus generalized to include submaximal 
activation it is a relatively straightforward matter to develop 

a model for the dynamics of the forearm undergoing small 
perturbations about a steady state. Consider such a steady 
equilibrium state P = P*, P0 = P„*, E = E*, x = x*, and 
let perturbations about this state be denoted by 

P = p* + 5P, P0 = P0* + dPo, E = E* + SE, and x = x* + 8x 

Then with appropriate smoothness assumptions, we have 

C(P,P0) = C + 

+ (5) 

r) + . 

where all functions and derivatives on the right-hand sides of 
the foregoing equations are evaluated at the steady state. Com
bining equations (5) and (4) and noting that V(P0*, P0*) — 0 
and $(?,,*, E*) = 0 we obtain the perturbation equations 

- - <* - ( i y - (£>-• 
and SP° + {dFor + {rE)m~T) - ° 

Because V(P, P0) vanishes when P = P„ it follows that 
(dV/dP) = - (dV/dP0) whenever P = P„. If we define 

k — C"1, the muscle stiffness 

c_ 1 = (dV/dP0) = — (dV/dP), the reciprocal of the damping 
coefficient (6) 

Ti = ( 3 $ / 3 P 0 ) - 1 , the contraction time constant, and 

g = — ( 3 $ / 3 B ) T 2 , the incremental change in isometric force 
per unit change in activation, 

then the perturbation equations become 

o 

SP + 
k\p = k8x + (k\p0 

8P° + ( T 2 ) 5 P ° = ( ^ ) 5 £ ( ' ~ T ) 

(7) 

Equations (7) model the dynamics of the muscle when it is 
subjected to small perturbations about a steady equilibrium state. 
Note that all the parameters must, in general, be considered 
functions of the contractile state P„* or E*. The "internal" 
variable SP0 can be eliminated from equations (7) to yield a 
single second-order model for muscle dynamics 

UP-f^+^ + ^ + r^P 

= fc(5x + r r 1 5§) + T r V r 1 9§S(t—T) (8) 

(L denotes the differential operator contained in braces.) To 
proceed from (8) to an equation governing the motion of the 
whole forearm, additional assumptions are required. For our 
present purposes we may assume that flexion-extension of the 
forearm is produced by three muscles, say the biceps, the brach-
ioradialis, and the triceps (the brachialis may be considered 
lumped with the biceps, and additional muscles can be included 
in the analysis in an obvious way). These three muscles will 
be indexed 1, 2 and 3, respectively. Now if 6 represents the 
angle of flexion and a(6) is the moment arm of the muscle force 
about the elbow joint it can be readily shown that \dx'/dQ\ = a. 
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Noting that L8M = Ld(aP) = a*L8P + P*L8a equation (5) 
can be written as 

TJM = n K(8§ + T2-W) + T^T^a*g8E{t-^T) + P*L8a (9) 

•where n is — 1 for the flexors and + 1 for the extensors, a* is 
the steady value of the moment arm, K = (a*)z/c, 89 is the angle 
perturbation, and Ti = (fc/c), a "viscoelastic" time constant. 
It can be shown that the term P*L8a is rather small under the 
conditions of our experiment, and it will be neglected for the 
sake of simplifying the development. Equation (9) may be 
written for the moment generated by each muscle Mi and, 
when combined with the equation of motion 

3 

1 e = M ~ L n<Mi 

i-l 

where M is the resultant moment of nonmuscular origin acting 
on the forearm, one obtains 

L(lld - 8M) + K(89 + rrl86) 

3 

= -TC^rr1 £ maSgiSEiU—r) (10) 
i-l 

3 

where K = \ Kt, the angular stiffness of the forearm, and it 
i - l 

has been assumed that the time constants are the same for 
each muscle. This assumption of identical time constants is 
made primarily in the interest of keeping the model manage
able: it is not unreasonable to assume that r2 and Ti are inde
pendent of muscle size, and while the time delay r is expected 
to depend on electrode placement and may vary between mus
cles, it is expected to be rather small and using an average 
value will suffice for present purposes. Finally some assumption 
must be made concerning the distribut'on of forces in syner
gistic muscles. I t is consistent with previously adopted approxi
mations to assume that synergistic muscles are activated pro
portionately under the conditions of our experiment (this is at 
least partially justified by the fact that both the mean values 
and perturbation amplitudes of the measured EMG's from the 
biceps and brachioradialis were observed to increase together). 
Adopting this approximation <5-E2 = rSEi, where r is a constant 
of proportionality, then if we define Ta = ai*</i + ma*jfj, Te 

= a3*ff3, SEj = 5.Ei and 8Ee = 8E2, we may write 

L(IS§ - SM) + K$8 + Tt-^h = rr^rHTfSEfd—r) 

- r„5# f(fr-r)] (11) 

which is an equation containing only the measurable variables 
88, 8M, 8Ef and 8Ee, and the muscle parameters K, Ti, r2, T, 
IV and T„. 

Under experimental conditions the external moment is the 
sum of the applied moment 8Ma and the visco-elastic resistance 
of the loading apparatus: the latter is characterized by a stiff
ness Ka and a damping constant Ca. Thus 

8M = 8Ma - Ko80 - C08§ (12) 

The response of the forearm in a Voluntary Oscillation Test 
(VOT) or Forced Oscillation Test (FOT) can be predicted from 
equation (11) and a comparison of the predicted and measured 
responses can be used to identify^ the muscle parameters. 

For the VOT we let 8Ma = -K80 where K is the (rotational) 
stiffness due to the elastic resistance at the wrist, and 86 = A6eia", 
8Ef = AE/e*("'+*), 8Ee = AB (e

i("'+*-') which gives the re
sponse function 

<JK-M)A6\ 

\TfAE, + YeAEe\ 

= ! 1 + %2^v + [i2f,j; + /3„2(1 + l 2 $ » ( l + i 2 i » ] / ( V - ,/>)}-i 

{1 + i2£tv\-ie-<'r* (13) 

where 

w„ = VK/I, v = «/&>„, f„ = r„w„/2 = (Co/Ko)o)n/'2, 

fi = i W 2 , f2 = T 2 W„/2, ft2 = KJK, 72 = K/K, a n d r * = co„r 

As the contributions of the passive resistance is rather small in 
this case one may interpret the numerator of the expression on 
the left-hand side of the foregoing equation simply as the ampli
tude of the muscle moment. 

In the FOT at most one muscle group is active (say, the 
flexors) and we assume 

86 = A6eial, SEf = A-E/e*'*"-*', 8Ee = 0, 8M„ = AM0e'<""+*> 

and the response function for moment input and angular position 
output is 

(AIFV'*
 = Zo^x + ( /3°2 + m°v ~~ z^e~i*^~1 <14> 

where 

Za = (1 + i2^v){i2^V - !/>(l + i 2 ^ ) j - i 

Z, = {(1 + i2fiv)-i( l + i2f2v)-i}e-" r* 

and p = T/(AEf/A6)/K is a feedback parameter: the ratio of 
contractile reflex moment generated per unit angular displace
ment to the muscle stiffness. In the limit of a completely re
laxed subject in the FOT, K, f 1, f2, r* and p all go to zero and 
equation (14) degenerates to the response function for a simple 
second-order damped oscillator without feedback 

ltd + C„86 + KM = 8Ma (15) 

from which the passive parameters K„ and C„ can be determined. 
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