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ABSTRACT
This paper establishes a new type component mode synthe-

sis method for a flexible beam element based on the absolute
nodal coordinate formulation. The deformation of the beam el-
ement is defined as the sum of the global shape function and
the analytical clamped-clamped beam modes. This formulation
leads to a constant and symmetric mass matrix as the conven-
tional absolute nodal coordinate formulation, and makes it possi-
ble to reduce the system coordinates of the beam structure which
undergoes large rotations and large deformations. Numerical
examples show that the excellent agreements are examined be-
tween the presented formulation and the conventional absolute
nodal coordinate formulation. These results demonstrate that the
presented formulation has high accuracy in the sense that the pre-
sented solutions are similar to the conventional ones with the less
system coordinates and high efficiency in computation.

Keywords: flexible beam, large rotation, large deformation, com-
ponent mode synthesis, absolute nodal coordinate formulation

INTRODUCTION
Recently, the absolute nodal coordinate formulation

(A.N.C.F) [1] for formulating large rotation and large deforma-
tion problems of very flexible beam, plate and shell elements
has been proposed. In this formulation, beams, plates and shells
which have primarily been established as a non-isoparametric el-
1
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ement are considered as an isoparametric element. Although the
vector of nodal coordinates does not contain infinitesimal or fi-
nite rotation coordinates, global slope coordinates are used for an
exact arbitrary rigid body description instead. Using the shape
function of the conformal type that ensures the continuity of all
the displacements, displacement gradients at nodal points and el-
ement interfaces in the analysis of two and three dimensional el-
ement, the center line and mid surface can be smooth. This kind
of shape function satisfies both the compatibility conditions and
the completeness conditions which imply one of the sufficient
conditions for the convergence of finite element.

Two different methods can be used to derive the element
elastic forces in A.N.C.F. In one method, the element coordi-
nate system such as a pinned frame and a tangent frame that
are used for the description of the element deformation is in-
troduced. These element coordinate systems allow for the use of
linear strain-displacement relationships [2–4].

Another method for deriving the elastic forces is to use a
continuum mechanics approach (C.M.A) that does not require
the use of a local element coordinate system. The beam ele-
ment based on the assumption of Euler-Bernoulli beam model
was established in the previous study of A.N.C.F [5, 6]. A more
general longitudinal deformation model which does not employ
the constant or the small strain assumptions was presented [6].
Omar [7] established a more general shear deformable beam el-
ement based on the nonlinear strain-displacement relationships,
and Mikkola [8] developed it into three dimensional plate and
Copyright c© 2003 by ASME
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shell element. A new three dimensional beam element is now
being developed [9]. Using C.M.A, much simpler elastic forces
can be obtained than those of the former method using local el-
ement coordinate system. Moreover the solutions obtained by
C.M.A converge well with small numbers of finite elements.

A.N.C.F tends to increase the number of degrees of freedom
to be solved, as it is based on the finite element method. The
reduced order formulation is desired to decrease the degrees of
freedom. One of the present authors has developed a new type
of component mode synthesis method (C.M.S) [10] where the
displacement function of the linear beam finite element based
on the classical Euler-Bernoulli beam theory is treated as a lin-
ear combination of the third order polynomials and the analytical
clamped-clamped beam modes, and applied for the large rotation
vector formulation [11]. Using this kind of C.M.S, mode trunca-
tions at nodal points can be prevented since the applied modes
are chosen to the type of clamped beam that satisfies the bound-
ary condition of zero displacement and zero slope at both ends.

In this study, we shed light on three kinds of the Euler-
Bernoulli beam based element [2–5] in order to extend these
models to the lower order and more accurate models with re-
duced number of system degrees of freedom in comparison with
the conventional beam element based on A.N.C.F. Since the dis-
placement function is modeled by using the constraint modes,
the present shape function ensures the continuity of all the dis-
placements and displacement gradients at nodal points. As a
consequence, the presented beam element satisfies C1 continu-
ity condition and does not account for the shear deformation. In
this paper, the accuracies of C.M.S based models are evaluated
numerically by comparing with the large numbers of finite beam
elements only based on the conventional A.N.C.F.

DERIVATION OF EQUATIONS OF MOTION BASED ON
A.N.C.F USING C.M.S
Kinematic Equations

Figure 1 shows the planar beam element and the coordinate
system used in this study. In A.N.C.F, the global position vector
of an arbitrary point on the beam element based on the Euler-
Bernoulli beam theory which does not account for the shear de-
formation is defined using the following equation:

ri j = Si jei j (1)

where ri j is the global position vector of an arbitrary point on the
beam element, Si j is the element shape function matrix, ei j is the
vector of nodal coordinates, and superscript i j refers to element
j on body i. We define the element shape function matrix Si j and
the vector of nodal coordinates ei j which are based on C.M.S can
2
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Figure 1. The planar beam element based on A.N.C.F & C.M.S

be written as follows:

Si j =



1−3ξ2j +2ξ3j 0

l j

(
ξ j−2ξ2j + ξ

3
j

)
0

3ξ2j −2ξ3j 0

l j

(
ξ3j − ξ2j

)
0

0 1−3ξ2j +2ξ3j
0 l j

(
ξ j−2ξ2j + ξ

3
j

)
0 3ξ2j −2ξ3j
0 l j

(
ξ3j − ξ2j

)
Φ

i j
X 0

0 Φ
i j
Y



T

, ξ j =
x j

l j
(2)

ei j =
[
ei j

1 ei j
3 ei j

5 ei j
7 ei j

2 ei j
4 ei j

6 ei j
8 ζ

i j
X1
· · ·ζi j

Xk
ζi j

Y1
· · ·ζi j

Yk

]T
(k = 1, . . . ,n) (3)

where l j is the length of the element, x j is the axial coordinate
that defines the position of an arbitrary point on the element in
the undeformed configuration, and Φi j

X , Φ
i j
Y are the clamped-

clamped beam mode vector defined as:

Φ
i j
X =Φ

i j
Y =

[
φ1(ξ j) · · · φk(ξ j)

]T
(4)

In Eq. 2, the two components of the displacement are in-
terpolated using the same polynomials since these displacement
components are defined in the global coordinate system. In Eq. 3,
ei j

1 and ei j
2 are the translational coordinates at the node at point A j

as shown in Fig. 1, ei j
5 and ei j

6 are the translational coordinates at

the node at point B j, ei j
3 and ei j

4 are the global slope coordinates
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at the node at point A j, and ei j
7 and ei j

8 are the global slope coor-
dinates at the node at point B j, respectively. In addition to these

components, ζi j
Xk
, ζ

i j
Yk

are the k th normal mode coordinates for
the global X, Y directions of the element and φk(ξ j) is the k th
constraint mode.

It is note that when the A.N.C.F is used in this study, there is
no reason for using different modes and different degrees of nor-
mal mode coordinates to describe different components of the
displacements of the beam element since these components are
defined in the global coordinate system. Therefore we use the
same modes and the same numbers of modes to describe the
global X, Y directions. By using the global slope coordinates
as nodal coordinates in this formulation, it can be shown that the
conventional modes of the beam can be used to define an isopara-
metric element in succession from the previous study based on
A.N.C.F. The applied modes in this study must be chosen to
avoid leading mode truncations at nodal points. This can be cir-
cumvented using the constraint modes like that of a clamped-
clamped beam. As a consequence, the shape function developed
in this study ensures continuity of all the displacements and dis-
placement gradients at nodal points of the beam element. This
continuity will be investigated numerically later in this paper.

For convenience of derivation of equations, we redefine the
element shape function matrix Si j in Eq. 2 as follows:

Si j =
[

Si j
p Φ

i j
m

]
=

Si j
p1 0 Φi j

m1 0

0 Si j
p2 0 Φ

i j
m2

 ≡
Si j

1

Si j
2

 (5)

Mass Matrix
Using Eq. 1, the kinetic energy of the beam element can be

defined as:

T i j =
1
2

∫
Vi j

ρi jṙi jT ṙi jdVi j =
1
2

ėi jT Mi jėi j (6)

where ρi j and Vi j are the mass density and volume of the finite
element j of the deformable body i. Mi j is the constant symmet-
ric mass matrix of the beam element using C.M.S proposed in
this study, and can be defined as:

Mi j =

∫
Vi j

ρi jSi jT Si jdVi j

= mi j

Mi j
p Mi j

pm

Mi j
mp Mi j

m

 (7)
3
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The matrix Mi j
p in Eq. 7 can be written explicitly [1] as:

Mi j
p =

Mi j
p1 0

0 Mi j
p2

 (8)

Mi j
p1 =Mi j

p2 =



13
35

11 l j

210
9
70
−13 l j

420
l2j

105

13 l j

420
−

l2j
140

13
35
−11 l j

210

S ym
l2j

105



(9)

The matrices Mi j
pm and Mi j

m in Eq. 7 can be derived by integrating
the clamped-clamped beam modes.

Mi j
pm =Mi jT

mp =

Mi j
pm1 0

0 Mi j
pm2


=

∫ 1

0
Si jT

p Φ
i j
mdξ j (10)

Mi j
m =

∫ 1

0
Φ

i jT
m Φ

i j
mdξ j

=

∫ 1

0
diag

[
φ2

1(ξ j) · · · φ2
k(ξ j) φ2

1(ξ j) · · · φ2
k(ξ j)

]
dξ j (11)

The applied modes φk(ξ j) can be written explicitly as:

φk(ξ j) =Ck

{
(sinhλk − sinλk) (coshλkξ j− cosλkξ j)

−(sinhλkξ j− sinλkξ j) (coshλk − cosλk)
}

(12)

where λk in Eq. 12 is the solution of the following equation:

cosλk coshλk = 1 (13)

Since φk(ξ j) in Eq. 12 is orthogonal, one can normalize as:

∫ 1

0
φ2

k (ξ j)dξ j = 1 (14)

Using this relationship, the arbitrary constant C k in Eq. 12 can be
defined numerically, and the matrix Mi j

m in Eq. 11 can be written
as:

Mi j
m = I2k×2k (15)
Copyright c© 2003 by ASME
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Figure 2. Deformations defined in the pinned coordinate system
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Figure 3. Deformations defined by using C.M.A

where I is the identity matrix. The matrices Mi j
pm1,M

i j
pm2 in

Eq. 10 are coupling terms of polynomials and modes. These ma-
trices can be analytically obtained.

Elastic Forces
There are two kinds of method to derive the element elastic

forces in the previous study of A.N.C.F. One is called the pinned
frame approach using the local element coordinate system that
is used for the description of the element deformation as shown
in Fig. 2. Another is called a continuum mechanics approach
(C.M.A) that does not require the use of a local element coordi-
nate system as shown in Fig. 3. The arc length S j is introduced
instead. The authors apply the shape function of C.M.S to these
two approaches [2–5].
4
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Pinned Frame Approach Based C.M.S In the pinned
frame approach, the position vector u j in Fig.2 can be written as:

u j =

[
u j1

u j2

]
=


(Si j

1 −Si j
1A j

) ei j

(Si j
2 −Si j

2A j
) ei j

 (16)

where Si j
1 and Si j

2 are the rows of the element shape function ma-

trix defined in Eq. 5, and Si j
1A j

and Si j
2A j

are the rows of the shape

function matrix defined at the reference point A j in Fig. 2. The
vector ud j that accounts for longitudinal and transverse deflec-
tions of an arbitrary point on the beam element can be defined
as:

ud j =

[
ul

ut

]
=

 uT
j i− x j

uT
j j

 (17)

In this study, the authors make use of the pinned frame,
which has one of its axes passes through two nodes of the beam
element as shown in Fig. 2. In the previous study, in comparison
with the tangent frame, fewer requirements of the beam element
using the pinned frame to converge well were reported in general,
since the deformation within the element as defined with respect
to the element coordinate system remains small despite the ele-
ment large deformation [2]. The pinned frame can be introduced
by first defining the unit vector i along a line connecting point A j

and point B j. Therefore the unit vector i is:

i =
[

i1
i2

]
=

rA j − rB j∣∣∣rA j − rB j

∣∣∣ (18)

Using the definition of the vector e i j in Eq. 5, one can obtain:

i =
1
d

 ei j
5 − ei j

1

ei j
6 − ei j

2

 , d =
√

(ei j
5 − ei j

1 )2+ (ei j
6 − ei j

2 )2 (19)

where d is the distance between the nodes at A j and B j. Let also
j be a unit vector along the axes of the beam coordinate system.
The following relationship holds for two-dimensional problems:

j = Ĩ i (20)

where

Ĩ =
[

0 −1
1 0

]
(21)
Copyright c© 2003 by ASME
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Using the classical Euler-Bernoulli beam theory, the strain en-
ergy of the beam element can be written as:

Ui j =
1
2

∫ l j

0

{
EA

(
∂ul

∂x j

)2

+EIz

(
∂2ut

∂x2
j

)2}
dx j (22)

where E is Young’s modulus, A is the cross sectional area, Iz is
the second moment of area. The variation of the strain energy
can be written as:

δUi j =

∫ t2

t1

Qi jT
k δe

i jdt (23)

where Qi j
k is the vector of the element elastic forces. The elastic

forces can be written more explicitly as:

Qi j
k =

(
∂Ui j

∂ei j

)T

=
(
Ai j

11 +Bi j
22

)
ei ji21+

(
Ai j

22+Bi j
11

)
ei ji22

+
(
Ai j

12 +Ai j
21−Bi j

12 −Bi j
21

)
ei ji2i1−Ai j

1 i1−Ai j
2 i2

+

{
ei jT

(
Ai j

11 +Bi j
22

)
ei ji1−Ai jT

1 ei j

+
1
2

ei jT
(
Ai j

12+Ai j
21 −Bi j

12−Bi j
21

)
ei ji2

}( ∂i1
∂ei j

)T

+

{
ei jT

(
Ai j

22 +Bi j
11

)
ei ji2−Ai jT

2 ei j

+
1
2

ei jT
(
Ai j

12+Ai j
21 −Bi j

12−Bi j
21

)
ei ji1

}(
∂i2
∂ei j

)T

(24)

Each coefficient of matrices in Eq. 24 (r, s = 1,2) can be written
as:

Ai j
rs =

EA
l j

∫ 1

0

(
∂Si j

r

∂ξ j

)T (
∂Si j

s

∂ξ j

)
dξ j (25)

Bi j
rs =

EIz

l3j

∫ 1

0

(
∂2Si j

r

∂ξ2j

)T (
∂2Si j

s

∂ξ2j

)
dξ j (26)

Ai j
r = EA

∫ 1

0

(
∂Si j

r

∂ξ j

)T

dξ j (27)

The authors list typical matrices in Eqs. 25 - 27 as follows:

∫ 1

0

(∂Si j
p1

∂ξ j

)T (∂Si j
p1

∂ξ j

)
dξ j ≡ Ki j

A (28)

∫ 1

0

(∂2Si j
p1

∂ξ2j

)T (∂2Si j
p1

∂ξ2j

)
dξ j ≡ Ki j

B (29)
5
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∫ 1

0

(∂Si j
p1

∂ξ j

)T (∂Φi j
m1

∂ξ j

)
dξ j ≡ Ki j

C (30)

∫ 1

0

(
∂Φ

i j
m1

∂ξ j

)T (∂Φi j
m1

∂ξ j

)
dξ j ≡ Ki j

D (31)

∫ 1

0

(∂2Si j
p1

∂ξ2j

)T (∂2Φ
i j
m1

∂ξ2j

)
dξ j ≡ Ki j

E (32)

∫ 1

0

(
∂2Φ

i j
m1

∂ξ2j

)T (∂2Φ
i j
m1

∂ξ2j

)
dξ j ≡ Ki j

F (33)

Shabana [1] derived matrices Ki j
A and Ki j

B in Eqs. 28 and 29 by

integrating the products of shape function S i j
p as:

Ki j
A =



6
5

l j

10
−6

5

l j

10
2 l2

j

15
− l j

10
−

l2j
30

6
5
− l j

10

S ym
2 l2

j

15



(34)

Ki j
B =



12 6 l j −12 6 l j

4 l2
j −6 l j 2 l2

j

12 −6 l j

S ym 4 l2j


(35)

The matrices Ki j
C , Ki j

D, Ki j
E and Ki j

F in Eqs. 30 – 33 are also de-
rived in the same manner and can be analytically obtained.

Continuum Mechanics Approach Based C.M.S In
the preceding section, the formulation of the elastic forces based
on C.M.S using a local element coordinate system was discussed.
However, in A.N.C.F, it is not necessary to use such a local
coordinate system. As discussed in the previous study based
on C.M.A [5, 6], Eq. 1 is the parametric equation of a two-
dimensional line. Thus the configuration of a beam element at
time t as shown in Fig. 3 can be defined as:

ri j = ri j(x j), 0 ≤ x j ≤ l j (36)

The arc length S j in Fig. 3 is related to x j through the differential
equation as:

dS j =

√
ri j ′T ri j ′dx j , ri j ′ =

dri j

dx j
(37)
Copyright c© 2003 by ASME
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The Green-Lagrange longitudinal strain ε i j
l can be defined using

the following equation:

dS 2
j −dx2

j = 2dx jε
i j
l dx j (38)

which implies that

ε
i j
l =

1
2

(ri j ′T ri j ′ −1) (39)

This equation can be written in terms of the vector of nodal co-
ordinates ei j using Eqs. 2 and 3 as:

ε
i j
l =

1
2

(ei jT Si j ′T Si j ′ei j−1) (40)

The longitudinal deformation may be related to longitudinal
stresses by specifying the constitutive equations. Using the clas-
sical Euler-Bernoulli beam theory, the vector of generalized elas-
tic forces due to the longitudinal deformation can be defined as:

Qi j
l =

∂U
i j
l

∂ei j


T

=

∫ l j

0
EAεi j

l Si j ′T Si j ′ei jdx j (41)

From this equation, it is clear that if the length of the finite ele-
ment is small enough to consider εi j

l as constant, then it is possi-
ble to factor it out of the sign of integral as follows:

Qi j
l = EAε̄i j

l

[∫ l j

0
Si j ′T Si j ′dx j

]
ei j (42)

where ε̄i j
l is the average longitudinal strain which can be approx-

imated as:

ε̄
i j
l =

d− l j

l j
(43)

In Eq. 43, d is defined as Eq. 19. The elastic force vector Qi j
l due

to the longitudinal deformation can be written as:

Qi j
l =Ki j

l ei j (44)

where

Ki j
l =

EA
l j
ε̄

i j
l



Ki j
A 0 Ki j

C 0
0 Ki j

A 0 Ki j
C

Ki jT
C 0 Ki j

D 0
0 Ki jT

C 0 Ki j
D


(45)
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The effect of bending moments can be introduced using the cur-
vature κ of the beam element as:

M = EIzκ (46)

The Serret-Frenet formulas of differential geometry give:

κ =

∣∣∣∣∣∣∣
d2ri j

dS 2
j

∣∣∣∣∣∣∣ ≈
∣∣∣∣∣∣∣
d2ri j

dx2
j

∣∣∣∣∣∣∣ =
∣∣∣ri j ′′ ∣∣∣ (47)

In this equation, the special assumption of small longitudinal de-
formations (S j ≈ x j) is employed. The strain energy Ui j

t account-
ing for bending deformations is given by:

Ut =
1
2

∫ l j

0
EIzκ

2dx j =
1
2

ei jT Ki j
t ei j (48)

The elastic force vector Qi j
t due to the transverse deformation

can be written as:

Qi j
t =Ki j

t ei j (49)

where

Ki j
t =

EIz

l3j



Ki j
B 0 Ki j

E 0
0 Ki j

B 0 Ki j
E

Ki jT
E 0 Ki j

F 0
0 Ki jT

E 0 Ki j
F


(50)

Using Eqs. 44 and 49, the final expression of the elastic forces in
Eq. 23 is given by:

Qi j
k =Qi j

l +Qi j
t (51)

The elastic forces in C.M.S based beam element are obtained by
the same manner to the conventional C.M.A [2, 6] but includes
the analytical mode shape functions.

Element Equations of Motion and Constrained Multi-
body Equations

The equations of motion of element j on body i can be writ-
ten as follows [12,13]:

Mi jëi j = Fi j
e +Fi j

c (52)
Copyright c© 2003 by ASME
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where Fi j
e = Qi j

a −Qi j
k is a vector which includes all the element

external and applied force vector Qi j
a including the gravity forces

and the element elastic forces Qi j
k due to deformations. Fi j

c is the
vector of constraint forces resulting from connectivity between
the finite beam elements. Using a conventional finite element as-
sembly procedure also based on C.M.S, the equations of motion
for body i can be written as:

Miëi = Fi
e (53)

where ei is the vector of nodal coordinates of body i. M i and
Fi

e are the assembled mass matrix and the external and elastic
force vector of the body, respectively. In Eq. 53, the constraint
forces due to the element connectivity are eliminated. If the body
i is subjected to kinematic constraints resulting from mechanical
joints, specified motion trajectories, the equations of motion of
the body i can be written as:

Miëi +CT
eiλ = Fi

e, i = 1,2, . . . ,nb (54)

where λ is the vector of Lagrange multipliers, C is the vector
of constraint functions that depend on the coordinates and possi-
bly on time, Cei is the constraint Jacobian matrix associated with
the vector of nodal coordinates of the deformable body i and n b

is the total number of bodies. Since the mass matrix Mi of the
C.M.S based beam element in this study is constant and sym-
metric, a Cholesky velocity transformation [12, 13] can be used
to obtain a generalized identity mass matrix. Finally the resulting
augmented form of the equations of motion can be written as:

 I CT
qch

Cqch 0


 q̈ch

λ

 =
Qch

Qc

 (55)

where Cqch is the constraint Jacobian matrix associated with the
vector of the Cholesky coordinates qch, Qch is the generalized
Cholesky forces and Qc is a quadratic velocity vector.

NUMERICAL EXAMPLES
In this section, four numerical examples including spin-up

maneuver, flexible cantilever beam, slider crank mechanism and
four bar mechanism are investigated in order to demonstrate the
use of the proposed method based on C.M.S in case of not only
the small deformation but also the large rotation and large defor-
mation problem. The authors provide five models, Model A, B,
C, D and E. Model A, B and C are based on C.M.S, and Model
D and E are based on the conventional A.N.C.F. In all examples,
denoted as Model A based on a pinned frame approach is ex-
tended to C.M.S model. Model B and C are based on C.M.A
7
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(which corresponds to Model I of [6] and the model of [5]) ex-
tended to C.M.S model, respectively. Both Model D and Model
E are comparative models not extended to C.M.S model. Model
D is based on C.M.A (which corresponds to Model III of [6]).
Model E is based on a pinned frame approach [2–4].

Spin-Up Maneuver In this example, the spin-up maneu-
ver of a rotating beam is employed to investigate how accurate
the beam element proposed in this study is with the totally re-
duced system degrees of freedom in case of small deformation
undergoes large rotation. To compare with the previous formu-
lation [14, 15] of a rotating beam of length L = 8.0 m, density
ρ= 2.767×103 kg/m3, cross sectional area A = 7.299×10−5 m2,
and bending stiffness EIz = 5.664× 102 Nm2 in the example of
[14], and L = 10, ρA = 1.2, EA = 2.8×107 and EIz = 1.4×104 in
the example of [15], the shaft is given an angular displacement
θ(t) about the global Z axis, defined as:

θ(t) =



ωs

Ts

[
1
2

t2+

(Ts

2π

)2 (
cos

(
2πt
Ts

)
−1

)]
, t < Ts

ωs

(
t− Ts

2

)
, t ≥ Ts

(56)

where ωs and Ts are set to 4.0 rad/sec and 15 sec, respectively in
the example of [14], and to 6.0 rad/sec and 15 sec in the example
of [15]. Figures 4 and 5 show the transverse and longitudinal
deflections of the rotating beam at the free end.

The results presented in these figures show that there is a
good agreement between the present models and the conven-
tional models. In Fig. 4, Model B has one beam element with
one C.M.S vibration mode, while Model D has two beam ele-
ments. In case of Fig. 5, Model B has two beam elements with
two vibration modes, while Model D has five beam elements.
The results obtained in this example show that presented method
based on C.M.S gives a good agreement with the results obtained
by only using A.N.C.F. In addition to this fact, a steady state ex-
tension at the free end of 5.14× 10−4 can be also confirmed as
shown in Fig. 5. Model D is chosen to be a comparative model
in this example because of its high accuracy in the case of large
longitudinal deformation [6]. The total CPU time used to obtain
the solution on a Mobile AMD Athlon 4 Processor 1.10 GHz us-
ing MATLAB is 133 sec (Model B) and 1656 sec (Model D) in
the example of [14] and 907 sec (Model B) and 9604 sec (Model
D) in the example of [15], respectively.

Flexible Cantilever Beam In this example, the accu-
racy with reduced system degrees of freedom is examined by
using small numbers of finite elements in case of large deforma-
tion. The authors consider a flexible cantilever beam [4] assumed
Copyright c© 2003 by ASME
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Figure 4. Transverse deflection at the free end of the rotating beam in

case of Wu and Haug, 1988
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Figure 5. Longitudinal deflection at the free end of the rotating beam in

case of Simo and Vu-Quoc, 1986

to be subjected to a vertical concentrated force F0 = 0.09 N in the
following equation.

F(t) =


F0

2
(1− cos(πt)), t < 1sec

F0, t ≥ 1sec

(57)

The beam has a length of 2.4 m, a cross sectional area of
0.0018 m2, a second moment of area 1.215× 10−8 m4, a mass
density of 2770 kg/m3 and a modulus of elasticity of 1.000×
106 N/m2, respectively. Figure 6 shows the configurations of the
beam at the same time step of 1.0 sec. In this figure, Model A has
ten beam elements with one vibration mode, Model B has five
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Y
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]
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Figure 6. Deformation of a flexible cantilever beam subject to a concen-

trated force at the same time step of 1.0 sec
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Figure 7. Components of the vector
∂r
∂x

at time 14 sec

beam elements with two vibration modes, Model C has five beam
elements with one vibration mode and Model E has thirty beam
elements, respectively. In this case, good agreements in deforma-
tion are found between the results obtained by three C.M.S based
beam elements, Model A, B and C, and the element obtained by
the conventional A.N.C.F, Model E. Model C has 34 dof while
Copyright c© 2003 by ASME
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Figure 8. Deformation of the midpoint of the connecting rod in case of

Slider Crank Mechanism
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Figure 9. Deformation of the midpoint of the connecting rod in case of

Four Bar Mechanism

Model E has 124 dof. Then, the high precision reduced order
formulation by C.M.S is realized in the sense that the solutions
obtained by using C.M.S are comparatively similar to the con-
ventional ones obtained by only using A.N.C.F.

Figure 7 shows the components of the vector ∂r/∂x along
the center line of the beam element at time 14 sec of Model B.
This result demonstrates that the global displacement gradients at
each nodal point are continuous since the beam element proposed
in this study is modeled by using the conformal global shape
function and the analytical clamped-clamped beam modes that
satisfy not only zero displacement but also zero slope at each
node, respectively. In Fig. 7, the deformation of the center line
can be measured by the deviation of the norm of the vector ∂r/∂x
from one, since this vector is not an orthogonal unit vector in
9
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Figure 10. Computer Animation of Slider Crank Mechanism (Model B)
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Figure 11. Computer Animation of Four Bar Mechanism (Model A)

case of large deformation. The total CPU time used to obtain
the solution is 1460 sec (Model A), 126 sec (Model B), 85 sec
(Model C) and 61452 sec (Model E), respectively.

Flexible Slider Crank & Four Bar Mechanism In
this example, we consider two simulations using C.M.S based
beam element. One is the very flexible slider crank mechanism
investigated in [3], the other is the very flexible four bar mech-
anism investigated in [2]. In each case, the beam element has
the same length, cross sectional dimensions and material proper-
ties as a crank shaft, a connecting rod and a follower (in case of
four bar mechanism) in comparison with the case of [2, 3]. Fig-
ures 8 and 9 show the connecting rod deflections of midpoints.
In case of slider crank simulation, Model A has four beam ele-
ments with one vibration mode (total 36 dof), Model B has two
beam elements with three vibration modes (total 32 dof), Model
C has four beam elements with one vibration mode (total 36 dof),
and Model E has eight beam elements as a connecting rod (total
52 dof). In this case, Model A and C have the same numbers
of degrees of freedom. In Model A, B and C, the crank shaft
Copyright c© 2003 by ASME
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has one beam element, while in Model E, it has three beam ele-
ments. In case of four bar mechanism, all models have one beam
element and four beam elements as a crankshaft and a follower.
Model A has ten beam elements with two vibration modes (to-
tal 112 dof), while Model E has twenty four beam elements (total
128 dof) as a connecting rod. There is a very good agreement be-
tween each model as shown in Figs. 8 and 9. Figures 10 and 11
show the computer animation of slider crank (Model B) and four
bar mechanism (Model A). As a consequence, we can reduce the
number of system degrees of freedom by maximum 20 dof in
case of slider crank mechanism and 16 dof in case of four bar
mechanism. The total CPU time used to obtain the solution is
1794 sec (Model A), 204 sec (Model B), 310 sec (Model C) and
9264 sec (Model E) in Fig. 8 and 5853 sec (Model A) and 20695
sec (Model E) in Fig. 9, respectively.

SUMMARY AND CONCLUSIONS
In this study, the beam element based on A.N.C.F is devel-

oped to realize higher efficiency and higher accuracy model with
the less number of elements and system coordinates. The defor-
mation is modeled by using the global shape function and the an-
alytical clamped-clamped beam modes that ensure the continu-
ity of all the displacements and displacement gradients at nodal
points and the smoothness of the center line. The shape func-
tion proposed in this study satisfies both the compatibility con-
ditions and the completeness conditions which imply one of the
sufficient conditions for the convergence of finite element. The
present beam element belongs to the type of C1 element which
requires slope continuity. Four numerical examples are investi-
gated in order to examine the validity of the present C.M.S beam
model. We can confirm a very good agreement between the low
order C.M.S model and the large number of element types.
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