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ABSTRACT 

1. Ebola virus is responsible for the fatal Ebola virus disease (EVD).  

2. Identifying the distribution area of the Ebola virus is crucial for understanding risk 

factors conditioning the emergence of new EVD cases. Existing distribution models 

have underrepresented the potential contribution that reservoir species and 

vulnerable species make in sustaining the presence of the virus. 

3. In this paper, we map favourable areas for Ebola virus in Africa according to 

environmental and zoogeographic descriptors, independent of human-to-human 

transmissions. We combine two different biogeographic approaches: analysis of 

mammalian distribution types (chorotypes), and distribution modelling of the Ebola 

virus. 

4. We first obtain a model defining the distribution of environmentally favourable 

areas for the presence of Ebola virus. Based on a review of mammal taxa affected by 

or suspected of exposure to the Ebola virus, we model favourable areas again, this 

time according to mammalian chorotypes. We then build a combined model in 

which both the environment and mammalian distributions explain the favourable 

areas for Ebola virus in the wild.  

5. We demonstrate that mammalian biogeography contributes to explaining the 

distribution of Ebola virus in Africa, although vegetation may also underscore clear 

limits to the presence of the virus. Our model suggests that the Ebola virus may be 

even more widespread than previously suspected, given that additional favourable 

areas are found throughout the coastal areas of West and Central Africa, stretching 

from Cameroon to Guinea, and extend further East into the East African Lakes 

region. 
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6. Our findings show that the most favourable area for the Ebola virus is significantly 

associated with the presence of the virus in non-human mammals. Core areas are 

surrounded by regions of intermediate favourability, in which human infections of 

unknown source were found. The difference in association between humans and 

other mammals and the virus may offer further insights on how EVD can spread.  

 

Running head: Mammalian distributions and the Ebola virus 

Keywords: Chorotypes, distribution modelling, favourability, fuzzy logic, reservoirs 

*Correspondence author 

Submitted: 15 October 2015 

Returned for revision: 23 November 2015 

Revision accepted: 29 March 2016 

Editor: KH/DR 

 

INTRODUCTION 

EVD is a zoonosis caused by filoviruses of the genus Ebolavirus (hereafter Ebola virus), 

of which 4 species (Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus and Budibugyo 

ebolavirus) are known in Africa (Kuhn et al. 2010). These viruses cause often-fatal 

haemorrhagic fever upon infection in humans (Kuhn et al. 2011). Ebola virus transmission 

from wildlife (here defined as wild mammals) has mostly been linked to people handling and 

butchering wild animals for bushmeat (Leroy et al. 2004a). Because bushmeat is important 

for human nutrition in Sub-Saharan Africa (Fa et al. 2015), it is fundamentally important to 

understand how reservoir factors, together with ecological conditions and human behaviour, 

contribute to Ebola virus outbreaks (Groseth et al. 2007). Recent biogeographical analyses 

have highlighted the importance of potential reservoirs (animals that can harbour the 

https://www.researchgate.net/publication/6141998_The_ecology_of_Ebola_virus?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51787146_Evaluation_of_Perceived_Threat_Differences_Posed_by_Filovirus_Variants?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/284580434_Multiple_Ebola_virus_transmission_events_and_rapid_decline_of_central_African_wildlife?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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pathogen indefinitely with no ill effects) in explaining the spatial assemblage of human 

infectious diseases worldwide (Murray et al. 2015). Biogeography has contributed broadly to 

questions of infectious disease ecology, management and surveillance (e.g. Cliff & Hagget 

1995, Guernier et al. 2004, Smith & Guégan 2010). In this study, we build on this and 

propose a way to integrate virological, zoogeographical and environmental information 

through a combination of biogeographical approaches. Using these approaches we define the 

areas where Ebola virus may find suitable conditions to occur in the wild. 

 

Despite methodological advances and increasing data availability, a limited 

understanding of the animals potentially implicated in the zoonosis has hampered mapping 

the extent of Ebola virus. Although likely reservoir species for the Ebola virus have been 

highlighted by some authors (Peterson et al. 2007), existing models describing the 

distribution of the virus have either not considered the contribution of reservoirs in sustaining 

its presence (Peterson et al. 2004), or have assumed that only a small number of species,
 

suspected to be the reservoirs for the virus, are meaningful in the biogeography of the virus 

(Pigott et al. 2014). However, the ecology of the Ebola virus is complex and widely 

unresolved (Groseth et al. 2007). Thus, imposing restrictions to the selection of animal 

species considered in a distribution model might underrepresent the zoological substrate that 

could be determining the distribution of the virus. In fact, the role of particular bat species as 

true reservoirs of Ebola virus is still under discussion, and it is almost certain that there is a 

significant virus spillover among mammal species not suspected to be the reservoirs (Leroy et 

al. 2004a, 2004b, Groseth et al. 2007, Lahm et al. 2007, Olival et al. 2014).  

 

Murray et al. (2015) suggested that mammalian biodiversity, as a whole, could be the 

strongest predictor explaining similarities between pathogeographic regions of the world. In 

https://www.researchgate.net/publication/8498853_Ecology_Drives_the_Worldwide_Distribution_of_Human_Diseases?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/6785218_Morbidity_and_mortality_of_wild_animals_in_relation_to_outbreaks_of_Ebola_haemorrhagic_fever_in_Gabon_1994-2003?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/8191963_A_Serological_Survey_of_Ebola_Virus_Infection_in_Central_African_Nonhuman_Primates?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/234145913_Changing_Geographic_Distributions_of_Human_Pathogens?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/8623559_Ecologic_and_Geographic_Distribution_of_Filovirus_Disease?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/6141998_The_ecology_of_Ebola_virus?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/6141998_The_ecology_of_Ebola_virus?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/261363037_Mammal_Taxa_Constituting_Potential_Coevolved_Reservoirs_of_Filoviruses?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/284580434_Multiple_Ebola_virus_transmission_events_and_rapid_decline_of_central_African_wildlife?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/284580434_Multiple_Ebola_virus_transmission_events_and_rapid_decline_of_central_African_wildlife?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/302560138_Mapping_the_zoonotic_niche_of_Ebola_virus_disease_in_Africa?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/282293413_Global_biogeography_of_human_infectious_diseases?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/282293413_Global_biogeography_of_human_infectious_diseases?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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this study, we analysed the spatial distribution of Ebola virus in Africa, independent of 

human-to-human transmissions, under the hypothesis that it is influenced by how mammal 

species are distributed throughout the region. Thus, instead of taking sides with an uncertain 

selection of probable natural reservoirs and victims, we tested the explanatory potential of the 

biogeographic patterns of mammals (involving species co-occurrence and thus potential 

interactions) in Africa. Our prediction was that a distribution model of Ebola virus, based on 

variables defining the existing types of mammalian distributions in Africa, should better 

describe the virus occurrences recorded in wildlife than a model based on environmental 

descriptors alone. We examined all known literature regarding events of Ebola virus 

emergence, either EVD outbreaks or recorded presence of the virus in non-human mammals 

(Appendix S1). We then combined two different biogeographic approaches: the analysis of 

distribution types for mammals (chorotypes), and distribution modelling of Ebola virus, to 

develop a map of favourable areas for the virus according to both environmental conditions 

and mammal distributions in Africa. 

 

METHODS 

Identifying spatial links between Ebola virus and wildlife  

Our model to define the favourable areas for Ebola virus was derived from occurrence 

data of any recorded presence of the virus in wildlife, disregarding whether it was detected in 

victims (i.e. organisms experiencing EVD symptoms, including human index cases) or in 

reservoirs. From the literature, we found a total of 91 geo-referenced events (Appendix S1) in 

which the Ebola virus was transmitted to humans from wildlife or was present in other non-

human mammals. These events were recognised either via the: 1) detection of viral antibodies 

or viral nucleic acid (n = 58 events, including 22 in non-human mammal carcasses), 2) 

observed abnormal increase of mortality in non-human mammal populations, associated with 
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EVD outbreaks (n = 51 events), or 3) identification of index cases of EVD in humans (n = 40 

events;  the total number of occurrence records is 91 because recognition methods overlap). 

We found published evidence from cases of serological and/or polymerase chain reaction 

(PCR) positivity of EVD in non-human mammal, or of EVD-linked mortality, in 28 mammal 

species: 10 primates, 3 rodents, 1 shrew, 8 bats, 1 carnivore and 5 ungulates (Fig 1; Appendix 

S1).  

 

Fig 1. Non-human mammal species for which there is a record of naturally occurring Ebola 

virus infection either from serological or PCR positivity, or from increased mortality 

attributed to EVD. Top map: localities with a record of Ebola virus presence in wildlife. 

Bottom map: 1º x 1º squares with a record of Ebola virus presence (outlined in white); spatial 

model of Ebola virus (spatial favourability increases from white to black). Maps were 

generated using ArcGIS. 
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In 45 of the 58 laboratory-confirmed events of Ebola virus presence in wildlife, the virus 

was either isolated or was detected by PCR. In 11 out of the other 12 events, the virus was 

detected using enzyme-linked immunosorbent assay serology. The high sensitivity of this 

method, recommended for laboratory diagnosis of EVD by the World Health Organization 

(Anonymous 2014), was demonstrated by Ksiazek et al. (1992, 1999). The remaining case 

was serologically identified by both immunofluorescence antibody test and western blot 

analysis (Hayman et al. 2010). 

 

A large number of incidents of abnormally high non-human mammal mortality attributed 

to Ebola virus were reported since November 1994 (Formenty et al. 1999). These data are of 

high significance for the development of a model of Ebola virus distribution in wildlife; the 

detection of unusual wild animal mortality can uncover the propagation of Ebola virus 

(Anonymous 2003a, 2003b, Rouquet et al. 2005). Indeed, increased animal mortality 

preceded the first human cases in most EVD outbreaks that occurred in Gabon and the 

Republic of Congo between 2001 and 2003 (Leroy et al. 2004a). Of the 51 mortality events 

considered here, 19 cases were temporally and spatially linked to recorded EVD outbreaks in 

humans, and/or were confirmed by PCR. The remaining 32 cases represented extensions of 

disease from confirmed events (Leroy et al. 2004a, Rouquet et al. 2005, Caillud et al. 2006, 

Lahm et al. 2007). 

 

Only one of the 40 index cases of haemorrhagic fever syndrome considered in humans 

was not confirmed to be EVD through laboratory testing of clinical samples. This episode 

took place in Olloba (Republic of the Congo) in May 2002, when sample collection was not 

possible (Anonymous 2002; Rouquet et al. 2005).  However, a previous EVD index case in 

Olloba had been confirmed just five months before (Leroy et al. 2004a). 

https://www.researchgate.net/publication/45538750_Long-Term_Survival_of_an_Urban_Fruit_Bat_Seropositive_for_Ebola_and_Lagos_Bat_Viruses?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/13301639_ELISA_for_the_Detection_of_Antibodies_to_Ebola_Viruses?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/21582712_Ksiazek_TG_et_al_Enzyme_immunosorbent_assay_for_Ebola_virus_antigens_in_tissues_of_infected_primates_J_Clin_Microbiol_30_947-950?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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Environmental model of Ebola virus 

Individual data points were represented as 5-km buffers around the original virus 

occurrence locations, and we overlapped these buffers to a 1º×1º-resolution grid covering the 

whole of Africa (n = 2547 grid cells). With this buffer approach, we aimed to provide the 

occurrence-allocation in grid cells with some flexibility. In central Africa, 5 km is less than 

0.05 times the side-length of a 1º×1º grid cell; given that the Ebola virus is hosted by non-

human mammals, being less than 5 km far from a cell border is virtually equivalent to being 

located at the limits of two cells. The spatial resolution employed prevented autocorrelation 

that could exist as a consequence of spatial dependence among very close (< 1º) observations 

(Legendre & Legendre 1998). The final number of grid cells for detected presence of Ebola 

virus was 40, of which 33 corresponded to Zaire ebolavirus (Fig. 1). From these, an 

environmental model of Ebola virus revealing the distribution of environmentally favourable 

areas for its presence was made by employing the Favourability Function (Real et al. 2006, 

Acevedo & Real 2012): 

 

  
 

   
 
  

  
 

 

   
     (1), 

 

where F is environmental favourability (0-1), P is probability of occurrence, and n1 and n0 are 

presence and absence numbers, respectively (absences were considered to be those squares 

not included in the presences subset). P was calculated for the entire African continent 

through a forward-stepwise logistic regression, according to 24 predictor variables describing 

types of ecosystems, abiotic factors and anthropogenic pressures on wildlife (see variable 

descriptions and sources in Appendix S2). Land-cover variables were computed as cover 

percentages in every grid, and the rest of the variables were estimated by averaged grid-

https://www.researchgate.net/publication/235789854_Numerical_Ecology_Second_English_Edition?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/226454823_Obtaining_Environmental_Favourability_Functions_from_Logistic_Regression?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225094935_Favourability_Concept_distinctive_characteristics_and_potential_usefulness?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225094935_Favourability_Concept_distinctive_characteristics_and_potential_usefulness?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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values. The logistic regression was based on the 40 Ebola virus occurrence squares (= n1), 

considering the four Ebola virus species together. The cases of serological or PCR positivity 

of EVD, of non-human mammal mortality related to EVD, and of index cases of EVD in 

humans were not differentiated in the occurrence data employed for model building. Events 

of abnormal non-human mammal mortality not directly confirmed in the laboratory only 

contributed towards 5 presences, all of which were adjacent to the main core of EVD 

outbreaks in Gabon and the Republic of Congo. Models based on the Favourability Function 

distinguish those localities with environmental conditions that favour the species’ existence 

from those with detrimental characteristics for its presence, irrespective of the species’ 

proportion of occurrences within the study area. This property is essential for our objectives, 

as it enables direct comparison between models when several species are involved in the 

analytical design, and allows for model combinations through fuzzy logic (Barbosa & Real 

2012). Fuzzy logic provides metrics for fuzzy sets, i.e. classes of objects with a continuum of 

membership degrees; these sets are characterised by a membership function that assigns to 

each object a real number in the interval [0, 1] (Zadeh 1965). In biogeography, environmental 

favourability, chorotypes, biotic boundaries and species richness can be identified as fuzzy 

sets (Estrada et al. 2008, Olivero et al. 2011, 2013, Romero et al. in press), thus fuzzy logic 

can be easily applied to these concepts (see below). 

 

Adding a spatial descriptor to this variable set allowed us to consider autocorrelation 

resulting from the spatial structure of the distribution of the virus (Sokal & Oden 1978), and 

so take into account the impact of dispersal barriers, geological history and biotic interactions 

as potential predictors (Fa et al. 2014). To this end, we followed the ‘trend surface approach’ 

(Legendre & Legendre 1998). Thus, a series of spatial variables resulting from average X and 

average Y combinations for every square of the grid were examined through a backward 

https://www.researchgate.net/publication/239060591_Spatial_autocorrelation_in_biology?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/235789854_Numerical_Ecology_Second_English_Edition?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51030623_Fuzzy_Chorotypes_as_a_Conceptual_Tool_to_Improve_Insight_into_Biogeographic_Patterns?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225564873_Using_crisp_and_fuzzy_modelling_to_identify_favourability_hotspots_useful_to_perform_gap_analysis?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225045192_Applying_Fuzzy_Logic_to_Comparative_Distribution_Modelling_A_Case_Study_with_Two_Sympatric_Amphibians?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225045192_Applying_Fuzzy_Logic_to_Comparative_Distribution_Modelling_A_Case_Study_with_Two_Sympatric_Amphibians?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/266736913_Integrating_sustainable_hunting_in_biodiversity_protection_in_Central_Africa_Hot_spots_weak_spots_and_strong_spots?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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stepwise logistic regression. Then we used as spatial descriptor the lineal combination (logit) 

of spatial variables resulting from the logistic regression. 

 

In order to control Type 1 errors caused by the large number of variables employed in the 

process, we used Benjamini and Hochberg's (1995) False Discovery Rate. This control was 

performed before the stepwise variable selection, so that only significant variables with a 

False Discovery Rate of q < 0.05 were accepted in a multivariate environmental model. To 

minimise multicollinearity, we also avoided Pearson correlation values higher than 0.8 

between predictor variables. 

 

Zoogeographic model of Ebola virus 

We defined a zoogeographic model of Ebola virus as the distribution of favourable areas 

for the presence of Ebola virus according to mammalian chorotypes. A chorotype is a 

distribution pattern followed by one or several species, which can be recognised operatively 

within an area (Baroni-Urbani et al. 1978, Real et al. 2008); chorotypes, or types of 

distribution, represent the shared geographical, ecological and evolutionary context of several 

species (Real et al. 2008). The zoogeographic model of Ebola virus was produced in three 

steps: (1) we generated a list of mammal species to be considered; (2) we then defined the 

mammalian chorotypes with potential for explaining the geographical range of the Ebola 

virus in Africa; and (3) we finally built a model sustained on a set of predictor variables 

based on the chorotypes. 

 

SELECTION OF MAMMAL SPECIES TO BE CONSIDERED 

Two different criteria were used to select the list of mammal species based on the a 

priori analysis of probable (sensu lato) links between mammals and Ebola virus, via (1) 

https://www.researchgate.net/publication/227658465_Using_chorotypes_to_deconstruct_biogeographical_and_biodiversity_patterns_The_case_of_breeding_waterbirds_in_Europe?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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taxonomic proximity; and (2) biogeographic coincidence. Our aim here was to describe 

mammalian distribution patterns with enough potential to explain the distribution of Ebola 

virus; this does not mean that the species selected are proposed to be Ebola virus reservoirs or 

susceptible taxa. 

 

Taxonomically related species might be susceptible to similar pathogens (Plyusnin & 

Morzunov 2001). Therefore, using the 28 mammal species recorded to be linked to the Ebola 

virus (see Appendix S1), we generated a preliminary list of 216 species (Appendix S3), by 

considering congenerics: Mus, Praomys, Sylvisorex, Tadarida; and whole suprageneric 

groups if they were represented by more than 5% of their species (a lower proportion was 

considered to be anecdotic) among the probable reservoirs and susceptible species: 

Pteropodidae, Hystricidae, Hominidae, Cercopithecidae, Viverridae and Suidae families, and 

forest tribes of the family Bovidae. We also included pouched rats Cricetomys and 

grasscutters Thryonomys in our preliminary list, though there is no current evidence of their 

relationship with the Ebola virus. We considered that, because members of these rodent 

genera are so numerically important in the bushmeat trade in central and West Africa 

(Alexander et al. 2014), their inclusion in the analysis was warranted. Thus, our taxonomic 

criterion was defined so that it discarded groups very far from any suspect reservoirs (e.g. 

proboscideans, equids or felines), whilst it considered all those taxa including species whose 

membership of the Ebola virus reservoir system cannot be categorically denied. 

 

We then preselected, from our preliminary list of 216 species, those whose biogeography 

was potentially able to explain the distribution of Ebola virus. To this end, those species 

geographically coinciding with or nested within the range of the Ebola virus were chosen. 

Given that the area covered by the Ebola virus is poorly known, we estimated the 

https://www.researchgate.net/publication/12114773_Virus_Evolution_and_Genetic_Diversity_of_Hantaviruses_and_Their_Rodent_Hosts?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/12114773_Virus_Evolution_and_Genetic_Diversity_of_Hantaviruses_and_Their_Rodent_Hosts?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/272011261_The_role_of_bushmeat_in_a_West_African_agricultural_landscape?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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geographical coincidence between the virus and mammalian distributions according to 

models defining the spatial structure of their respective ranges. Thus, for every mammal 

species, and for Ebola virus, we built spatial models that described their distributions 

according to purely spatial variables (i.e. combinations of average X and average Y). These 

models were generated by employing the Favourability Function (see above). For mammals, 

presences/absences were derived from polygon shapefiles for each species available from the 

International Union for Conservation of Nature’s website (IUCN Red List of Threatened 

Species. Version 2012.1. http://www.iucnredlist.org.) projected to a 1º×1º-grid system, which 

is the maximum spatial resolution at which ‘extent-of-occurrence’ range maps (such as those 

provided by the IUCN) are suitable for analysis (Hurlbert & Jetz 2007). The spatial model of 

Ebola virus was based on the same presence/absence data set considered for the 

environmental model. The degree of geographic coincidence was quantified through the 

fuzzy overlap (or fuzzy similarity) index, whilst the degree of nesting was measured using the 

fuzzy inclusion index (Dubois & Prade 1980, Olivero et al. 2011); both measures ranged 

from 0 to 1. The mathematic formulation of the fuzzy overlap (i.e. intersection divided by 

union) is equivalent to Jaccard's similarity index (Olivero et al. 2011), the theoretical 

distribution of which is randomly distributed around 0.33 (Baroni-Urbani 1980). Thus, we 

considered a geographic coincidence to be significant when the fuzzy overlap was > 0.33 (i.e. 

when both Ebola virus and the mammal had more than one third of their ranges in common). 

There is no theoretical reference for estimating significance of fuzzy inclusion values; hence, 

we considered that a mammal species’ geographical range was nested within that of Ebola 

virus when at least two thirds of the mammal’s range was included within the Ebola virus’s 

range (i.e. fuzzy inclusion > 0.66). A final list of 96 mammal species was ultimately 

considered for entry in the zoogeographic model of Ebola virus (Appendix S3), 89 of which 

https://www.researchgate.net/publication/6152558_Species_richness_hotspots_and_the_scale_dependence_o_range_maps_in_ecology_and_conservation?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/237076907_Fuzzy_Sets_and_Systems_Systems_Theory_and_Applications?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51030623_Fuzzy_Chorotypes_as_a_Conceptual_Tool_to_Improve_Insight_into_Biogeographic_Patterns?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51030623_Fuzzy_Chorotypes_as_a_Conceptual_Tool_to_Improve_Insight_into_Biogeographic_Patterns?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/248150182_A_statistical_table_for_the_degree_of_coexistence_between_two_species?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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fulfilled the two selection criteria. Another 7 species were considered because there is 

published record of their probable infection by Ebola virus. 

 

DEFINING AND MAPPING MAMMALIAN CHOROTYPES 

The geographical ranges of the 96 mammal species were classified hierarchically 

according to the Baroni-Urbani and Buser (1976) similarity index, using the Unweighted Pair 

Group Method with Arithmetic Mean agglomerative algorithm (Sneath & Sokal 1973). All 

clusters in the resulting classification dendrogram were assessed for statistical significance 

with the method given by Olivero et al. (2011), using RMacoqui 1.0 software 

(http://rmacoqui.r-forge.r-project.org/). The number of resulting chorotypes was not 

predefined; all groups of distributions that were significantly clustered were considered 

chorotypes.  

 

The resulting chorotypes were mapped following the accumulated favourability 

approach as in Fa et al. (2014). The accumulated favourability is considered a fuzzy-logic 

method for estimating species richness (Estrada et al. 2008). For all species forming part of 

the same chorotype, we built an environmental model using the method shown above for 

Ebola virus; then, in every grid cell of the study area, we added the favourability values 

defined by these environmental models. So, a cell showing high accumulated favourability 

for the species of a chorotype is defined to have favourable conditions for the presence of a 

large number of these species. Mapping chorotypes this way allowed for further downscaling 

to a higher spatial resolution (see below). 

 

 

 

https://www.researchgate.net/publication/44493448_Numerical_taxonomy_the_principles_and_practices_of_numerical_clssification_by_Peter_H_A_Sneath_and_Robert_R_Sokal?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/225564873_Using_crisp_and_fuzzy_modelling_to_identify_favourability_hotspots_useful_to_perform_gap_analysis?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/266736913_Integrating_sustainable_hunting_in_biodiversity_protection_in_Central_Africa_Hot_spots_weak_spots_and_strong_spots?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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BUILDING THE ZOOGEOGRAPHIC MODEL OF EBOLA VIRUS 

To build the zoogeographic model of Ebola virus, we followed the same procedure as for 

the environmental model. In this case, the model was built using every chorotype as a 

predictor variable. The accumulated favourability for the species of a chorotype was 

employed as a variable. 

 

Although every chorotype was based on a finite cluster of species (i.e. the chorotypical 

cluster), the distribution of every species has a certain degree of membership in all detected 

chorotypes (Olivero et al. 2011). We proffered a biogeographically-justified list of mammal 

species whose link with Ebola virus is worth investigating, based on a species membership 

degree > 0.5 in at least one of the chorotypes entered in the zoogeographic model of Ebola 

virus. The degree of membership of every species in each chorotype was calculated as the 

average of the Baroni-Urbani and Buser similarities between a species and all distributions in 

the chorotypical cluster. The theoretical distribution of this similarity index is randomly 

distributed around 0.5 (Baroni-Urbani & Buser 1976); we considered membership to be 

significant above this value. 

 

Environmental/zoogeographic model assessment and combination 

Both the environmental and zoogeographic models were assessed by using calibration 

(Hosmer & Lemeshow 2000), i.e. testing whether favourability values reflected the existing 

observations of Ebola virus presence in wildlife. We also compared the performance of both 

models in relation to goodness-of-fit, by using -2×log-likelihood; discrimination capacity 

using the Area Under the receiver-operating-characteristic Curve (AUC; Lobo et al. 2008); 

and classification capacity using sensitivity, specificity, correct classification rate, Cohen’s 

Kappa (Fielding & Bell 1997), and under-prediction and over-prediction rates (Barbosa et al. 

https://www.researchgate.net/publication/209803025_Applied_Logistic_Regression_Hoboken?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/31478645_Similarity_of_Binary_Data?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/224839832_A_Review_of_Methods_for_the_Assessment_of_Prediction_Errors_in_Conservation_PresenceAbsence_Models?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51030623_Fuzzy_Chorotypes_as_a_Conceptual_Tool_to_Improve_Insight_into_Biogeographic_Patterns?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/285698707_AUC_A_misleading_measure_of_the_performance_of_predictive_distribution_models?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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2013). Classification measures were based on the 0.5 favourability threshold because 

probability is equal to the overall prevalence at this level (Acevedo & Real 2012). In a 

calibrated model, the Hosmer-Lemeshow index should be non-significant; for higher 

goodness of fit, -2×log-likelihood should be lower; for better discrimination, AUC should be 

higher; for better classification, sensitivity, specificity, correct classification rate and Kappa 

should be higher, whereas under-prediction and over-prediction should be lower. 

 

The environmental and the zoogeographic models of Ebola virus were combined so that 

the final model gave favourability values based on the degree to which conditions are both 

environmentally and zoogeographically favourable for Ebola virus presence. To this end, we 

used the fuzzy intersection between the environmental model and the zoogeographic model 

of Ebola virus (Romero et al. in press), by measuring the minimum favourability value for 

either of the two models in each grid cell. 

 

We analysed the relative contribution of environment and zoogeography to the combined 

model. To do this, we mapped where favourability values were derived from either the 

environmental or the zoogeographic model. We, thus, identified where, and to what extent, 

one of these models acted as a limiting factor whilst the other model showed a higher 

favourability for presence of Ebola virus. Finally, we employed the sensitivity index to assess 

the capacity of the combined model to classify recorded presences of Ebola virus and of the 

four African Ebola virus species separately. 

  

We compared the distribution of known EVD outbreaks in humans with our resulting 

favourability maps for the Ebola virus. For this purpose, we overlapped the locations of index 

cases in humans with a favourability map divided into three regions depending on their 

https://www.researchgate.net/publication/225094935_Favourability_Concept_distinctive_characteristics_and_potential_usefulness?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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favourability values, according to the thresholds proposed by Muñoz & Real (2006). If the 

predicted favourability was higher than 0.8, which means that the odds are more than 4:1 

favourable to Ebola virus, the square was considered as highly favourable. Those areas with a 

favourability value lower than 0.2 (odds less than 1:4) were considered of low favourability 

for Ebola virus. The remaining squares were regarded as intermediate favourability areas. 

 

The potential for contacts between human populations and wildlife could have 

influenced detection of Ebola virus infections beyond environmental and zoogeographic 

factors that could favour the presence of Ebola virus. Therefore, we tested whether Ebola 

virus occurrences poorly explained by the combined model of Ebola virus (i.e. not explained 

by environmental conditions or by mammalian biogeography) could be accounted for by the 

presence of human populations. To do this, we performed a logistic regression of the 40 

Ebola virus occurrence squares, using favourability values for Ebola virus as the independent 

variable. The residuals of this regression were then related to rural population density and 

with distance to roads by using linear regression (for variable sources, see Appendix S2). 

 

To increase the potential uses of our output for management, surveillance or analyses 

requiring an ecological context for Ebola virus, the combined model was downscaled to 

0.1º×0.1º resolution squares, by employing the direct downscaling approach (Bombi & 

d’Amen 2012). This method was classified by Bierkens et al. (2000) as “downscaling based 

on mechanistic models through a deterministic [favourability] function”. To do this, we 

applied the favourability equations involved in the combined model to predictor variables at 

this resolution. A 10-fold shortening of the grain size (referring to pixel side length) does not 

severely affect predictions of species distributions (Bombi & d’Amen 2012). 

 

https://www.researchgate.net/publication/40186896_Upscaling_and_Downscaling_Methods_for_Environmental_Research?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/230606999_Scaling_down_distribution_maps_from_atlas_data_a_test_of_different_approaches_with_virtual_species?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/230606999_Scaling_down_distribution_maps_from_atlas_data_a_test_of_different_approaches_with_virtual_species?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/230606999_Scaling_down_distribution_maps_from_atlas_data_a_test_of_different_approaches_with_virtual_species?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/227702256_Assessing_the_potential_range_expansion_of_the_exotic_monk_parakeet_in_Spain?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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RESULTS 

The environmental model of Ebola virus 

Three variables (terra firme rain forests, natural vegetation/cropland mosaics and small 

annual temperature range) were significantly associated with the areas of high environmental 

favourability for Ebola virus presence (P < 0.01; Figs 1 and 2). Pearson correlation values 

between these variables were lower than 0.51. Vegetation/cropland mosaics and relatively 

constant temperatures complemented the predictive power of forests, especially within 

deforested areas. Crucially, the large swamp forest areas along the lower course of the Congo 

River (“cuvette congolaise”, where EVD outbreaks have so far not been recorded) did not 

appear to be as favourable as other terra firme central and West African forest areas (Fig 2). 

 

 

Fig 2. Modelling of the environmental/zoogeographic favourability for the presence of Ebola 

virus in wildlife. The environmental model is based on terra firme Rain Forests (TFRF), 

Natural Vegetation/Cropland Mosaics (NVCM) and Annual Temperature Range (ATR, with 

increasing values from yellow to red). The zoogeographic model is composed from four types 

of mammalian distributions or chorotypes (see Fig 3). The two models are combined 

according to fuzzy logic, requiring both environmentally and zoogeographically favourable 

conditions. Maps were generated using ArcGIS. 

 

 

 



18 

 

The zoogeographic model of Ebola virus 

Our analyses revealed the presence of 16 significantly different types of mammalian 

distributions, or chorotypes (Fig 3). Four of these chorotypes significantly supported the 

zoogeographic model of Ebola virus (P < 0.001): Rainforest chorotype, West-African Forest 

chorotype, North-Western Congolian Forest chorotype, and the single-species chorotype of 

Mus goundae (Fig 3). The zoogeographic model of Ebola virus, based on these chorotypes, 

showed high favourability values within the rain forests of Central and West Africa, with a 

decline in favourability towards the East, dropping even more dramatically south of the 

Congo River. 

 

Fig 3. Classification of 96 mammal species according to distributional similarities (S = 

Baroni-Urbani & Buser similarity index). *: Branches defining significant chorotypes (P < 

0.05). For every chorotype, accumulated favourability values (increasing from white to black) 

of all species are mapped. Chorotypes are abbreviated as: NWCF: North-Western Congolian 

Forest; SECF: South-Eastern Congolian Forest; NCF: Northern Congolian Forest; SCF: 

Southern Congolian Forest; CSBF: Cross-Sanaga-Bioko Forest; RF: Rain Forest; WAF: 

West-African Forest; SS: Sub-Saharan; RA: Rousettus aegyptiacus; TB: Tadarida 

bemmeleni; MO: Mus oubanguii; AS: Allochrocebus solatus; CD: Cercopithecus dryas; MG: 

http://www.iucnredlist.org/details/4307/0
http://www.iucnredlist.org/details/4307/0
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Mus goundae; PM: Praomys mutoni; SK: Sylvisorex konganensis. Solid circles indicate the 

64 mammals that are significant members (degree > 0.5) of chorotypes explaining the 

zoogeographic model of Ebola virus (RF, WAF, NWCF and MG). Red circles indicate 

published records of probable contact with the Ebola virus. Maps were generated using 

ArcGIS. 

 

Having identified the four chorotypes that, according to the zoogeographic model, favour 

Ebola virus presence, we propose a list of 64 mammal species as a guide for future 

investigations in the search for Ebola virus reservoirs and potentially susceptible species (see 

Fig 3; Appendix S3). 

 

Environmental/zoogeographic model assessment and combination 

Both the environmental and zoogeographic models appear to be significantly well 

calibrated (Table 1). The zoogeographic model shows a better goodness of fit, higher 

discrimination and greater classification power than the environmental model. However, both 

provide significant complementary information about the virus’s distribution. Thus, our 

environmental model suggests that waterlogged areas (swamps and swamp forests) could 

limit the presence of Ebola virus (Fig 2). Vegetation/cropland mosaics away from the rain 

forest block appeared unfavourable in the zoogeographic model, the only exception being a 

small area of the northern Central African Republic savannas; this area corresponds with the 

discovery of Ebola virus genetic sequences in rodents in gallery forests around Bohou River, 

490 km North of Bangui (Morvan et al. 1999). 
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Table 1. Model assessment and comparison based on calibration, goodness of fit, and 

discrimination and classification capacities. In a calibrated model, H-L should be non-

significant; for higher goodness of fit, -2logL should be lower; for better discrimination, AUC 

should be higher; for better classification, sensitivity, specificity, correct classification rate 

and Kappa should be higher, whereas under-prediction and over-prediction should be lower. 

 

 Model 

Indices Environmental Zoogeographic 
H-L* 

2
7=13.02, P>0.05 

2
7=7.03, P>0.05 

-2logL** 226.26 225.48 
AUC*** 0.943 0.965 
Sensitivity 0.925 0.975 
Specificity 0.885 0.889 
Kappa 0.180 0.196 
Correct classification rate 0.886 0.890 
Under-prediction 0.00135 0.00045 
Over-prediction 0.886 0.877 

* Hosmer-Lemeshow calibration index 
** -2 x ln(Likelihood) 
***Area Under the receiver-operating-characteristic Curve 
 

Zoogeography was the most extended limiting factor for the presence of Ebola virus, 

covering 76% of the African continent; instead, environment was the limiting factor in the 

remaining 34%. These percentages turned into 55% and 45%, respectively, if completely 

unfavourable areas for Ebola virus (favourability < 0.05) were excluded; and they became 

48% and 52% within the intermediate or high favourability areas (favourability > 0.2; see 

Appendix S4). The combined model inherited, from the zoogeographic model, the eastward 

decline of favourability values (Fig 2), where zoogeographic favourability was lower than 

environmental favourability (Appendix S4). Instead, the combined model excluded swamp 

forests as Ebola virus favourable areas as a legacy of the environmental model.  

 

Due to the sensitivity of the combined model, more than 92% of the 1º x 1º squares with 

records of the Ebola virus (n = 40) were classified correctly in areas with favourability values 

higher than 0.5. The combined model explained 94% of the Zaire ebolavirus presences (n = 

33), 100% of the Budibugyo ebolavirus presences (n = 2), 75% of the Sudan ebolavirus 
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presences (n = 4), and 100% of the Taï Forest ebolavirus presences (n = 1). Up to 63% of 

Ebola virus presences appeared within the highly favourable areas (i.e. value > 0.8; Fig 4a), 

largely coinciding with non-flooded rain forests. The 0.8-favourability threshold significantly 

separated virus occurrences in humans from presences in other mammals (Fig 4a); the highly 

favourable region included a significantly higher proportion of presences in non-human 

mammals (


1 = 6.22, P < 0.05), as well as in both humans and non-human mammals (


1 = 

8.00, P < 0.01). In contrast, presences recorded only in humans were significantly located 

within the intermediate favourability areas (i.e. value between 0.2 and 0.8; 
2

1 = 19.16, P < 

0.001). This regionalisation reveals an emergent property that arises from the combination of 

the environmental and zoogeographic models. Residual analyses (to explore the differences 

between predicted and observed probabilities of presence) indicate that there is a significant 

positive correlation between Ebola virus points recorded outside the highly favourable region 

and both rural population density (r = 0.589, P = 0.001) and distance to roads (r = -0.466, P = 

0.014). A downscaled geographical representation of the combined model, at a 0.1° x 0.1° 

spatial resolution, is shown in Fig 4b. 
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Fig 4. Combination of the environmental and the zoogeographic models of Ebola virus at the 

original 1º × 1º resolution (A) and downscaled to a 0.1º × 0.1º resolution (B). Red tones 

distinguish regions with high (value > 0.8), intermediate (0.2-0.8), and low favourability (< 

0.2) for the presence of Ebola virus. White areas are completely unfavourable for Ebola virus 

(< 0.05). Circles represent squares with cases of serological or PCR positivity of Ebola virus 

infection in non-human mammals, animal mortality attributed to EVD, and zoonotic 

transmission to humans. G: Guinea; SL: Sierra Leone; L: Liberia; CI: Cote d'Ivoire; GH: 

Ghana; T: Togo; Be: Benin; N: Nigeria; CA: Cameroon; CAR: Central African Republic; S: 

South Sudan; U: Uganda; R: Rwanda; B: Burundi; DRC: Democratic Republic of Congo; A: 

Angola; CO: Congo; GA: Gabon; EG: Equatorial Guinea. Maps were generated using 

ArcGIS. 

 

A total of 17 countries contained high favourability areas (> 0.8) for Ebola virus (Fig 

4b). In decreasing order, according to the extent of highly favourable areas in each, these 

were: Democratic Republic of the Congo, Gabon, Cameroon, Republic of Congo, Côte 
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d’Ivoire, Liberia, Ghana, Central African Republic, Nigeria, Equatorial Guinea, Sierra Leone, 

Uganda, Benin, Angola, Tanzania, Guinea and Togo. Another four countries comprised areas 

of intermediate favourability (0.2 – 0.8): Rwanda, Burundi, South Sudan and Kenya. 

 

DISCUSSION 

Spatial modelling, applied to pathogen systems, can generate statistically robust 

predictions of the geographic distributions of the organism causing a disease, and its 

maintenance reservoir(s) (Peterson 2006, Purse & Golding 2015). However, species 

distribution modelling applied to EVD transmission in Africa has so far underestimated the 

contribution reservoirs and vulnerable species may make in sustaining the virus presence 

(Peterson et al. 2004, Pigott et al. 2014; see above). Our models are the first to analyse the 

contribution of mammalian distribution patterns to the biogeography of Ebola virus in Africa. 

In our study, we considered the four African Ebola virus species together because of the 

scarcity of information available on the presence of species other than Zaire ebolavirus. The 

latter is the most lethal (Kuhn et al. 2011), was responsible for the EVD outbreaks in central 

Africa (Bausch & Schward 2014), and has also been associated with the current epidemic in 

West Africa (Dudas & Rambaut 2014). Our models have very high sensitivity (0.94) and 

specificity (0.90) to the presence of Zaire ebolavirus, but high favourability areas also 

adequately predicted the presence of Budibugyo ebolavirus, and of Taï Forest ebolavirus 

(sensitivity = 1). However, our models poorly predicted Sudan ebolavirus. With better 

knowledge of the distribution of all Ebola virus species, more robust models could have been 

developed. In particular, models focused on the different Ebola species should be developed 

promptly, since some mammalian chorotypes that were not entered in the model could 

explain the presence of these Ebola virus species better, e.g. chorotype NECF in the case of 

Budibugyo ebolavirus (compare Figs. 1 and 3).  

https://www.researchgate.net/publication/262609061_Phylogenetic_Analysis_of_Guinea_2014_EBOV_Ebolavirus_Outbreak?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/280874568_Tracking_the_distribution_and_impacts_of_diseases_with_biological_records_and_distribution_modelling?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/8623559_Ecologic_and_Geographic_Distribution_of_Filovirus_Disease?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/51787146_Evaluation_of_Perceived_Threat_Differences_Posed_by_Filovirus_Variants?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/6479507_Ecologic_Niche_Modeling_and_Spatial_Patterns_of_Disease_Transmission?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/302560138_Mapping_the_zoonotic_niche_of_Ebola_virus_disease_in_Africa?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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Peterson et al. (2007) identified 55 groups of mammalian taxa of interest as potential 

reservoirs, based on a detailed inspection of distributional overlap patterns with known 

filovirus disease outbreaks. Our list of 68 species biogeographically linked to Ebola virus 

differs from the list of likely reservoir species presented by Peterson et al. (2007). These 

authors generated an inventory of candidate reservoir species, assuming that the reservoir 

supports persistent, largely asymptomatic Ebola virus infections, which de facto eliminates 

most primates and ungulates. Our list, unlike Peterson et al.’s, is 33% primates (families 

Hominidae and Cercopithecidae) and 20% ungulates (families Suidae and Bovidae). 

Members of the fruit bat family (Pteropodidae), Molossid bats, viverrid carnivores, and the 

rodent Praomys jacksoni are included in both lists. In our list of species, however, we also 

included other fruit bats (Casinycteris argynnis, Scotonycteris ophiodon and Scotonycteris 

zenkeri) as members of the chorotypes significantly linked to Ebola virus distribution. Of the 

two rodent genera Cricetomys and Thryonomys included in our analyses given their 

prominence in the bushmeat trade, Cricetomys emini emerged as worth investigating. Thus, 

unlike Peterson et al.’s (2007), our list is not a proposal of potential reservoir species; instead, 

we present a list of mammals biogeographically associated with Ebola virus, and thus with 

the geographic potential of being involved in the virus cycle as reservoirs or susceptible 

species. This is not a closed list, even though we have restricted the analysis to a limited 

number of species. This is because any species (i.e. also those not considered in the analysis) 

are members of all chorotypes to a certain degree (Olivero et al. 2011). Thus, it is possible to 

evaluate whether unassessed taxa can be considered part of the zoogeographic factor as 

defined in the Ebola virus model. 

 

https://www.researchgate.net/publication/51030623_Fuzzy_Chorotypes_as_a_Conceptual_Tool_to_Improve_Insight_into_Biogeographic_Patterns?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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Of the 28 mammal species with published record of probable contact with Ebola 

virus, only 8 were not included in our 64-species list: Rousettus aegyptiacus, Eidolon helvum, 

Epomophorus gambianus, Micropteropus pusillus, Tadarida condylura, Civettictis civetta, 

Papio anubis and Mandrillus leucophaeus (Appendix S3). What these species have in 

common is that a large proportion of their populations are found distant from where Ebola 

virus has been detected. We do not challenge the evidenced relationship of these species with 

Ebola virus, but note that they do not show strong overlap with it (even though there is 

overlap in some parts of the range). It could be argued that subspecific taxa of the same 

species may differ in their ability to serve as Ebola virus reservoirs. In the case of these 8 

mammal species, however, all subspecies currently recognised (Kingdon et al. 2013) are 

partially distributed outside the Ebola virus’s range, with the exception of Tadarida 

condylura osborni. These species might be more interesting from a phylogeographic 

perspective, but their distributions cannot explain the geographic distribution of the African 

Ebola viruses in wildlife; the virus might potentially be hosted by individuals of these 

species, but factors other than the distribution of these reservoirs could explain the observed 

geographic limits of the Ebola virus in Africa (e.g. other reservoirs or environmental 

conditions). 

 

We show, as Pigott et al. (2014) clearly indicated, that the high relative contribution 

of vegetation in the model might underscore clear limits to the presence of Ebola virus. As in 

the Pigott et al. (2014) and Murray et al. (2015) maps (and less patently in Peterson et al.'s 

2004), we confirm West Africa as a highly favourable region for Ebola virus. Our map also 

suggests that the virus distribution may be even more widespread than previously suspected, 

given that additional favourable areas for the virus are found throughout the coastal areas of 

West and Central Africa, stretching from Cameroon to Guinea, and extending further East 
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into the East African Lakes region (i.e. Uganda). Of the 17 countries with highly favourable 

areas (> 0.8) for Ebola virus occurrence in wildlife in our model, 16 are among the top 17 

considered as high-risk from Ebola by both Pigott et al. (2014) and Murray et al. (2016), and 

10 of these are common to both sources. The Democratic Republic of the Congo, Gabon, 

Republic of Congo, Côte d’Ivoire, Uganda and Guinea have records of EVD index cases in 

humans, whereas Cameroon, Liberia, Central African Republic, Nigeria, Angola, Ghana, 

Sierra Leone, Benin, Tanzania and Togo have not. Identifying ‘at risk’ countries that are 

currently Ebola virus-free, according to various different evidence types, could be 

fundamental in achieving adequate levels of preparedness. For example, countries such as 

Equatorial Guinea, with 94% of its territory highly favourable for Ebola virus in our model, 

though it was ranked number 20 by Pigott et al. (2014), should not escape attention. 

Similarly, Burundi, Rwanda and Kenya, containing (like South Sudan) areas of intermediate 

favourability —covering all of Burundi and Rwanda— but so far free from EVD cases, 

should be targeted for further investigation. 

 

In our map, the favourability for the disease in areas south of the Congo River is 

remarkably lower than in other rainforest areas; a pattern not apparent in Pigott et al.’s (2014) 

map. A possible explanation may be a lack of adequate zoogeographic conditions for the 

virus to flourish linked to a lower diversity of potential reservoir species in this area. There is 

evidence that the richness and population structure of mammals found in the central part of 

the Congo basin is considerably lower than in areas along the western, northern and eastern 

side of the Congo River (Fa et al. 2014). The limiting role of the zoogeographic factor south 

to the Congo River (Appendix S4) supports this possibility, but we cannot discard the 

possibility of observation bias, since the central Congo is not an easily accessible area. 

 

https://www.researchgate.net/publication/266736913_Integrating_sustainable_hunting_in_biodiversity_protection_in_Central_Africa_Hot_spots_weak_spots_and_strong_spots?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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Serological surveys among human populations support a rainforest origin of the potential 

reservoir of Ebola virus (Gonzalez et al. 1989, 2000). Living or spending significant time 

deep in the forest is positively correlated with seropositivity in Pygmies and in other human 

groups (Gonzalez et al. 2000, Becquart et al. 2010, Schoepp et al. 2014). This is consistent 

with our finding of the highest favourability for Ebola virus in the rainforest, and with the 

recorded concurrence of cases of spillover from other animals to humans there, even though 

this information was not used to build the model. However, epidemic outbreaks also 

originated outside of the rain forest block. This is the case for the first known outbreaks in 

humans, recorded by the World Health Organization in Zaire and Sudan in 1976 (Anonymous 

1978a,b), for the last and most important episode in West Africa (Bausch & Schward 2014), 

and for some other cases in Uganda (Albariño et al. 2013), Congo (Pourrut et al. 2005), the 

Democratic Republic of the Congo (Anonymous 2009) and Sudan (Onyango et al. 2007). All 

of them have in common that the human index cases  were not documented to be related to 

cases of EVD in non-human mammals, and that they occurred in areas of intermediate 

favourability for Ebola virus according to our model. Thus, a main contribution of our model 

is the finding of a geographical context for exploring which mechanisms differentiate Ebola 

virus transmission to humans in highly favourable areas, compared to in areas of intermediate 

favourability for Ebola virus; this is of high epidemiological relevance. In areas of 

intermediate favourability, gallery forests may play a significant role in harbouring and 

spreading the Ebola virus. 

 

EVD epidemics seem to be related more to human behaviour, which increases the risk of 

contact with the reservoir, than to the emergence of a highly pathogenic viral strain 

(Gonzalez et al. 2000). The significant relationship between human presence (i.e. population 

density and roads) and EVD cases in areas only moderately favourable to Ebola virus 

https://www.researchgate.net/publication/12597426_Ebola_and_Marburg_virus_antibody_prevalence_in_selected_populations_of_the_Central_African_Republic?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
https://www.researchgate.net/publication/12597426_Ebola_and_Marburg_virus_antibody_prevalence_in_selected_populations_of_the_Central_African_Republic?el=1_x_8&enrichId=rgreq-ed8f86072adc946758e757ce89f7cbdd-XXX&enrichSource=Y292ZXJQYWdlOzI5OTUzMzg4MztBUzozNjk4NTg3NzM1Njk1NTBAMTQ2NTE5MjYxMTkyMQ==
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suggests that EVD transmission to humans in these areas could be influenced by 

anthropogenic factors. More frequent contact between humans and forest fauna would 

amplify the chances of Ebola virus transmission to humans, even where environmental or 

zoogeographic conditions are not the most favourable for the virus. About half of the EVD 

index cases reported in the region of intermediate favourability happened at the limits of 

highly favourable areas (Fig 4), which could have facilitated contacts. Even so, some index 

cases have been located away from the forest domain. One possible explanation for the 

arrival of Zaire Ebolavirus in West Africa, during the 2013 Guinean outbreak, far from its 

usual haunts in central Africa, is that the virus was introduced by travelling bats (Bausch & 

Schward 2014). Sáez et al. (2015) also suggested that the index case in Guinea may have 

been infected by a colony of insectivorous free-tailed bats Mops condylurus. Do Chiropterans 

have a more significant role in zoonotic spillover in the intermediate-favourability areas than 

in the deep rainforest haunts of Ebola virus? In the first documented case of EVD in Sudan in 

1976, the index case was located (by the World Health Organization) in a cotton factory far 

from the forest block, where the only wild significantly abundant species was an 

insectivorous bat species (Anonymous 1978b). Additional analysis and study of the human-

wildlife interface are still required to delineate areas in which human populations are at risk 

of zoonotic transmission of Ebola virus. In this task, our model could be used to delineate the 

geographic context of the analysis. As risk factors for zoonotic transmission of Ebola virus 

are better understood, it will be possible to incorporate this information into future risk 

mapping assessments and to develop mitigation or prevention measures. 
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SUPPORTING INFORMATION 

 

Additional supporting information may be found in the online version of this article at the 

publisher’s web-site. 

Appendix S1. Referenced locations of Ebola virus presence in wildlife. 

Appendix S2. Predictor-variable description and sources. 

Appendix S3. List and features of the 216 mammal species considered in this study. 

Appendix S4. Contribution of environment and zoogeography to the Ebola virus distribution 

model based on combination of explanatory factors. 

 

 

 


